
On a Triptych of Software Development 140

(4. 4.4. )

Start of Lecture 13: CONCLUDING DISCUSSION & CONCLUSION

March 3, 2010, 19:36, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 141

5. Discussion

• We discuss a number of issues that were left open above.

5.1. gv What Have We Omitted

• Our coverage of domain and requirements engineering has focused
on modelling techniques for domain and requirements facets.

• We have omitted the important software engineering tasks of

– stakeholder identification and liaison,

– domain and, to some extents also requirements, especially goal
acquisition and analysis,

– terminologisation, and

– techniques for domain and requirements and goal validation and
[goal] verification (D,R |= G).

March 3, 2010, 19:36, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 142

(5. Discussion 5.1. gv What Have We Omitted )

5.2. Domain Descriptions Are Not Normative

• The description of, for example,

– “the” domain of the New York Stock Exchange would describe

∗ the set of rules and regulations governing the submission of sell offers and
buy bids

∗ as well as those of clearing (‘matching’) sell offers and buy bids.

– These rules and regulations appears to be quite different from those of the
Tokyo Stock Exchange.

– A normative description of stock exchanges would abstract these rules so as to
be rather un-informative.

– And, anyway, rules and regulations changes and business process re-engineering
changes entities, actions, events and behaviours.

– For any given software development one may thus have to rewrite parts of
existing domain descriptions, or construct an entirely new such description.

March 3, 2010, 19:36, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 143

(5. Discussion 5.2. Domain Descriptions Are Not Normative )

5.3. “Requirements Always Change”

• This claim is often used as a hidden excuse for not doing a proper,
professional job of requirements prescription, let alone “deriving”
them, as we advocate, from domain descriptions.

• Instead we now make the following counterclaims

– [1] “domains are far more stable than requirements” and

– [2] “requirements changes arise more as a result of business process
re-engineering than as a result of changing stakeholder ideas”.

March 3, 2010, 19:36, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark



On a Triptych of Software Development 144

(5. Discussion 5.3. “Requirements Always Change” )

• Closer studies of a number of domain descriptions,

– for example of a financial service industry,

– reveals that the domain in terms of which an “ever expanding”
variety of financial products are offered,

– are, in effect, based on a small set of very basic domain functions
which have been offered for well-nigh centuries !

• We claim that

– thoroughly developed domain descriptions and

– thoroughly “derived” requirements prescriptions

– tend to stabilise the requirements re-design,

– but never alleviate it.

March 3, 2010, 19:36, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 145

(5. Discussion 5.3. “Requirements Always Change” )

5.4. What Can Be Described and Prescribed

• The issue of “what can be described” has been a constant challenge
to philosophers.

– Bertran Russell covers , in a 1919 publication, Theory of De-

scriptions, and

– in [Philosophy of Mathematics] a revision, as The Philosophy of

Logical Atomism.

• The issue is not that straightforward.

• In two recent papers we try to broach the topic from the point of
view of the kind of domain engineering presented in these lectures.

March 3, 2010, 19:36, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 146

(5. Discussion 5.4. What Can Be Described and Prescribed )

• Our approach is simple; perhaps too simple !

• We can describe what can be observed.

• We do so,

– first by postulating types of observable phenomena and of derived
concepts;

– then by the introduction of observer functions and by axioms over
these, that is, over values of postulated types and observers.

– To this we add defined functions; usually described by pre/post-
conditions.

∗ The narratives refer to the “real” phenomena

∗ whereas the formalisations refer to related phenomenological
concepts.

March 3, 2010, 19:36, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 147

(5. Discussion 5.4. What Can Be Described and Prescribed )

• The narrative/formalisation problem is that one can ‘describe’ phe-
nomena without always knowing how to formalise them.

March 3, 2010, 19:36, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark



On a Triptych of Software Development 148

(5. Discussion 5.4. What Can Be Described and Prescribed )

5.5. What Have We Achieved – and What Not

• Earlier we made some claims.

• We think we have substantiated them all, albeit ever so briefly.

March 3, 2010, 19:36, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 149

(5. Discussion 5.5. What Have We Achieved – and What Not )

• Each of the domain facets

– (intrinsics,

– support technologies,

– rules and regulations,

– scripts [licenses and contracts],

– management and organisation and

– human behaviour)

March 3, 2010, 19:36, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 150

(5. Discussion 5.5. What Have We Achieved – and What Not )

• and each of the requirements facets

– (projection,

– instantiation,

– determination,

– extension and

– fitting)

• provide rich grounds for both specification methodology studies and and for more
theoretical studies.

March 3, 2010, 19:36, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 151

(5. Discussion 5.5. What Have We Achieved – and What Not )

5.6. Relation to Other Work

• The most obvious ‘other’ work is that of Michael jackson’s [Problem
Frames].

– In that book Jackson, like is done here,

∗ departs radically from conventional requirements engineering.

∗ In his approach understandings of the domain, the requirements
and possible software designs

∗ are arrived at, not hierarchically, but in parallel, interacting
streams of decomposition.

March 3, 2010, 19:36, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark



On a Triptych of Software Development 152

(5. Discussion 5.6. Relation to Other Work )

• Thus the ‘Problem Frame’ development approach iterates between
concerns of

– domains,

– requirements and

– software design.

• “Ideally” our approach pursues

– domain engineering

– prior to requirements engineering,

– and, the latter, prior to software design.

• But see next.

March 3, 2010, 19:36, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 153

(5. Discussion 5.6. Relation to Other Work )

• The recent book [Axel van Lamsweerde]

– appears to represent the most definitive work on Requirements
Engineering today.

– Much of its requirements and goal acquisition and analysis tech-
niques

– carries over to main aspects of domain acquisition and analysis
techniques

– and the goal-related techniques of apply to determining which

∗ projections,

∗ instantiation,

∗ determination and

∗ extension operations

to perform on domain descriptions.

March 3, 2010, 19:36, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 154

(5. Discussion 5.6. Relation to Other Work )

5.7. “Ideal” Versus Real Developments

• The term ‘ideal’ has been used in connection with ‘ideal development’
from domain to requirements.

• We now discuss that usage.

• Ideally software development could proceed

– from developing domain descriptions

– via “deriving” requirements prescriptions

– to software design,

each phase involving extensive

– formal specifications,

– verifications (formal testing, model checking and theorem proving)
and validation.

March 3, 2010, 19:36, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 155

(5. Discussion 5.7. “Ideal” Versus Real Developments )

• More realistically

– less comprehensive domain description development (D)

– may alternate with both requirements development (R) work

– and with software design (S) –

– in some

∗ controlled,

∗ contained

∗ iterated and

∗ “spiralling”

manner

– and such that it is at all times clear which development step is
what: D, R or S!

March 3, 2010, 19:36, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark



On a Triptych of Software Development 156

(5. Discussion 5.7. “Ideal” Versus Real Developments )

5.8. Description Languages

• We have used the RSL specification language, for the formalisations
of this report,

• but any of the model-oriented approaches and languages offered by

– Alloy,

– Event B,

– RAISE,

– VDM and

– Z,

should work as well.

March 3, 2010, 19:36, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 157

(5. Discussion 5.8. Description Languages )

• No single one of the above-mentioned formal specification languages,
however, suffices.

• Often one has to carefully combine the above with elements of

– Petri Nets,

– CSP,

– MSC,

– Statecharts,

and/or some temporal logic, for example

– either DC or

– TLA+.

• Research into how such diverse textual and diagrammatic languages
can be combined is ongoing.

March 3, 2010, 19:36, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 158

(5. Discussion 5.8. Description Languages )

5.9. D,S |= R

• In a proof of correctness of Software design with respect toRequirements
prescriptions one often has to refer to assumptions about theDomain.

• Formalising our understandings of the Domain, the Requirements
and the Software design enables proofs that the software is right and
the formalisation of the “derivation” of Requirements from Domain
specifications help ensure that it is the right software .

March 3, 2010, 19:36, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 159

(5. Discussion 5.9. D,S |= R )

5.10. Domain Versus Ontology Engineering

• In the information science community an ontology is a

– “formal, explicit specification of a shared conceptualisation”.

• Most of the information science ontology work seems aimed primarily
at axiomatisations of properties of entities.

• Apart from that there are many issues of “ontological engineering”
that are similar to the triptych kind of domain engineering;

– but then, we claim, that domain engineering goes well beyond
ontological engineering and makes free use of whatever formal
specification languages are needes.

March 3, 2010, 19:36, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark



On a Triptych of Software Development 160

6. Conclusion

• These lecture slides are based on the paper:

From Domains to Requirements

Submitted for publication

December 7, 2009

• Versions of that paper are found on the Internet”

www.imm.dtu.dk/~db/short-from-domains-to-requirements.p

www.imm.dtu.dk/~db/long-from-domains-to-requirements.pd

– The examples of the short version are without formulas.

– The examples of the long version are with formulas.

March 3, 2010, 19:36, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 161

(6. Conclusion )

• The idea of extending that (8-11 page two column) paper

– into a brief set of lectures notes and slides

– arose in connection with the author’s

– April 2010 lectures at the Technical University of Vienna.

• In addition to a normal format paper

– a full-fledged “RSL primer”,

– a number of clarifying methodology sections and

– further examples

have been added as appendices.

March 3, 2010, 19:36, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 162

(6. Conclusion )

• The formalisations of these lecture notes (and slides)

– which are expressed in RSL,

– the RAISE Specification Languange,

– can be expressed in either of

∗ Alloy,

∗ Event B,

∗ VDM-SL or

∗ Z.

– The present author

∗ would like to work with “enthusiasts” (i.e., “followers”)

∗ of the above-listed specification languages

∗ to achieve versions of these lecture notes (and slides)

∗ for any and all of these other formal specification languages.

March 3, 2010, 19:36, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 162

(6. Conclusion )

End of Lecture 13: CONCLUDING DISCUSSION & CONCLUSION

March 3, 2010, 19:36, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark


