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Start of Lecture 12: MEREOLOGY
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C. Mereology
C.1. Opening

C.1.1. Definition

• By mereology we understand

– the study and knowledge about

– parts and wholes

– and the relationships between parts and between parts and holes.
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(C. Mereology C.1. Opening C.1.1. Definition )

C.1.2. Examples

Example 51 – Simple and Composite Net Entities:

• We repeat some of the material from Example 1 on page 39.

• [1] A road, train, airlane (air traffic) or sea lane (shipping) net

• [2] consists, amongst other things, of hubs and links.

type

[ 1 ] N
[ 2 ] H, L

value

[ 2 ] ωHs: N → H-set, ωLs: N → L-set,

• We can consider nets as composite and, for the time being, hubs and
links as simple.

End of Example 51

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 365

(C. Mereology C.1. Opening C.1.2. Examples )

• Example 51 illustrated that entities can be either atomic of compos-
ite.

• But also functions, events and behaviours can be either atomic or
composite.
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(C. Mereology C.1. Opening C.1.2. Examples )

Example 52 – Simple and Composite Net Functions:

• [3] With every link we associate a length.

• [4] A journey is a pair of a link and a continuation.

• [5] A continuation is either "nil" or is a journey.

• [6] Journies have lengths:

– [6.1] the length of the link of the journey pair,

– [6.2] and the length of the continuation – where a "nil" continu-
ation has length 0.
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(C. Mereology C.1. Opening C.1.2. Examples )

type

[ 3 ] LEN
[ 4 ] Journey = L × C
[ 5 ] C = ′′

nil
′′ | Journey

value

[ 3 ] zero LEN:LEN
[ 3 ] ωLEN: L → LEN
[ 6 ] length: Journey → LEN
[ 6 ] length(l,c) ≡
[ 6.1 ] let ll = ωLEN(l),
[ 6.2 ] cl = if c=′′

nil
′′ then zero LEN else length(c) end in

[ 6 ] sum(ll,cl) end

sum: LEN × LEN → LEN
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• Both

– the journey and continuation entities, j and c , and

– the length function

are composite

• Both

– the link entities, ll,

– the ωLEN function

are atomic.

End of Example 52

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 369

(C. Mereology C.1. Opening C.1.2. Examples )

Example 53 – Simple and Composite Net Events:

• [7] The isolated crash of two vehicles, at time t, in a traffic, at a hub
or along a link can be construed as a single atomic event.

• [8] The crash, within a few seconds (t, t′, t ∼ t′), in a traffic, of three
or more vehicles,

– [8.1] in a hub,

– [8.2] or along a short segment of a link,

can be considered a composite event.

• We shall model this event by the predicates which holds of vehicles in
a traffic at given times.
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type

TF = T → (V →m Pos)
Pos == µatH(hi:HI) | µonL(πhi:HI,πli:LI,πf:F,πhi′:HI)

type

value

[ 7 ] atomic crash: V × V → TF → T → Bool

[ 7 ] atomic crash(v,v′)(tf)(t) ≡ (tf(t))(v)=(tf(t))(v′)
[ 7 ] pre t ∈ DOMAIN tf ∧ {v,v′}⊆dom(tf(t))∧v6=v′

[ 8 ] composite crash: V-set → TF → (T×T) → Bool

[ 8 ] composite crash(vs)(tf)(t,t′) ≡
[ 8.1 ] ∃ hi:HI • card{v|v:V• ∈ vs∧(tf(t′′))(v)=µatH(hi)∧t≤t′′≤t′}≥3∨
[ 8.2 ] ∃ hi′,hi′′:HI,li:LI,fs:F-set •

[ 8.2 ] fs={r..r′} where 0≤r≃r′≤1 ∧
[ 8.2 ] card{(tf(t′′))(v)=µonL(hi′,li,f,hi′′)|v:V,f:F•v ∈ vs∧f ∈ fs∧t≤t′′≤t′}≥3
[ 8 ] pre {t,t′}⊆DOMAIN tf ∧ t∼t′ ∧ ∧ vs⊆dom(tf(t)) ∧ card vs≥3

End of Example 53
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(C. Mereology C.1. Opening C.1.2. Examples )

• In the next, long example we consider a pipeline system (or either
oil or gas pipes).

Example 54 – Simple and Composite Net Behaviours:
Pipeline Systems and Their Units

35. We focus on nets, n : N , of pipes, π : Π, valves, v : V , pumps, p : P ,
forks, f : F , joins, j : J , wells, w : W and sinks, s : S.

36. Units, u : U , are either pipes, valves, pumps, forks, joins, wells or
sinks.

37. Units are explained in terms of disjoint types of PIpes, VAlves, PUmps,
FOrks, JOins, WElls and SKs.12

12This is a mere specification language technicality.
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type

35 N, PI, VA, PU, FO, JO, WE, SK
36 U = Π | V | P | F | J | S| W
36 Π == mkΠ(pi:PI)
36 V == mkV(va:VA)
36 P == mkP(pu:PU)
36 F == mkF(fo:FO)
36 J == mkJ(jo:JO)
36 W == mkW(we:WE)
36 S == mkS(sk:SK)
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Unit Identifiers and Unit Type Predicates

38. We associate with each unit a unique identifier, ui : UI.

39. From a unit we can observe its unique identifier.

40. From a unit we can observe whether it is a pipe, a valve, a pump, a
fork, a join, a well or a sink unit.

type

38 UI
value

39 obs UI: U → UI
40 is Π: U → Bool, is V: U → Bool, ..., is J: U → Bool

is Π(u) ≡ case u of mkPI( ) → true, → false end

is V(u) ≡ case u of mkV( ) → true, → false end

...

is S(u) ≡ case u of mkS( ) → true, → false end
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Unit Connections

• A connection is a means of juxtaposing units.

• A connection may connect two units in which case one can observe
the identity of connected units from “the other side”.

41. With a pipe, a valve and a pump we associate exactly one input and
one output connection.

42. With a fork we associate a maximum number of output connections,
m, larger than one.

43. With a join we associate a maximum number of input connections,
m, larger than one.

44. With a well we associate zero input connections and exactly one output
connection.

45. With a sink we associate exactly one input connection and zero output
connections.
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value

41 obs InCs,obs OutCs: Π|V|P → {|1:Nat|}
42 obs inCs: F → {|1:Nat|}, obs outCs: F → Nat

43 obs inCs: J → Nat, obs outCs: J → {|1:Nat|}
44 obs inCs: W → {|0:Nat|}, obs outCs: W → {|1:Nat|}
45 obs inCs: S → {|1:Nat|}, obs outCs: S → {|0:Nat|}

axiom

42 ∀ f:F • obs outCs(f) ≥ 2
43 ∀ j:J • obs inCs(j) ≥ 2
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• If a pipe, valve or pump unit is input-connected [output-connected] to
zero (other) units, then it means that the unit input [output] connector
has been sealed.

• If a fork is input-connected to zero (other) units, then it means that
the fork input connector has been sealed.

• If a fork is output-connected to n units less than the maximum fork-
connectability, then it means that the unconnected fork outputs have
been sealed.

• Similarly for joins: “the other way around”.
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(C. Mereology C.1. Opening C.1.2. Examples )

Net Observers and Unit Connections

46. From a net one can observe all its units.

47. From a unit one can observe the the pairs of disjoint input and output
units to which it is connected:

(a) Wells can be connected to zero or one output unit — a pump.

(b) Sinks can be connected to zero or one input unit — a pump or a
valve.

(c) Pipes, valves and pumps can be connected to zero or one input
units and to zero or one output units.

(d) Forks, f , can be connected to zero or one input unit and to zero
or n, 2 ≤ n ≤obs Cs(f) output units.

(e) Joins, j, can be connected to zero or n, 2 ≤ n ≤obs Cs(j) input
units and zero or one output units.
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value

46 obs Us: N → U-set

47 obs cUIs: U → UI-set × UI-set
wf Conns: U → Bool

wf Conns(u) ≡
let (iuis,ouis) = obs cUIs(u) in iuis ∩ ouis = {} ∧
case u of

47(a) mkW( ) → card iuis ∈ {0} ∧ card ouis ∈ {0,1},
47(b) mkS( ) → card iuis ∈ {0,1} ∧ card ouis ∈ {0},
47(c) mkΠ( ) → card iuis ∈ {0,1} ∧ card ouis ∈ {0,1},
47(c) mkV( ) → card iuis ∈ {0,1} ∧ card ouis ∈ {0,1},
47(c) mkP( ) → card iuis ∈ {0,1} ∧ card ouis ∈ {0,1},
47(d) mkF( ) → card iuis ∈ {0,1} ∧ card ouis ∈ {0}∪{2..obs inCs(j)},
47(e) mkJ( ) → card iuis ∈ {0}∪{2..obs inCs(j)} ∧ card ouis ∈ {0,1}

end end
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Well-formed Nets, Actual Connections

48. The unit identifiers observed by the obs cUIs observer must be iden-
tifiers of units of the net.

axiom

48 ∀ n:N,u:U • u ∈ obs Us(n) ⇒
48 let (iuis,ouis) = obs cUIs(u) in

48 ∀ ui:UI • ui ∈ iuis ∪ ouis ⇒
48 ∃ u′:U • u′ ∈ obs Us(n) ∧ u′6=u ∧ obs UI(u′)=ui end
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(C. Mereology C.1. Opening C.1.2. Examples )

Well-formed Nets, No Circular Nets

49. By a route we shall understand a sequence of units.

50. Units form routes of the net.

type

49 R = UIω

value

50 routes: N → R-infset

50 routes(n) ≡
50 let us = obs Us(n) in

50 let rs = {〈u〉|u:U•u ∈ us} ∪ {r̂r′|r,r′:R• {r,r′}⊆rs∧adj(r,r′)} in

50 rs end end
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(C. Mereology C.1. Opening C.1.2. Examples )

51. A route of length two or more can be decomposed into two routes

52. such that the least unit of the first route “connects” to the first unit of the second
route.

value

51 adj: R × R → Bool

51 adj(fr,lr) ≡
51 let (lu,fu)=(fr(len fr),hd lr) in

52 let (lui,fui)=(obs UI(lu),obs UI(fu)) in

52 let (( ,luis),(fuis, ))=(obs cUIs(lu),obs cUIs(fu)) in

52 lui ∈ fuis ∧ fui ∈ luis end end end

53. No route must be circular, that is, the net must be acyclic.

value

53 acyclic: N → Bool

53 let rs = routes(n) in

53 ∼∃ r:R•r ∈ rs⇒∃ i,j:Nat•{i,j}⊆inds r∧i6=j∧r(i)=r(j) end
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Pipeline Processes

We now add connectors to our model:

54. From an oil pipeline system one can observe units and connectors.

55. Units are either well, or pipe, or pump, or valve, or join, or fork or sink
units.

56. Units and connectors have unique identifiers.

57. From a connector one can observe the ordered pair of the identity of
the two from-, respectively to-units that the connector connects.
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type

54 OPLS, U, K
56 UI, KI
value

54 obs Us: OPLS → U-set, obs Ks: OPLS → K-set

55 is WeU, is PiU, is PuU, is VaU, is JoU, is FoU, is SiU: U → Bool [ mutually
56 obs UI: U → UI, obs KI: K → KI
57 obs UIp: K → (UI|{nil}) × (UI|{nil})
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• Above, we think of the types OPLS, U, K, UI and KI as denoting
semantic entities.

• Below, in the next section, we shall consider exactly the same types
as denoting syntactic entities !
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58. There is given an oil pipeline system, opls.

59. To every unit we associate a CSP behaviour.

60. Units are indexed by their unique unit identifiers.

61. To every connector we associate a CSP channel.

Channels are indexed by their unique ”k”onnector identifiers.

62. Unit behaviours are cyclic and over the state of their (static and dy-
namic) attributes, represented by u.

63. Channels, in this model, have no state.

64. Unit behaviours communicate with neighbouring units — those with
which they are connected.

65. Unit functions, Ui, change the unit state.

66. The pipeline system is now the parallel composition of all the unit
behaviours.
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• Editorial Remark:

– Our use of the term unit and the RSL literal Unit may seem con-
fusing, and we apologise.

– The former, unit, is the generic name of a well, pipe, or pump, or
valve, or join, or fork, or sink.

– The literal Unit, in a function signature, before the → “announces”
that the function takes no argument.

– The literal Unit, in a function signature, after the → “announces”,
as used here, that the function never terminates.
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value

58 opls:OPLS
channel

61 {ch[ ki ]|k:KI,k:K•k ∈ obs Ks(opls)∧ki=obs KI(k)} M
value

66 pipeline system: Unit → Unit

66 pipeline system() ≡
59 ‖ {unit(ui)(u)|u:U•u ∈ obs Us(opls)∧ui=obs UI(u)}

60 unit: ui:UI → U →
64 in,out {ch[ ki ]|k:K,ki:KI•k ∈ obs Ks(opls)∧ki=obs KI(k)∧
64 let (ui′,ui′′)=obs UIp(k) in ui ∈{ui′,ui′′}\{nil} end} Unit

62 unit(ui)(u) ≡ let u′ = Ui(ui)(u) in unit(ui)(u′) end

65 Ui: ui:UI → U →
65 in,out {ch[ ki ]|k:K,ki:KI•k ∈ obs Ks(opls)∧ki=obs KI(k)∧
65 let (ui′,ui′′)=obs UIp(k) in ui ∈{ui′,ui′′}\{nil} end} U

End of Example 54
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C.1.3. Discussion

• In this lecture

– we shall mainly cover

– atomic and

– composite

entities.
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C.2. A Conceptual Model of Composite Entities
C.2.1. Systems, Assemblies, Units

• We speak of systems as assemblies.

• From an assembly we can immediately observe a set of parts.

• Parts are either assemblies or units.

• We do not further define what assemblies and units are.

type

S = A, A, U, P = A | U
value

obs Ps: (S|A) → P-set

• Parts observed from an assembly are said to be immediately embedded in, that
is, within, that assembly.

• Two or more different parts of an assembly are said to be immediately adjacent
to one another.
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"outermost" Assembly

A

D311 D312

C31

B3

C12

B1

Units

Assemblies

B4

C11

C21

C32

B2

C33

System = Environment

Figure 10: Assemblies and Units “embedded” in an Environment

• A system includes its environment.

• And we do not worry, so far, about the semiotics of all this !
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Embeddedness and adjacency generalise to transitive relations.

• Given obs Ps we can define a function, xtr Ps,

– which applies to an assembly a and

– which extracts all parts embedded in a and including a.

• The functions obs Ps and xtr Ps define the meaning of embedded-
ness.

value

xtr Ps: (S|A) → P-set

xtr Ps(a) ≡
let ps = {a} ∪ obs Ps(a) in ps ∪ union{xtr Ps(a′)|a′:A•a′ ∈ ps} end
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• union is the distributed union operator.

• Parts have unique identifiers.

• All parts observable from a system are distinct.

type

AUI
value

obs AUI: P → AUI
axiom

∀ a:A •

let ps = obs Ps(a) in

∀ p′,p′′:P • {p′,p′′}⊆ps ∧ p′6=p′′ ⇒ obs AUI(p′)6=obs AUI(p′′) ∧
∀ a′,a′′:A • {a′,a′′}⊆ps ∧ a′6=a′′ ⇒ xtr Ps(a′)∩ xtr Ps(a′′)={} end
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C.2.2. ‘Adjacency’ and ‘Within’ Relations

• Two parts, p,p′, are said to be immediately next to, i.e., i next to(p,p′)(a),
one another in an assembly a

– if there exists an assembly, a′ equal to or embedded in a

– such that p and p′ are observable in that assembly a′.

value

i next to: P × P → A
∼
→ Bool, pre i next to(p,p′)(a): p 6=p′

i next to(p,p′)(a) ≡ ∃ a′:A • a′=a ∨ a′ ∈ xtr Ps(a) • {p,p′}⊆obs Ps(a′)

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark



On a Triptych of Software Development 394

(C. Mereology C.2. A Conceptual Model of Composite Entities C.2.2. ‘Adjacency’ and ‘Within’ Relations )

• One part, p, is said to be immediately within another part, p′in an
assembly a

– if there exists an assembly, a′ equal to or embedded in a

– such that p is observable in a′.

value

i within: P × P → A
∼
→ Bool

i within(p,p′)(a) ≡
∃ a′:A • (a=a′ ∨ a′ ∈ xtr Ps(a)) • p′=a′ ∧ p ∈ obs Ps(a′)
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• We can generalise the immediate ‘within’ property.

• A part, p, is (transitively) within a part p′, within(p,p′)(a), of an
assembly, a,

– either if p, is immediately within p′ of that assembly, a,

– or if there exists a (proper) part p′′ of p′

– such that within(p′′,p)(a).

value

within: P × P → A
∼
→ Bool

within(p,p′)(a) ≡
i within(p,p′)(a) ∨ ∃ p′′:P • p′′ ∈ obs Ps(p) ∧ within(p′′,p′)(a)
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• The function within can be defined, alternatively,

• using xtr Ps and i within

• instead of obs Ps and within :

value

within′: P × P → A
∼
→ Bool

within′(p,p′)(a) ≡
i within(p,p′)(a) ∨ ∃ p′′:P • p′′ ∈ xtr Ps(p) ∧ i within(p′′,p′)(a)

lemma: within ≡ within′
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• We can generalise the immediate ‘next to’ property.

• Two parts, p, p′ of an assembly, a, are adjacent if they are

– either ‘next to’ one another

– or if there are two parts po, p′o
∗ such that p, p′ are embedded in respectively po and p′o
∗ and such that po, p′o are immediately next to one another.

value

adjacent: P × P → A
∼
→ Bool

adjacent(p,p′)(a) ≡
i next to(p,p′)(a) ∨
∃ p′′,p′′′:P • {p′′,p′′′}⊆xtr Ps(a) ∧ i next to(p′′,p′′′)(a) ∧

((p=p′′)∨within(p,p′′)(a)) ∧ ((p′=p′′′)∨within(p′,p′′′)(a))
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(C. Mereology C.2. A Conceptual Model of Composite Entities C.2.2. ‘Adjacency’ and ‘Within’ Relations )

C.2.3. Mereology, Part I

• So far we have built a ground mereology model, MGround.

• Let ⊑ denote parthood, x is part of y, x ⊑ y.

∀x(x ⊑ x)13 (1)

∀x, y(x ⊑ y) ∧ (y ⊑ x) ⇒ (x = y) (2)

∀x, y, z(x ⊑ y) ∧ (y ⊑ z) ⇒ (x ⊑ z) (3)

• Let ⊏ denote proper parthood, x is part of y, x ⊏ y.

• Formula 4 defines x ⊏ y. Equivalence 5 can be proven to hold.

∀x ⊏ y =def x(x ⊑ y) ∧ ¬(x = y) (4)

∀∀x, y(x ⊑ y) ⇔ (x ⊏ y) ∨ (x = y) (5)
13Our notation now is not RSL but some conventional first-order predicate logic notation.
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• The proper part (x ⊏ y) relation is a strict partial ordering:

∀x¬(x ⊏ x) (6)

∀x, y(x ⊏ y) ⇒ ¬(y ⊏ x) (7)

∀x, y, z(x ⊏ y) ∧ (y ⊏ z) ⇒ (x ⊏ z) (8)

• Overlap, •, is also a relation of parts:

– Two individuals overlap if they have parts in common:

x • y =def ∃z(z ⊏ x) ∧ (z ⊏ y) (9)

∀x(x • x) (10)

∀x, y(x • y) ⇒ (y • x) (11)
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• Proper overlap, ◦, can be defined:

x ◦ y =def (x • x) ∧ ¬(x ⊑ y) ∧ ¬(y ⊑ x) (12)

• Whereas Formulas (1-11) holds of the model of mereology we have
shown so far, Formula (12) does not.

• In the next section we shall repair that situation.

• The proper part relation, ⊏, reflects the within relation.

• The disjoint relation,
∮

, reflects the adjacency relation.

x

∮
y =def ¬(x • y) (13)
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• Disjointness is symmetric:

∀x, y(x

∮
y) ⇒ (y

∮
x) (14)

• The weak supplementation relation, Formula 15, expresses

– that if y is a proper part of x

– then there exists a part z

– such that z is a proper part of x

– and z and y are disjoint

• That is, whenever an individual has one proper part then it has more
than one.

∀x, y(y ⊏ x) ⇒ ∃z(z ⊏ x) ∧ (z

∮
y) (15)
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(C. Mereology C.2. A Conceptual Model of Composite Entities C.2.3. Mereology, Part I )

• Formulas 1–3 and 15 together determine the minimal mereology,
MMinimal.

• Formula 15 does not hold of the model of mereology we have shown
so far..

• Formula 15 on the previous page expresses that

– whenever an individual has one proper part

– then it has more than one.

• We mentioned there, Slide 402, that we would comment on the fact
that our model appears to allow that assemblies may have just one
proper part.
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• We now do so.

– We shall still allow assemblies to have just one proper part —

– in the sense of a sub-assembly or a unit —

– but we shall interpret the fact that an assembly always have at
least one attribute.

– Therefore we shall “generously” interpret the set of attributes of
an assembly to constitute a part.
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• In Sect. A.6

– we shall see how attributes of both units and assemblies of the
interpreted mereology

– contribute to the state components of the unit and assembly pro-
cesses.
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C.2.4. Connectors

• So far we have only covered notions of

– parts being next to other parts or

– within one another.

• We shall now add to this a rather general notion of parts being
otherwise related.

• That notion is one of connectors.
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• Connectors provide for connections between parts.

• A connector is an ability be be connected.

• A connection is the actual fulfillment of that ability.

• Connections are relations between pairs of parts.

• Connections “cut across” the “classical”

– parts being part of the (or a) whole and

– parts being related by embeddedness or adjacency.
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A

D311 D312

C31

B3

C12

B1

Units

Assemblies

B4

C11

C21

C32
"outermost" Assembly

K2

B2

C33

K1

System = Environment

Figure 11: Assembly and Unit Connectors: Internal and External

• For now, we do not “ask” for the meaning of connectors !
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• Figure 11 on the preceding page “adds” connectors to Fig. 10 on
page 390.

• The idea is that connectors

– allow an assembly to be connected to any embedded part, and

– allow two adjacent parts to be connected.

• In Fig. 11 on the preceding page

– the environment is connected, by K2, to part C11;

– the “external world” is connected, by K1, to B1;

– etcetera.
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• From a system we can observe all its connectors.

• From a connector we can observe

– its unique connector identifier and

– the set of part identifiers of the parts that the connector connects.

• All part identifiers of system connectors identify parts of the system.

• All observable connector identifiers of parts identify connectors of
the system.

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark



On a Triptych of Software Development 410

(C. Mereology C.2. A Conceptual Model of Composite Entities C.2.4. Connectors )

type

K
value

obs Ks: S → K-set

obs KI: K → KI
obs Is: K → AUI-set
obs KIs: P → KI-set

axiom

∀ k:K • card obs Is(k)=2,
∀ s:S,k:K • k ∈ obs Ks(s) ⇒
∃ p:P • p ∈ xtr Ps(s) ⇒ obs AUI(p) ∈ obs Is(k),

∀ s:S,p:P • ∀ ki:KI • ki ∈ obs KIs(p) ⇒
∃! k:K • k ∈ obs Ks(s) ∧ ki=obs KI(k)
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• This model allows for a rather “free-wheeling” notion of connectors

– one that allows internal connectors to “cut across” embedded and
adjacent parts;

– and one that allows external connectors to “penetrate” from an
outside to any embedded part.

• We need define an auxiliary function.

– xtr∀KIs(p) applies to a system

– and yields all its connector identifiers.

value

xtr∀KIs: S → KI-set
xtr∀Ks(s) ≡ {obs KI(k)|k:K•k ∈ obs Ks(s)}
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C.2.5. Mereology, Part II
(See Sect. (Slide 398) for Mereology, Part I.)
We shall interpret connections as follows:

• A connection between parts pi and pj

– that enjoy a pi adjacent to pj relationship, means pi ◦ pj,

– that is, although parts pi and pj are adjacent

– they do share “something”, i.e., have something in common.

– What that “something” is we shall comment on later, when we have “mapped”
systems onto parallel compositions of CSP processes.

• A connection between parts pi and pj

– that enjoy a pi within pj relationship,

– does not add other meaning than

– commented upon later, again when we have “mapped” systems onto parallel
compositions of CSP processes.
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• With the above interpretation we may arrive at the following, per-
haps somewhat “awkward-looking” case:

– a connection connects two adjacent parts pi and pj

∗ where part pi is within part pio

∗ and part pj is within part pjo

∗ where parts pio and pjo are adjacent

∗ but not otherwise connected.

– How are we to explain that !

∗ Since we have not otherwise interpreted the meaning of parts,

∗ we can just postulate that “so it is” !

∗ We shall, later, again when we have “mapped” systems onto
parallel compositions of CSP processes, give a more satisfactory
explanation.
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• On Slides 398–401 we introduced the following operators:

– ⊑,⊏, •, ◦, and
∮

• In some of the mereology literature these operators are symbolised
with caligraphic letters:

– ⊑: P : part,

– ⊏: PP : proper part,

– • : O: overlap and

–
∮

: U : underlap.
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C.2.6. Discussion
Summary:

• This ends our first model of a concept of mereology.

• The parts are those of assemblies and units.

• The relations between parts and the whole are,

– on one hand, those of

∗ embeddedness i.e. within, and

∗ adjacency, i.e., adjacent,

and

– on the other hand, those expressed by connectors: relations

∗ between arbitrary parts and

∗ between arbitrary parts and the exterior.
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Extensions:

• A number of extensions are possible:

– one can add “mobile” parts and “free” connectors, and

– one can further add operations that allow such mobile parts to
move from one assembly to another along routes of connectors.

• Free connectors and mobility assumes static versus dynamic parts
and connectors:

– a free connector is one which allows a mobile part to be connected
to another part, fixed or mobile; and

– the potentiality of a move of a mobile part introduces a further
dimension of dynamics of a mereology.
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Environment

System =
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Mobile PartFree Connector
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Figure 12: Mobile Parts and Free Connectors
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Comments:

• We shall leave the modelling of free connectors and mobile parts to
another time.

• Suffice it now to indicate that the mereology model given so far is
relevant:

– that it applies to a somewhat wide range of application domain
structures, and

– that it thus affords a uniform treatment of proper formal models
of these application domain structures.
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C.3. Functions and Events

•

•

•

•
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Example 55 – Pipeline Transport Functions and Events:

• We need introduce a number of auxiliary concepts

• in order to show examples of atomic and composite

• functions and events.
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Well-formed Nets, Special Pairs, wfN SP

67. We define a “special-pairs” well-formedness function.

(a) Fork outputs are output-connected to valves.

(b) Join inputs are input-connected to valves.

(c) Wells are output-connected to pumps.

(d) Sinks are input-connected to either pumps or valves.
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value

67 wfN SP: N → Bool

67 wfN SP(n) ≡
67 ∀ r:R • r ∈ routes(n) in

67 ∀ i:Nat • {i,i+1}⊆inds r ⇒
67 case r(i) of ∧
67(a) mkF( ) → ∀ u:U•adj(〈r(i)〉,〈u〉) ⇒ is V(u), →true end ∧
67 case r(i+1) of

67(b) mkJ( ) → ∀ u:U•adj(〈u〉,〈r(i)〉) ⇒ is V(u), →true end ∧
67 case r(1) of

67(c) mkW( ) → is P(r(2)), →true end ∧
67 case r(len r) of

67(d) mkS( ) → is P(r(len r−1))∨is V(r(len r−1)), →true end

• The true clauses may be negated by other case distinctions’ is V or
is V clauses.

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 423

(C. Mereology C.3. Functions and Events )

Special Routes, I

68. A pump-pump route is a route of length two or more whose first and last units are
pumps and whose intermediate units are pipes or forks or joins.

69. A simple pump-pump route is a pump-pump route with no forks and joins.

70. A pump-valve route is a route of length two or more whose first unit is a pump,
whose last unit is a valve and whose intermediate units are pipes or forks or joins.

71. A simple pump-valve route is a pump-valve route with no forks and joins.

72. A valve-pump route is a route of length two or more whose first unit is a valve,
whose last unit is a pump and whose intermediate units are pipes or forks or joins.

73. A simple valve-pump route is a valve-pump route with no forks and joins.

74. A valve-valve route is a route of length two or more whose first and last units are
valves and whose intermediate units are pipes or forks or joins.

75. A simple valve-valve route is a valve-valve route with no forks and joins.
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value

68-75 ppr,sppr,pvr,spvr,vpr,svpr,vvr,svvr: R → Bool

pre {ppr,sppr,pvr,spvr,vpr,svpr,vvr,svvr}(n): len n≥2

68 ppr(r:〈fu〉̂ℓ̂〈lu〉) ≡ is P(fu) ∧ is P(lu) ∧ is πfjr(ℓ)
69 sppr(r:〈fu〉̂ℓ̂〈lu〉) ≡ ppr(r) ∧ is πr(ℓ)
70 pvr(r:〈fu〉̂ℓ̂〈lu〉) ≡ is P(fu) ∧ is V(r(len r)) ∧ is πfjr(ℓ)
71 sppr(r:〈fu〉̂ℓ̂〈lu〉) ≡ ppr(r) ∧ is πr(ℓ)
72 vpr(r:〈fu〉̂ℓ̂〈lu〉) ≡ is V(fu) ∧ is P(lu) ∧ is πfjr(ℓ)
73 sppr(r:〈fu〉̂ℓ̂〈lu〉) ≡ ppr(r) ∧ is πr(ℓ)
74 vvr(r:〈fu〉̂ℓ̂〈lu〉) ≡ is V(fu) ∧ is V(lu) ∧ is πfjr(ℓ)
75 sppr(r:〈fu〉̂ℓ̂〈lu〉) ≡ ppr(r) ∧ is πr(ℓ)

is πfjr,is πr: R → Bool

is πfjr(r) ≡ ∀ u:U•u ∈ elems r⇒is Π(u)∨is F(u)∨is J(u)
is πr(r) ≡ ∀ u:U•u ∈ elems r⇒is Π(u)
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Special Routes, II

Given a unit of a route,

76. if they exist (∃),

77. find the nearest pump or valve unit,

78. “upstream” and

79. “downstream” from the given unit.
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value

76 ∃UpPoV: U × R → Bool

76 ∃DoPoV: U × R → Bool

78 find UpPoV: U × R
∼
→ (P|V), pre find UpPoV(u,r): ∃UpPoV(u,r)

79 find DoPoV: U × R
∼
→ (P|V), pre find DoPoV(u,r): ∃DoPoV(u,r)

76 ∃UpPoV(u,r) ≡
76 ∃ i,j Nat•{i,j}⊆inds r∧i≤j∧{is V|is P}(r(i))∧u=r(j)
76 ∃DoPoV(u,r) ≡
76 ∃ i,j Nat•{i,j}⊆inds r∧i≤j∧u=r(i)∧{is V|is P}(r(j))
78 find UpPoV(u,r) ≡
78 let i,j:Nat•{i,j}⊆indsr∧i≤j∧{is V|is P}(r(i))∧u=r(j) in r(i) end

79 find DoPoV(u,r) ≡
79 let i,j:Nat•{i,j}⊆indsr∧i≤j∧u=r(i)∧{is V|is P}(r(j)) in r(j) end
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State Attributes of Pipeline Units

• By a state attribute of a unit we mean either of the following three
kinds:

– (i) the open/close states of valves and the pumping/not pumping
states of pumps;

– (ii) the maximum (laminar) oil flow characteristics of all units; and

– (iii) the current oil flow and current oil leak states of all units.
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80. Oil flow, φ : Φ, is measured in volume per time unit.

81. Pumps are either pumping or not pumping, and if not pumping they
are closed.

82. Valves are either open or closed.

83. Any unit permits a maximum input flow of oil while maintaining lam-
inar flow. We shall assume that we need not be concerned with tur-
bulent flows.

84. At any time any unit is sustaining a current input flow of oil (at its
input(s)).

85. While sustaining (even a zero) current input flow of oil a unit leaks a
current amount of oil (within the unit).
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type

80 Φ
81 PΣ == pumping | not pumping
81 VΣ == open | closed

value

−,+: Φ × Φ → Φ, <,=,>: Φ × Φ → Bool

81 obs PΣ: P → PΣ
82 obs VΣ: V → VΣ
83–85 obs LamiΦ.obs CurrΦ,obs LeakΦ: U → Φ
is Open: U → Bool

case u of

mkΠ( )→true,mkF( )→true,mkJ( )→true,mkW( )→true,mkS( )→true,
mkP( )→obs PΣ(u)=pumping,
mkV( )→obs VΣ(u)=open

end

acceptable LeakΦ, excessive LeakΦ: U → Φ
axiom

∀ u:U • excess LeakΦ(u) > accept LeakΦ(u)
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Flow Laws

• The sum of the current flows into a unit equals the the sum of the
current flows out of a unit minus the (current) leak of that unit.

• This is the same as the current flows out of a unit equals the current
flows into a unit minus the (current) leak of that unit.

• The above represents an interpretation which justifies the below laws.

86. When, in Item 84, for a unit u, we say that at any time any unit
is sustaining a current input flow of oil, and when we model that
by obs CurrΦ(u) then we mean that obs CurrΦ(u) - obs LeakΦ(u)
represents the flow of oil from its outputs.
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value

86 obs inΦ: U → Φ
86 obs inΦ(u) ≡ obs CurrΦ(u)
86 obs outΦ: U → Φ

law:

86 ∀ u:U • obs outΦ(u) = obs CurrΦ(u)−obs LeakΦ(u)
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87. Two connected units enjoy the following flow relation:

(a) If

i. two pipes, or

ii. a pipe and a valve, or

iii. a valve and a pipe, or

iv. a valve and a valve, or

v. a pipe and a pump, or

vi. a pump and a pipe, or

vii. a pump and a pump, or

viii. a pump and a valve, or

ix. a valve and a pump

are immediately connected

(b) then

i. the current flow out of the first unit’s connection to the second
unit

ii. equals the current flow into the second unit’s connection to the
first unit
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law:

87(a) ∀ u,u′:U • {is Π,is V,is P,is W}(u′|u′′) ∧ adj(〈u〉,〈u′〉)
87(a) is Π(u)∨is V(u)∨is P(u)∨is W(u) ∧
87(a) is Π(u′)∨is V(u′)∨is P(u′)∨is S(u′)
87(b) ⇒ obs outΦ(u)=obs inΦ(u′)
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• A similar law can be established for forks and joins.

– For a fork

∗ output-connected to, for example, pipes, valves and pumps,

∗ it is the case that for each fork output

∗ the out-flow equals the in-flow for that output-connected unit.

– For a join

∗ input-connected to, for example, pipes, valves and pumps,

∗ it is the case that for each join input

∗ the in-flow equals the out-flow for that input-connected unit.

– We leave the formalisation as an exercise.
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Possibly Desirable Properties

88. Let r be a route of length two or more, whose first unit is a pump, p, whose last
unit is a valve, v and whose intermediate units are all pipes: if the pump, p is
pumping, then we expect the valve, v, to be open.

89. Let r be a route of length two or more, whose first unit is a pump, p, whose last
unit is another pump, p′ and whose intermediate units are all pipes: if the pump,
p is pumping, then we expect pump p′′, to also be pumping.

90. Let r be a route of length two or more, whose first unit is a valve, v, whose last
unit is a pump, p and whose intermediate units are all pipes: if the valve, v is
closed, then we expect pump p, to not be pumping.

91. Let r be a route of length two or more, whose first unit is a valve, v′, whose last
unit is a valve, v′′ and whose intermediate units are all pipes: if the valve, v′ is in
some state, then we expect valve v′′, to also be in the same state.

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 436

(C. Mereology C.3. Functions and Events )

desirable properties:

88 ∀ r:R • spvr(r) ∧
88 spvr prop(r): obs PΣ(hd r)=pumping ⇒ obs PΣ(r(len r))=open

89 ∀ r:R • sppr(r) ∧
89 sppr prop(r): obs PΣ(hd r)=pumping⇒obs PΣ(r(len r))=pumping

90 ∀ r:R • svpr(r) ∧
90 svpr prop(r): obs PΣ(hd r)=open⇒obs PΣ(r(len r))=pumping

91 ∀ r:R • svvr(r) ∧
91 svvr prop(r): obs PΣ(hd r)=obs PΣ(r(len r))
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Pipeline Actions

•Simple Pump and Valve Actions

92. Pumps may be set to pumping or reset to not pumping irrespective
of the pump state.

93. Valves may be set to be open or to be closed irrespective of the valve
state.

94. In setting or resetting a pump or a valve a desirable property may
be lost.

value

92 pump to pump, pump to not pump: P → N → N
93 valve to open, valve to close: V → N → N
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value

92 pump to pump(p)(n) as n′

92 pre p ∈ obs Us(n)
92 post let p′:P•obs UI(p)=obs UI(p′) in

92 obs PΣ(p′)=pumping∧else equal(n,n′)(p,p′) end

92 pump to not pump(p)(n) as n′

92 pre p ∈ obs Us(n)
92 post let p′:P•obs UI(p)=obs UI(p′) in

92 obs PΣ(p′)=not pumping∧else equal(n,n′)(p,p′) end

93 valve to open(v)(n) as n′

92 pre v ∈ obs Us(n)
93 post let v′:V•obs UI(v)=obs UI(v′) in

92 obs VΣ(v′)=open∧else equal(n,n′)(v,v′) end

93 valve to close(v)(n) as n′

92 pre v ∈ obs Us(n)
93 post let v′:V•obs UI(v)=obs UI(v′) in

92 obs VΣ(v′)=close∧else equal(n,n′)(v,v′) end
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value

else equal: (N×N) → (U×U) → Bool

else equal(n,n′)(u,u′) ≡
obs UI(u)=obs UI(u′)
∧ u ∈ obs Us(n)∧u′ ∈ obs Us(n′)
∧ omit Σ(u)=omit Σ(u′)
∧ obs Us(n)\{u}=obs Us(n)\{u′}
∧ ∀ u′′:U•u′′ ∈ obs Us(n)\{u} ≡ u′′ ∈ obs Us(n′)\{u′}

omit Σ: U → Uno state −−− ′′

magic
′′ function

=: Uno state × Uno state → Bool

axiom

∀ u,u′:U•omit Σ(u)=omit Σ(u′) ≡ obs UI(u)=obs UI(u′)
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Events

•Unit Handling Events

95. Let n be any acyclic net.

95. If there exists p, p′, v, v′, pairs of distinct pumps and distinct valves of the net,

95. and if there exists a route, r, of length two or more of the net such that

96. all units, u, of the route, except its first and last unit, are pipes, then

97. if the route “spans” between p and p′ and the simple desirable property, sppr(r),
does not hold for the route, then we have a possibly undesirable event — that
occurred as soon as sppr(r) did not hold;

98. if the route “spans” between p and v and the simple desirable property, spvr(r),
does not hold for the route, then we have a possibly undesirable event;

99. if the route “spans” between v and p and the simple desirable property, svpr(r),
does not hold for the route, then we have a possibly undesirable event; and

100. if the route “spans” between v and v′ and the simple desirable property, svvr(r),
does not hold for the route, then we have a possibly undesirable event.
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events:

95 ∀ n:N • acyclic(n) ∧
95 ∃ p,p′:P,v,v′:V • {p,p′,v,v′}⊆obs Us(n)⇒
95 ∧ ∃ r:R • routes(n) ∧
96 ∀ u:U • u ∈ elems(r)\{hd r,r(len r)} ⇒ is Π(i) ⇒
97 p=hd r∧p′=r(len r) ⇒ ∼sppr prop(r) ∧
98 p=hd r∧v=r(len r) ⇒ ∼spvr prop(r) ∧
99 v=hd r∧p=r(len r) ⇒ ∼svpr prop(r) ∧
100 v=hd r∧v′=r(len r) ⇒ ∼svvr prop(r)
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• Foreseeable Accident Events

• A number of foreseeable accidents may occur.

101. A unit ceases to function, that is,

(a) a unit is clogged,

(b) a valve does not open or close,

(c) a pump does not pump or stop pumping.

102. A unit gives rise to excessive leakage.

103. A well becomes empty or a sunk becomes full.

104. A unit, or a connected net of units gets on fire.

105. Or a number of other such “accident”.
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Well-formed Operational Nets

106. A well-formed operational net

107. is a well-formed net

(a) with at least one well, w, and at least one sink, s,

(b) and such that there is a route in the net between w and s.

value

106 wf OpN: N → Bool

106 wf OpN(n) ≡
107 satisfies axiom 48 on page 379 ∧ acyclic(n): Item 53 on page 381 ∧
107 wfN SP(n): Item 67 on page 421 ∧
107 satisfies flow laws, 86 on page 430 and 87 on page 432 ∧
107(a) ∃ w:W,s:S • {w,s}⊆obs Us(n) ⇒
107(b) ∃ r:R• 〈w〉̂r̂〈s〉 ∈ routes(n)
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Orderly Action Sequences

•Initial Operational Net

108. Let us assume a notion of an initial operational net.

109. Its pump and valve units are in the following states

(a) all pumps are not pumping, and

(b) all valves are closed.

value

108 initial OpN: N → Bool

109 initial OpN(n) ≡ wf OpN(n) ∧
109(a) ∀ p:P • p ∈ obs Us(n) ⇒ obs PΣ(p)=not pumping ∧
109(b) ∀ v:V • v ∈ obs Us(n) ⇒ obs VΣ(p)=closed
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Oil Pipeline Preparation and Engagement

110. We now wish to prepare a pipeline from some well, w : W , to some
sink, s : S, for flow.

(a) We assume that the underlying net is operational wrt. w and s,
that is, that there is a route, r, from w to s.

(b) Now, an orderly action sequence for engaging route r is to “work
backwards”, from s to w

(c) setting encountered pumps to pumping and valves to open.

• In this way the system is well-formed wrt. the desirable sppr, spvr,
svpr and svvr properties.

• Finally, setting the pump adjacent to the (preceding) well starts the
system.
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value

110 prepare and engage: W × S → N
∼
→ N

110 prepare and engage(w,s)(n) ≡
110(a) let r:R • 〈w〉̂r̂〈s〉 ∈ routes(n) in

110(b) action sequence(〈w〉̂r̂〈s〉)(len〈w〉̂r̂〈s〉)(n) end

110 pre ∃ r:R • 〈w〉̂r̂〈s〉 ∈ routes(n)

110(c) action sequence: R → Nat → N → N
110(c) action sequence(r)(i)(n) ≡
110(c) if i=1 then n else

110(c) case r(i) of

110(c) mkV( ) → action sequence(r)(i−1)(valve to open(r(i))(n)),
110(c) mkP( ) → action sequence(r)(i−1)(pump to pump(r(i))(n)),
110(c) → action sequence(r)(i−1)(n)
110(c) end end
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Emergency Actions

111. If a unit starts leaking excessive oil

(a) then nearest up-stream valve(s) must be closed,

(b) and any pumps in-between this (these) valves and the leaking unit
must be set to not pumping

(c) — following an orderly sequence.

112. If, as a result, for example, of the above remedial actions, any of the
desirable properties cease to hold

(a) then — a ha !

(b) Left as an exercise.

End of Example 55
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C.4. Behaviours: A Semantic Model of a Class of Mereologies

• The model of mereology (Slides 389–349) given earlier focused on
the following simple entities (i) the assemblies, (ii) the units and (iii)
the connectors.

• To assemblies and units we associate CSP processes, and

• to connectors we associate a CSP channels,

• one-by-one.

• The connectors form the mereological attributes of the model.
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C.4.1. Channels

• The CSP channels,

– are each “anchored” in two parts:

– if a part is a unit then in “its corresponding” unit process, and

– if a part is an assembly then in “its corresponding” assembly pro-
cess.

• From a system assembly we can extract all connector identifiers.

• They become indexes into an array of channels.

– Each of the connector channel identifiers is mentioned

– in exactly two unit or assembly processes.
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value

s:S
kis:KI-set = xtr∀KIs(s)

type

ChMap = AUI →m KI-set
value

cm:ChMap = [ obs AUI(p)7→obs KIs(p)|p:P•p ∈ xtr Ps(s) ]
channel

ch[ i|i:KI•i ∈ kis ] MSG
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C.4.2. Process Definitions

value

system: S → Process

system(s) ≡ assembly(s)

assembly: a:A→in,out {ch[ cm(i) ]|i:KI•i ∈ cm(obs AUI(a))} process

assembly(a) ≡
MA(a)(obs AΣ(a)) ‖
‖ {assembly(a′)|a′:A•a′ ∈ obs Ps(a)} ‖
‖ {unit(u)|u:U•u ∈ obs Ps(a)}

obs AΣ: A → AΣ

MA: a:A→AΣ→in,out {ch[ cm(i) ]|i:KI•i ∈ cm(obs AUI(a))} process

MA(a)(aσ) ≡ MA(a)(AF(a)(aσ))

AF : a:A → AΣ → in,out {ch[ em(i) ]|i:KI•i ∈
cm(obs AUI(a))}×AΣ
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unit: u:U → in,out {ch[ cm(i) ]|i:KI•i ∈ cm(obs UI(u))} process

unit(u) ≡ MU(u)(obs UΣ(u))
obs UΣ: U → UΣ

MU : u:U → UΣ → in,out {ch[ cm(i) ]|i:KI•i ∈ cm(obs UI(u))} process

MU(u)(uσ) ≡ MU(u)(UF(u)(uσ))

UF : U → UΣ → in,out {ch[ em(i) ]|i:KI • i ∈ cm(obs AUI(u))} UΣ
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C.4.3. Mereology, Part III

• (See Sect. on page 412 for Mereology, Part II.)

• A little more meaning has been added to the notions of parts and
connections.

• The within and adjacent to relations between parts (assemblies and
units) reflect a phenomenological world of geometry, and

• the connected relation between parts (assemblies and units)

– reflect both physical and conceptual world understandings:

∗ physical world in that, for example, radio waves cross geometric
“boundaries”, and

∗ conceptual world in that ontological classifications typically re-
flect lattice orderings where overlaps likewise cross geometric
“boundaries”.
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C.4.4. Discussion
C.4.4.1. Partial Evaluation

• The assembly function “first” “functions” as a compiler.

• The ‘compiler’ translates an assembly structure into three process expressions:

– the MA(a)(aσ) invocation,

– the parallel composition of assembly processes, a′, one for each sub-assembly
of a, and

– the parallel composition of unit processes, one for each unit of assembly a —

– with these three process expressions “being put in parallel”.

– The recursion in assembly ends when a sub-. . . -assembly consists of no sub-
sub-. . . -assemblies.

• Then the compiling task ends and the many generatedMA(a)(aσ) andMU(u)(uσ)
process expressions are invoked.
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C.4.4.2. Generalised Channel Processes

• That completes our ‘contribution’:

– A mereology of systems has been given

– a syntactic explanation, Sect. 2,

– a semantic explanation, Sect. 5 and

– their relationship to classical mereologies.
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End of Lecture 12: MEREOLOGY
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