
On a Triptych of Software Development 274

(A. A.5. A.5.6.)

Start of Lecture 10: RSL: IMPERATIVE & PARALLEL CONSTRUCTS

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 275

(A. A.5. A.5.6.)

A.6. Imperative Constructs
A.6.1. Statements and State Changes

Unit

value

stmt: Unit → Unit

stmt()

• The Unit clause, in a sense, denotes “an underlying state”

– which we, for simplicity, can consider as

– a mapping from identifiers of declared variables into their values.

• Statements accept no arguments and, usually, operate on the state

– through “reading” the value(s) of declared variables and

– through “writing”, i.e., assigning values to such declared variables.

• Statement execution thus changes the state (of declared variables).

• Unit → Unit designates a function from states to states.

• Statements, stmt, denote state-to-state changing functions.

• Affixing () as an “only” arguments to a function “means” that () is an argument of type Unit.

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 276

(A. A.6. Imperative Constructs A.6.1. Statements and State Changes)

A.6.2. Variables and Assignment

0. variable v:Type := expression
1. v := expr

A.6.3. Statement Sequences and skip

2. skip

3. stm 1;stm 2;...;stm n

A.6.4. Imperative Conditionals

4. if expr then stm c else stm a end

5. case e of: p 1→S 1(p 1),...,p n→S n(p n) end

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 277

(A. A.6. Imperative Constructs A.6.4. Imperative Conditionals)

A.6.5. Iterative Conditionals

6. while expr do stm end

7. do stmt until expr end

A.6.6. Iterative Sequencing

8. for e in list expr • P(b) do S(b) end

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 278

(A. A.6. Imperative Constructs A.6.6. Iterative Sequencing)

A.7. Process Constructs
A.7.1. Process Channels

Let A, B and D stand for two types of (channel) messages and i:KIdx
for channel array indexes, then:

channel

c,c′:A
channel

{k[i]|i:KIdx}:B
{ch[i]i:KIdx}:B

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 279

(A. A.7. Process Constructs A.7.1. Process Channels)

Example 45 – Modelling Connected Links and Hubs:

• Examples (45–48) are building up a model of one form of meaning
of a transport net.

– We model the movement of vehicles around hubs and links.

– We think of each hub, each link and each vehicle to be a process.

– These processes communicate via channels.

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 280

(A. A.7. Process Constructs A.7.1. Process Channels)

• We assume a net, n : N , and a set, vs, of vehicles.

• Each vehicle can potentially interact

– with each hub and

– with each link.

• Array channel indices (vi,hi):IVH and (vi,li):IVL serve to effect these interactions.

• Each hub can interact with each of its connected links and indices (hi,li):IHL serves
these interactions.

type

N, V, VI
value

n:N, vs:V-set

ωVI: V → VI
type

H, L, HI, LI, M
IVH = VI×HI, IVL = VI×LI, IHL = HI×LI

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 281

(A. A.7. Process Constructs A.7.1. Process Channels)

• We need some auxiliary quantities in order to be able to express sub-
sequent channel declarations.

• Given that we assume a net, n : N and a set of vehicles, vs : V S, we
can now define the following (global) values:

– the sets of hubs, hs, and links, ls of the net;

– the set, ivhs, of indices between vehicles and hubs,

– the set, ivls, of indices between vehicles and links, and

– the set, ihls, of indices between hubs and links.

value

hs:H-set = ωHs(n), ls:L-set = ωLs(n)
his:HI-set = {ωHI(h)|h:H•h ∈ hs}, lis:LI-set = {ωLI(h)|l:L•l ∈ ls},
ivhs:IVH-set = {(ωVI(v),ωHI(h))|v:V,h:H•v ∈ vs∧h ∈ hs}
ivls:IVL-set = {(ωVI(v),ωLI(l))|v:V,l:L•v ∈ vs∧l ∈ ls}
ihls:IHL-set = {(hi,li)|h:H,(hi,li):IHL• h ∈ hs∧hi=ωHI(h)∧li ∈ ωLIs(h)}

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 282

(A. A.7. Process Constructs A.7.1. Process Channels)

• We are now ready to declare the channels:

– a set of channels, {vh[i]|i:IVH•i∈ivhs} between vehicles and all po-
tentially traversable hubs;

– a set of channels, {vh[i]|i:IVH•i∈ivhs} between vehicles and all po-
tentially traversable links; and

– a set of channels, {hl[i]|i:IHL•i∈ihls}, between hubs and connected
links.

channel

{vh[i] | i:IVH • i ∈ ivhs} : M
{vl[i] | i:IVL • i ∈ ivls} : M
{hl[i] | i:IHL • i ∈ ihls} : M

End of Example 45

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 283

(A. A.7. Process Constructs A.7.1. Process Channels)

A.7.2. Process Definitions

• A process definition is a function definition.

• The below signatures are just examples.

• They emphasise that process functions must somehow express,

– in their signature,

• via which channels they wish to engage in input and output events.

• Processes P and Q are to interact, and to do so “ad infinitum”.

• Processes R and S are to interact, and to do so “once”, and then
yielding B, respectively D values.

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 284

(A. A.7. Process Constructs A.7.2. Process Definitions)

value

P: Unit → in c out k[i] Unit

Q: i:KIdx → out c in k[i] Unit

P() ≡ ... c ? ... k[i] ! e ... ; P()
Q(i) ≡ ... k[i] ? ... c ! e ... ; Q(i)

R: Unit → out c in k[i] B
S: i:KIdx → out c in k[i] D
R() ≡ ... c′ ? ... ch[i] ! e ... ; B Val Expr
S(i) ≡ ... ch[i] ? ... c ! e ...; D Val Expr

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 285

(A. A.7. Process Constructs A.7.2. Process Definitions)

Example 46 – Communicating Hubs, Links and Vehicles:

• Hubs interact with links and vehicles:

– with all immediately adjacent links,

– and with potentially all vehicles.

• Links interact with hubs and vehicles:

– with both adjacent hubs,

– and with potentially all vehicles.

• Vehicles interact with hubs and links:

– with potentially all hubs.

– and with potentially all links.

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 286

(A. A.7. Process Constructs A.7.2. Process Definitions)

value

hub: hi:HI × h:H → in,out {hl[(hi,li)|li:LI•li ∈ ωLIs(h)]}
in,out {vh[(vi,hi)|vi:VI•vi ∈ vis]} Unit

link: li:LI × l:L → in,out {hl[(hi,li)|hi:HI•hi ∈ ωHIs(l)]}
in,out {vh[(vi,li)|vi:VI•vi ∈ vis]} Unit

vehicle: vi:VI → (Pos × Net) → v:V →
in,out {vh[(vi,hi)|hi:HI•hi ∈ his]}
in,out {vl[(vi,li)|li:LI•li ∈ lis]} Unit

End of Example 46

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 287

(A. A.7. Process Constructs A.7.2. Process Definitions)

A.7.3. Process Composition

• Let P and Q stand for names of process functions,

• i.e., of functions which express willingness to engage in input and/or
output events,

• thereby communicating over declared channels.

• Let P and Q stand for process expressions,

• and let Pi stand for an indexed process expression, then:

P ‖ Q Parallel composition
P ⌈⌉⌊⌋ Q Nondeterministic external choice (either/or)
P ⌈⌉ Q Nondeterministic internal choice (either/or)
P –‖ Q Interlock parallel composition
O { Pi | i:Idx } Distributed composition, O = ‖,⌈⌉⌊⌋,⌈⌉,–‖

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 288

(A. A.7. Process Constructs A.7.3. Process Composition)

Example 47 – Modelling Transport Nets:

• The net, with vehicles, potential or actual, is now considered a process.

• It is the parallel composition of

– all hub processes,

– all link processes and

– all vehicle processes.

value

net: N → V-set → Unit

net(n)(vs) ≡
‖ {hub(ωHI(h))(h)|h:H•h ∈ ωHs(n)} ‖
‖ {link(ωLI(l))(l)|l:L•l ∈ ωLs(n)} ‖
‖ {vehicle(ωVI(v))(ωPN(v))(v)|v:V•v ∈ vs}

ωPN: V → (Pos×Net)

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 289

(A. A.7. Process Constructs A.7.3. Process Composition)

• We illustrate a schematic definition of simplified hub processes.

• The hub process alternates, internally non-deterministically, ⌈⌉, be-
tween three sub-processes

– a sub-process which serves the link-hub connections,

– a sub-process which serves thos vehicles which communicate that
they somehow wish to enter or leave (or do something else with
respect to) the hub, and

– a sub-process which serves the hub itself — whatever that is !

hub(hi)(h) ≡
⌈⌉⌊⌋{let m = hl[(hi,li)] ? in hub(hi)(Ehℓ

(li)(m)(h)) end|i:LI•li ∈ ωLI(h)}

⌈⌉ ⌈⌉⌊⌋{let m = vh[(vi,hi)] ? in hub(vi)(Ehv
(vi)(m)(h)) end|vi:VI•vi ∈ vis}

⌈⌉ hub(hi)(Ehown
(h))

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 290

(A. A.7. Process Constructs A.7.3. Process Composition)

• The three auxiliary processes:

– Ehℓ
update the hub with respect to (wrt.) connected link, li, infor-

mation m,

– Ehv
update the hub with wrt. vehicle, vi, information m,

– Ehown
update the hub with wrt. whatever the hub so decides. An

example could be signalling dependent on previous link-to-hub com-
municated information, say about traffic density.

Ehℓ
: LI → M → H → H

Ehv
: VI → M → H → H

Ehown
: H → H

• The student is encouraged to sketch/define similarly schematic link
and vehicle processes. End of Example 47

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 291

(A. A.7. Process Constructs A.7.3. Process Composition)

A.7.4. Input/Output Events

• Let c and k[i] designate channels of type A

• and e expression values of type A, then:

[1] c?, k[i]? input A value
[2] c!e, k[i]!e output A value

value

[3] P: ... → out c ..., P(...) ≡ ... c!e ... offer an A value,
[4] Q: ... → in c ..., Q(...) ≡ ... c? ... accept an A value
[5] S: ... → ..., S(...) = P(...)‖Q(...) synchronise and communicate

• [5] expresses the willingness of a process to engage in an event that

– [1,3] “reads” an input, respectively

– [2,4] “writes” an output.

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 292

(A. A.7. Process Constructs A.7.4. Input/Output Events)

Example 48 – Modelling Vehicle Movements:

• Whereas hubs and links are modelled as basically static, passive, that
is, inert, processes we shall consider vehicles to be “highly” dynamic,
active processes.

• We assume that a vehicle possesses knowledge about the road net.

– The road net is here abstracted as an awareness of

– which links, by their link identifiers,

– are connected to any given hub, designated by its hub identifier,

– the length of the link,

– and the hub to which the link is connected “at the other end”, also
by its hub identifier

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 293

(A. A.7. Process Constructs A.7.4. Input/Output Events)

• A vehicle is further modelled by its current position on the net in terms
of either hub or link positions

– designated by appropriate identifiers

– and, when “on a link” “how far down the link”, by a measure of a
fraction of the total length of the link, the vehicle has progressed.

type

Net = HI →m (LI →m HI)
Pos = atH | onL
atH == µatH(hi:HI)
onL == µonL(fhi:HI,li:LI,f:F,thi:HI)
F = {|f:Real•0≤f≤1|}

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 294

(A. A.7. Process Constructs A.7.4. Input/Output Events)

• We first assume that the vehicle is at a hub.

• There are now two possibilities (1–2] versus [4–8]).

– Either the vehicle remains at that hub

∗ [1] which is expressed by some non-deterministic wait

∗ [2] followed by a resumption of being that vehicle at that location.

– [3] Or the vehicle (driver) decides to “move on”:

∗ [5] Onto a link, li,

∗ [4] among the links, lis, emanating from the hub,

∗ [6] and towards a next hub, hi′.

– [4,6] The lis and hi′ quantities are obtained from the vehicles own knowledge of
the net.

– [7] The hub and the chosen link are notified by the vehicle of its leaving the hub
and entering the link,

– [8] whereupon the vehicle resumes its being a vehicle at the initial location on
the chosen link.

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 295

(A. A.7. Process Constructs A.7.4. Input/Output Events)

• The vehicle chooses between these two possibilities by an internal non-deterministic
choice ([3]).

type

M == µL H(li:LI,hi:HI) | µH L(hi:HI,li:LI)
value

vehicle: VI → (Pos × Net) → V → Unit

vehicle(vi)(µatH(hi),net)(v) ≡
[1] (wait ;
[2] vehicle(vi)(µatH(hi),net)(v))
[3] ⌈⌉
[4] (let lis=dom net(hi) in

[5] let li:LI•li ∈ lis in

[6] let hi′=(net(hi))(li) in

[7] (vh[(vi,hi)]!µH L(hi,li)‖vl[(vi,li)]!µH L(hi,li));
[8] vehicle(vi)(µonL(hi,li,0,hi′),net)(v)
[9] end end end)

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 296

(A. A.7. Process Constructs A.7.4. Input/Output Events)

• We then assume that the vehicle is on a link and at a certain distance “down”, f,
that link.

• There are now two possibilities ([1–2] versus [4–7]).

– Either the vehicle remains at that hub

∗ [1′] which is expressed by some non-deterministic wait

∗ [2′] followed by a resumption of being that vehicle at that location.

– [3′] Or the vehicle (driver) decides to “move on”.

– [4′] Either

∗ [5′] The vehicle is at the very end of the link and signals the link and the hub
of its leaving the link and entering the hub,

∗ [6′] whereupon the vehicle resumes its being a vehicle at hub h′.

– [7′] or the vehicle moves further down, some non-zero fraction down the link.

• The vehicle chooses between these two possibilities by an internal non-deterministic
choice ([3]).

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 297

(A. A.7. Process Constructs A.7.4. Input/Output Events)

type

M == µL H(li:LI,hi:HI) | µH L(hi:HI,li:LI)
value

δ:Real = move(h,f) axiom 0<δ≪1
vehicle(vi)(µonL(hi,li,f,hi′),net)(v) ≡
[1′] (wait ;
[2′] vehicle(vi)(µonL(hi,li,f,hi′),net)(v))
[3′] ⌈⌉
[4′] (case f of

[5′] 1 → ((vl[vi,hi′]!µL H(li,hi′)‖vh[vi,li]!µL H(li,hi′));
[6′] vehicle(vi)(µatH(hi′),net)(v)),
[7′] → vehicle(vi)(µonL(hi,li,f+δ,hi′),net)(v)
[8′] end)
move: H × F → F

End of Example 48
April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 297

(A. A.7. Process Constructs A.7.4. Input/Output Events)

End of Lecture 10: RSL IMPERATIVE & PARALLEL CONSTRUCTS

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

