
On a Triptych of Software Development 299

(A. A.7. A.7.4.)

Start of Lecture 11: RSL SPECIFICATIONS

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 300

(A. A.7. A.7.4.)

A.8. Simple RSL Specifications

• Besides the above constructs RSL also possesses module-oriented

– scheme, – class and – object

constructs.

• We shall not cover these here.

• An RSL specification is then simply

– a sequence of one or more clusters of

∗ zero, one or more sort and/or type definitions,

∗ zero, one or more variable declarations,

∗ zero, one or more channel declarations,

∗ zero, one or more value definitions (including functions) and

∗ zero, one or more and axioms.

• We can illustrate these specification components schematically:

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 301

(A. A.8. Simple RSL Specifications)

type

A, B, C, D, E, F, G

Hf = A-set, Hi = A-infset

J = B×C×...×D

Kf = E∗, Ki = Eω

L = F→m G

Mt = J → Kf, Mp = J
∼
→ Ki

N == alpha | beta | ... | omega

O == µHf(as:Hf)

| µKf(el:Kf) | ...

P = Hf | Kf | L | ...

variable

vhf:Hf := 〈〉
channel

chf:F, chg:G, {chb[i]|i:A}:B

value

va:A, vb:B, ..., ve:E

f1: A → B, f2: C
∼
→ D

f1(a) ≡ Ef1(a)

f2: E → in|out chf F

f2(e) ≡ Ef2(e)

f3: Unit → in chf out chg Unit

...

axiom

Pi(f1,va),

Pj(f2,vb),

...

Pk(f3,ve)

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 302

(A. A.8. Simple RSL Specifications)

• The ordering of these clauses is immaterial.

• Intuitively the meaning of these definitions and declarations are the following.

– The type clause introduces a number of user-defined type names;

∗ the type names are visible anywhere in the specification;

∗ and either denote sorts or concrete types.

– The variable clause declares some variable names;

∗ a variable name denote some value of decalred type;

∗ the variable names are visible anywhere in the specification:

· assigned to (‘written’) or

· values ‘read’.

– The channel clause declares some channel names;

∗ either simple channels or arrays of channels of some type;

∗ the channel names are visible anywhere in the specification.

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 303

(A. A.8. Simple RSL Specifications)

– The value clause bind (constant) values to value names.

∗ These value names are visible anywhere in the specification.

∗ The specification

type

A
value

a:A

∗ non-deterministically binds a to a value of type A.

∗ Thuis includes, for example

type

A, B
value

f: A → B

∗ which non-deterministically binds f to a function value of type
A→B.

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 304

(A. A.8. Simple RSL Specifications)

• The axiom clause is usually expressed as several “comma (,) sepa-
rated” predicates:

Pi(Ai, fi, vi),Pj(Aj, fj, vj), . . .,Pk(Ak, fk, vk)

• where (Ak, fℓ, vℓ) is an abbreviation for Aℓ1
, Aℓ2

, . . . , At, fℓ1
, fℓ2

,
. . . , fℓf

, vℓ1
, vℓ2

, . . . , vℓv.

• The indexed sort or type names, A and the indexed function names,
d, are defined elsewhere in the specification.

• The index value names, v are usually names of bound ‘variables’
of universally or existentially quantified predicates of the indexed
(“comma”-separated) P .

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 305

(A. A.8. Simple RSL Specifications)

Example 49 – A Neat Little “System”:

• We present a self-contained specification of a simple system:

– The system models

∗ vehicles moving along a net, vehicle,

∗ the recording of vehicles entering links, enter sensor,

∗ the recording of vehicles leaving links, leave sensor, and

∗ the road pricing payment of a vehicle having traversed (entered
and left) a link.

– Note

∗ that vehicles only pay when completing a link traversal;

∗ that ‘road pricing’ only commences once a vehicle enters the first
link after possibly having left an earlier link (and hub); and

∗ that no road pricing payment is imposed on vehicles entering,
staying-in (or at) and leaving hubs.

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 306

(A. A.8. Simple RSL Specifications)

– We assume the following:

∗ that each link is somehow associated with two pairs of sensors:

· a pair of enter and leave sensors at one end, and

· a pair of enter and leave sensors at the other end;

and

∗ a road pricing process

· which records pairs of link enterings and leavings,

· first one, then, after any time interval, the other,

· with leavings leading to debiting of traversal fees;

• Our first specification

– define types,

– assume a net value,

– declares channels and

– state signatures of all processes.

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 307

(A. A.8. Simple RSL Specifications)

• ves stand for vehicle entering (link) sensor channels,

• vls stand for vehicle leaving (link) sensor channels,

• rp stand for ‘road pricing’ channel

• enter sensor(hi,li) stand for vehicle entering [sensor] process from hub
hi to link (li).

• leave sensor(li,hi) stand for vehicle leaving [sensor] process from link
li to hub (hi).

• road pricing() stand for the unique ‘road pricing’ process.

• vehicle(vi)(...) stand for the vehicle vi process.

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 308

(A. A.8. Simple RSL Specifications)

type

N, H, HI, LI, VI
RPM == µEnter L(vi:VI,li:LI) | µLeave L(vi:VI,li:LI)

value

n:N
channel

{ves[ωHI(h),li]|h:H•h ∈ ωHs(n)∧li ∈ ωLIs(h)}:VI
{vls[li,ωHI(h)]|h:H•h ∈ ωHs(n)∧li ∈ ωLIs(h)}:VI
rp:RPM

type

Fee, Bal
LVS = LI →m VI-set, FEE = LI →m Fee, ACC = VI →m Bal

value

link: (li:LI × L) → Unit

enter sensor: (hi:HI × li:LI) → in ves[hi,li],out rp Unit

leave sensor: (li:LI × hi:HI) → in vls[li,hi],out rp Unit

road pricing: (LVS×FEE×ACC) → in rp Unit

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 309

(A. A.8. Simple RSL Specifications)

• To understand the sensor behaviours let us review the vehicle be-
haviour.

• In the vehicle behaviour defined in Example 48, in two parts, Slide 297
and Slide 299 we focus on the events

– [7] where the vehicle enters a link, respectively

– [5′] where the vehicle leaves a link.

• These are summarised in the schematic reproduction of the vehicle
behaviour description.

– We redirect the interactions between vehicles and links to become

– interactions between vehicles and enter and leave sensors.

value

δ:Real = move(h,f) axiom 0<δ≪1
move: H × F → F

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 310

(A. A.8. Simple RSL Specifications)

vehicle: VI → (Pos × Net) → V → Unit

vehicle(vi)(pos,net)(v) ≡
[1] (wait ;
[2] vehicle(vi)(pos,net)(v))
[3] ⌈⌉

case pos of

µatH(hi) →
[4−6] (let lis=dom net(hi) in let li:LI•li ∈ lis in let hi′=(net(hi))(li) in

[7] ves[hi,li]!vi;
[8] vehicle(vi)(µonL(hi,li,0,hi′),net)(v)
[9] end end end)

µonL(hi,li,f,hi′) →
[4′] (case f of

[5′−6′] 1 → (vls[li,hi]!vi; vehicle(vi)(µatH(hi′),net)(v)),
[7′] → vehicle(vi)(µonL(hi,li,f+δ,hi′),net)(v)
[8′] end)

end

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 311

(A. A.8. Simple RSL Specifications)

• As mentioned on Slide 306 link behaviours are associated with two
pairs of sensors:

– a pair of enter and leave sensors at one end, and

– a pair of enter and leave sensors at the other end;

value

link(li)(l) ≡
let {hi,hi′} = ωHIs(l) in

enter sensor(hi,li) ‖ leave sensor(li,hi) ‖
enter sensor(hi′,li) ‖ leave sensor(li,hi′) end

enter sensor(hi,li) ≡
let vi = ves[hi,li]? in rp!µEnter LI(vi,li); enter sensor(hi,li) end

leave sensor(li,hi) ≡
let vi = ves[li,hi]? in rp!µLeave LI(vi,li); enter sensor(li,hi) end

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 312

(A. A.8. Simple RSL Specifications)

• The LVS component of the road pricing behaviour serves,

– among other purposes that are not mentioned here,

– to record whether the movement of a vehicles “originates” along a
link or not.

• Otherwise we leave it to the student to carefully read the formulas.

value

payment: VI × LI → (ACC × FEE) → ACC
payment(vi,li)(fee,acc) ≡
let bal′ = if vi ∈ dom acc then add(acc(vi),fee(li)) else fee(li) end

in acc † [vi 7→ bal′] end

add: Fee × Bal → Bal [add fee to balance]

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 313

(A. A.8. Simple RSL Specifications)

road pricing(lvs,fee,acc) ≡ in rp
let m = rp? in

case m of

µEnter LI(vi,li) →
road pricing(lvs†[li7→lvs(li)∪{vi}],fee,acc),

µLeave LI(vi,li) →
let lvs′ = if vi ∈ lvs(li) then lvs†[li7→lvs(li)\{vi}] else lvs end,

acc′ = payment(vi,li)(fee,acc) in

road pricing(lvs′,fee,acc′)
end end end

End of Example 49

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 313

(A. A.8. Simple RSL Specifications)

End of Lecture 11: RSL SPECIFICATIONS

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

