On a Triptych of Software Development 299

(A AT. AT4)

Start of Lecture 11: RSL SPECIFICATIONS

March 2, 2010, 19:10, Vienna Lectures, April 2010 © Dines Bjorner 2010, Fredsve) 11, DK 2840 Holte,

On a Triptych of Software Development 301

(A. A.8. Simple RSL Specifications)

type
A, B, C,D, E, F, G value
Hf = A-set, Hi = A-infset va:A, vb:B, ..., ve:E
J = BxCx...xD fi: A — B, f2: ¢ 5D
Kf = E*, Ki = E¥ f1(a) = Sfl(a)
L=F+G f2: E — inlout chf F
Mt = J — Kf, Mp = J = Ki f2(e) = Epe)
N == alpha | beta | ... | omega £3: Unit — in chf out chg Unit
0 == pHf(as:Hf)
| pKf(el:Kf) | ... axiom
P =Hf | Kf | L | Pi(£f1,va),
variable P;(f2,vb),
vhi:Hf := ()
channel PrL(£3,ve)

chf:F, chg:G, {chb[i][i:A}:B

March 2, 2010, 19:10, Vienna Lectures, April 2010 © Dines Bjgmer 2010, Fredsvej 11, DK 2810 Holte, Denmark

On a Triptych of Software Development
(A. A7. AT74.)
A.8. Simple RSL Specifications

e Besides the above constructs RSL also possesses module-oriented

— scheme, — class and — object

constructs.
e We shall not cover these here.
e An RSL specification is then simply

— a sequence of one or more clusters of
% zero, one or more sort and/or type definitions,
% zero, one or more variable declarations,
x zero, one or more channel declarations,
* zero, one or more value definitions (including functions) and

* Zero, one or more and axioms.

e We can illustrate these specification components schematically:

300

March 2, 2010, 19:10, Vien

On a Triptych of Software Development
(A. A.8. Simple RSL Specifications)
e The ordering of these clauses is immaterial.

e Intuitively the meaning of these definitions and declarations are the following.

— The type clause introduces a number of user-defined type names;
x the type names are visible anywhere in the specification;
x and either denote sorts or concrete types.
— The variable clause declares some variable names;
x a variable name denote some value of decalred type;
% the variable names are visible anywhere in the specification:
- assigned to (‘written’) or
- values ‘read’.
— The channel clause declares some channel names;
x either simple channels or arrays of channels of some type;
% the channel names are visible anywhere in the specification.

ctures, April 2010 © Dines Bjorner 2010, Fredsvej 11, DK 2840 Holte, De

nmark

302

March 2, 2010, 19:10, Vienna Lectures, April 2010 @ Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmar)

On a Triptych of Software Development 303
(A. A8. Simple RSL Specifications)
— The value clause bind (constant) values to value names.
x These value names are visible anywhere in the specification.
« The specification

type value

A a:A

« non-deterministically binds a to a value of type A.
« Thuis includes, for example

type value
A'B fA—B
« which non-deterministically binds f to a function value of type
A—B.
On a Triptych of Software Development 305

(A. A.8. Simple RSL Specifications)

Example 49 — A Neat Little “System”:
e We present a self-contained specification of a simple system:

— The system models
x vehicles moving along a net, vehicle,
* the recording of vehicles entering links, enter_sensor,
* the recording of vehicles leaving links, leave sensor, and
* the road pricing payment of a vehicle having traversed (entered
and /eft) a link.
— Note
* that vehicles only pay when completing a link traversal;
* that ‘road pricing’ only commences once a vehicle enters the first
link after possibly having left an earlier link (and hub); and
« that no road pricing payment is imposed on vehicles entering,
staying-in (or at) and leaving hubs.

March 2, 2010, 19:10, Vienna Lectures, April 2010 © Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark

On a Triptych of Software Development 304
(A. A.8. Simple RSL Specifications)

e The axiom clause is usually expressed as several “comma (,) sepa-
rated” predicates:

PZ(Ea Tia U_Z)a P]<A_j7 f_jv @), P Pk(A_ka f_k‘v W)
e where (A, fy, vf) is an abbreviation for Aps Ays - Aty oy Toys
o fff’ Vpys Vtys -5 V-
e The indexed sort or type names, A and the indexed function names,
d, are defined elsewhere in the specification.

e The index value names, v are usually names of bound ‘variables’
of universally or existentially quantified predicates of the indexed
(“comma’-separated) P.

March 2, 2010, 19:10, Vienna Lectures, April 2010 © Dines Bigmer 2010, Fredsvej 11, DK-2840 Holte, Denmark

On a Triptych of Software Development 306
(A. A.8. Simple RSL Specifications)
— We assume the following:

* that each link is somehow associated with two pairs of sensors:
- a pair of enter and leave sensors at one end, and
- a pair of enter and leave sensors at the other end;
and

x a road pricing process
- which records pairs of link enterings and leavings,
- first one, then, after any time interval, the other,
- with leavings leading to debiting of traversal fees;

e Our first specification

— define types, — declares channels and

— assume a net value, — state signatures of all processes.

March 2, 2010, 19:10, Vienna Lectures, April 2010 @ Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark

On a Triptych of Software Development 307 On a Triptych of Software Development

(A. A.8. Simple RSL Specifications) (A. A.8. Simple RSL Specifications)
e ves stand for vehicle entering (link) sensor channels, type
. . . N, H, HI, LI, VI
e vis stand for vehicle leaving (link) sensor channels, RPM == uEnter L(vi:V1,li:LI) | piLeave L(vi:V1,li:LI)
e rp stand for ‘road pricing’ channel Vahlile
n:
e enter sensor(hi,li) stand for vehicle entering [sensor| process from hub channel
hi to link (|i)_ {ves[wHI(h),li]|h:H-h € wHs(n)Ali € wLls(h)}:VI
o . .) {vIs[li,wHI(h)]|h:H-h € wHs(n)Ali € wLls(h)}:VI
e leave sensor(li,hi) stand for vehicle leaving [sensor| process from link rp:RPM
li to hub (hi). type
.. . . ., Fee, Bal
e road pricing() stand for the unique ‘road pricing’ process. LVS — LI — Vi-set, FEE = LI - Fee, ACC = VI —» Bal
e vehicle(vi)(...) stand for the vehicle vi process. value

link: (li:Ll x L) — Unit

enter_sensor: (hi:HI x li:Ll) — in ves|hi,li],out rp Unit
leave sensor: (li:Ll x hi:HI) — in vis[li,hi],out rp Unit
road pricing: (LVSXFEEXACC) — in rp Unit

March 2, 2010, 19:10, Vienna Lectures, April 2010 © Dines Bjgrner 2010, Fredsvej 11, DK-2840 Holte, Denmark March 2, 2010, 19:10, Vienna Lectures, April 2010 © Dines Bjgrner 2010, Fredsvej 11, DK-2840 Holt

On a Triptych of Software Development 309 On a Triptych of Software Development
(A. A.8. Simple RSL Specifications) (A. AB8. Simple RSL Specifications)
e To understand the sensor behaviours let us review the vehicle be- vehicle: VI — (Pos x Net) — V — Unit
haviour. vehicle(vi)(pos,net)(v) =
: : o : : [1] (wait ;
e In the vehicle behaviour defined in Example 48, in two parts, Slide 297 [2] vehicle(vi)(pos,net)(v))
and Slide 299 we focus on the events (3]]
— [7] where the vehicle enters a link, respectively CT;SE’;;:
— [5] where the vehicle leaves a link. 4-6] (let lis=dom net(hi) in let li:LMi € lis in let hi=(net(hi))(i) in

7] ves| hi,li]!vi;
8] vehicle(vi)(ponL(hi,li,0,hi’),net)(v)
9] end end end)

— We redirect the interactions between vehicles and links to become ponL(hili,f,hi) —
4] (case f of

%5’—6’} 1 — (vls[li,hi]!vi; vehicle(vi)(patH(hi'),net)(v)),
value (7] _ — vebhicle(vi)(ponL(hi,li,f+d,hi’),net)(v)

d:Real = move(h,f) axiom 0<i<1 (8] end)
move: H x F — F

e These are summarised in the schematic reproduction of the vehicle
behaviour description.

— interactions between vehicles and enter and leave sensors.

On a Triptych of Software Development 311

(A. A.8. Simple RSL Specifications)

e As mentioned on Slide 306 /ink behaviours are associated with two

pairs of sensors:
—a pair of enter and leave sensors at one end, and

— a pair of enter and leave sensors at the other end;

value
link(l))(1) =
let {hihi} = wHIs(l) in
enter sensor(hi,li) || leave sensor(li,hi) ||
enter sensor(hili) || leave sensor(li,hi) end
enter sensor(hi,li) =
let vi = ves[hi,li]? in rp!uEnter LI(vili); enter sensor(hi,li) end
leave sensor(li,hi) =
let vi = ves[li,hi]? in rp!uLeave LI(vili); enter sensor(li,hi) end

© Dines Bjorner 2010, Fredsve] 11, DK 2810 Holte, Denmark

Farch 2, 2010, 1910, Vienns Lectares, Apef 2010
On a Triptych of Software Development 313

(A. A.8. Simple RSL Specifications)

road pricing(lvs,fee,acc) = in rp
let m = rp? in
case m of
pEnter LI(vili) —
road_pricing(lvst| li—Ivs(li)U{vi}],fee,acc),
pleave LI(vili) —

let Ivs = if vi € Ivs(li) then Ivsi|li—lvs(li)\{vi} | else Ivs end,

acc’ = payment(vi,li)(fee,acc) in
road_pricing(lvs,fee,acc)
end end end

m End of Example 49

© Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark

March 2, 2010, 19:10, Vienna Lectures, April 2010

On a Triptych of Software Development

(A. A.8. Simple RSL Specifications)

e The LVS component of the road pricing behaviour serves,

— among other purposes that are not mentioned here,
— to record whether the movement of a vehicles “originates” along a
link or not.

e Otherwise we leave it to the student to carefully read the formulas.

value
payment: VI x LI — (ACC x FEE) — ACC
payment(vi,li)(fee,acc) =
let bal = if vi € dom acc then add(acc(vi),fee(li)) else fee(li) end
in acc 1 [vi — bal'| end
add: Fee x Bal — Bal [add fee to balance]

© Dines Bigmer 2010, Fredsvej 11, DK-2840 Holte, Denmark

March 2, 2010, 19:10, Vienna Lectures, April 2010

On a Triptych of Software Development 313

(A. AB8. Simple RSL Specifications)

'End of Lecture 11: RSL SPECIFICATIONS

@ Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark

March 2, 2010, 19:10, Vienna Lectures, April 2010

