On a Triptych of Software Development 274 On a Triptych of Software Development 275

(A A5 A56.) (A A5 A56.)
A.6. Imperative Constructs
A.6.1. Statements and State Changes
Unit
value

Start of Lecture 10: RSL: IMPERATIVE & PARALLEL CONSTRUCTS] stmt: Unit — Unit
stmt()

e The Unit clause, in a sense, denotes “an underlying state”

— which we, for simplicity, can consider as

— a mapping from identifiers of declared variables into their values.
e Statements accept no arguments and, usually, operate on the state

— through “reading” the value(s) of declared variables and

— through “writing”, i.e., assigning values to such declared variables.
e Statement execution thus changes the state (of declared variables).
e Unit — Unit designates a function from states to states.
e Statements, stmt, denote state-to-state changing functions.

e Affixing () as an “only” arguments to a function “means” that () is an argument of type Unit.

April 22, 2010, 16:31, Vienna Lectures, April 2010 © Dines Bjgrner 2010, Fredsvej 11, DK-2840 Holte, Denmark April 22, 2010, 16:31, Vienna Lectures, April 2010

e e
On a Triptych of Software Development 276 On a Triptych of Software Development 277
(A. A6. Imperative Constructs A.6.1. Statements and State Changes) (A. A6. Imperative Constructs A.6.4. Imperative Conditionals)
A.6.2. Variables and Assignment A.6.5. lterative Conditionals
0. variable v:Type := expression 6. while expr do stm end
1. v i=expr 7. do stmt until expr end
A.6.3. Statement Sequences and skip A.6.6. lterative Sequencing

2. skip 8. for e in list expr - P(b) do S(b) end
3. stm_1;stm 2;...;stm n

A.6.4. Imperative Conditionals

4. if expr then stm_c else stm_a end
5. case e of: p 1—S 1(p 1),....p n—S n(p n) end

April 22, 2010, 16331, Vienn,

ures, April 2010 @ Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, D:

April 22, 2010, 16:31, Vienna Lectures, April 2010 @ Dines Bjgrner 2010, Frodsvej 11, DK 2840 Holte,

On a Triptych of Software Development 278
(A. A6. Imperative Constructs A.6.6. Iterative Sequencing)
A.7. Process Constructs
A.7.1. Process Channels
Let A, B and D stand for two types of (channel) messages and i:Kldx
for channel array indexes, then:

channel
c,c:A

channel
{k[1]]i:KIdx}:B
{ch[i]i:KIdx}:B

April 22, 2010, 16:31, Vienna Lectures, April 2010 © Dines Bjgmer 2010,

On a Triptych of Software Development 280

(A. A.7. Process Constructs A.7.1. Process Channels)

e We assume a net, n : IV, and a set, vs, of vehicles.
e Each vehicle can potentially interact

— with each hub and

— with each link.
e Array channel indices (vi,hi):IVH and (vi,li):IVL serve to effect these interactions.

e Each hub can interact with each of its connected links and indices (hi,li):IHL serves
these interactions.

type
N, V, VI
value
n:N, vs:V-set
wVI: 'V — VI
type
H, L, HI, LI, M
IVH = VIxHI, IVL = VIxLI, IHL = HIxLI

April 22, 2010, 16331, Vienna Lectures, April 2010 @ Dines Bjgrner 2010, Fredsvej 11, DK 2

On a Triptych of Software Development 279

(A. A.7. Process Constructs A.7.1. Process Channels)

Example 45 — Modelling Connected Links and Hubs:

e Examples (45-48) are building up a model of one form of meaning
of a transport net.
— We model the movement of vehicles around hubs and links.
— We think of each hub, each link and each vehicle to be a process.

— These processes communicate via channels.

On a Triptych of Software Development 281
(A. A.7. Process Constructs A.7.1. Process Channels)

e We need some auxiliary quantities in order to be able to express sub-
sequent channel declarations.

e Given that we assume a net, n : N and a set of vehicles, vs : V.S, we
can now define the following (global) values:
— the sets of hubs, hs, and links, [s of the net;
— the set, 1vhs, of indices between vehicles and hubs,
— the set, ivls, of indices between vehicles and links, and
— the set, 7hls, of indices between hubs and links.
value
hs:H-set = wHs(n), Is:L-set = wLs(n)
his:HI-set = {wHI(h)|h:H-h € hs}, lis:LI-set = {wLI(h)|l:L € Is},
ivhs:IVH-set = {(wVI(v),wHI(h))|v:V,h:Hv € vsAh € hs}
ivls:IVL-set = {(wVI(v),wLI())|v:V,l:Lv € vsAl € Is}
ihls:IHL-set = {(hi,li)|h:H,(hi,li):IHL- h € hsAhi=wHI(h)Ali € wLlIs(h)}

122, 2010, 16:31, Vienna Lectures, April 2010 @ Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark

On a Triptych of Software Development 282
(A. A.7. Process Constructs A.7.1. Process Channels)
e We are now ready to declare the channels:
— a set of channels, {vh[i]|i:IVH-i€ivhs} between vehicles and all po-
tentially traversable hubs;
— a set of channels, {vh[i]|i:IVH-i€ivhs} between vehicles and all po-
tentially traversable links; and

— a set of channels, {hl[i]|i:IHL-icihls}, between hubs and connected
links.

channel
{vh[i] | :IVH -i € ivhs} : M
{vI[i] | ZIVL -i € ivls} : M
{hI[i] | :IHL - i € ihls} : M

» End of Example 45

April 22, 2010, 16:31, Vienna Lectures, April 2010 © Dines Bjgrner 2010, Fredsvej 11, DK-2840 Holte, Denmark

On a Triptych of Software Development 284

(A. A.7. Process Constructs A.7.2. Process Definitions)

value
P: Unit — in c out k[i] Unit
Q: :Kldx — out ¢ in k[i] Unit
PO=..c? .. Kk[i]!e..;P(
Q) = ... k[1] 7 ...cle...; Q)

R: Unit — out cink[i] B
S: tKldx — out cin k[i] D
R()=..c¢ 7 ..chli]le..;BVal Expr
S(i)=...ch[i] 7 ... ¢! e...; D Val Expr

April 22, 2010, 16331, Vienna Lectures, April 2010 © Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark

On a Triptych of Software Development 283

(A. A.7. Process Constructs A.7.1. Process Channels)

A.7.2. Process Definitions
e A process definition is a function definition.
e The below signatures are just examples.
e They emphasise that process functions must somehow express,
— in their signature,
e via which channels they wish to engage in input and output events.
e Processes P and @) are to interact, and to do so “ad infinitum”.

e Processes R and S are to interact, and to do so “once”, and then
yielding B, respectively D values.

On a Triptych of Software Development 285
(A. AT. Process Constructs A7.2. Process Definitions)
Example 46 — Communicating Hubs, Links and Vehicles:
e Hubs interact with links and vehicles:

— with all immediately adjacent links,

— and with potentially all vehicles.
e Links interact with hubs and vehicles:

— with both adjacent hubs,

— and with potentially all vehicles.
e Vehicles interact with hubs and links:

— with potentially all hubs.
—and with potentially all links.

April 22, 2010, 16:31, Vienna Lectures, April 2010 @ Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark

On a Triptych of Software Development 286

(A. A.7. Process Constructs A.7.2. Process Definitions)

value
hub: hi:HI x h:H — in,out {hl] (hili)|li:LIi € wLIs(h)]}
in,out {vh[(vi,hi)|vi:Vlvi € vis]} Unit
link: li:LI x I:L — in,out {hl[(hili)|hi:HI-hi € wHIs(1)]}
in,out {vh[(vili)|vi:VIvi € vis]} Unit
vehicle: vi:Vl — (Pos x Net) — v:V —
in,out {vh[(vi,hi)|hi:HI-hi € his]}
in,out {vi[(vili)|li:LHi € lis]} Unit

» End of Example 46

On a Triptych of Software Development 288

(A. A.7. Process Constructs A.7.3. Process Composition)
Example 47 — Modelling Transport Nets:
e The net, with vehicles, potential or actual, is now considered a process.
e |t is the parallel composition of
—all hub processes,
—all link processes and
— all vehicle processes.
value
net: N — V-set — Unit
net(n)(vs) =
|| {hub(wHI(h))(h)|h:Hh € wHs(n)} ||
|| {link(wLI())(N|I:L1 € wLs(n)} ||
|| {vehicle(wVI(v))(wPN(v))(v)|v:Vv € vs}

wPN: V — (PosxNet)

On a Triptych of Software Development 287

(A. A.7. Process Constructs A.7.2. Process Definitions)

A.7.3. Process Composition
e Let P and Q stand for names of process functions,

e i.c., of functions which express willingness to engage in input and /or
output events,

e thereby communicating over declared channels.
e Let P and Q stand for process expressions,

e and let P; stand for an indexed process expression, then:

Pl Q Parallel composition

Pl Q Nondeterministic external choice (either/or)
Pl Q Nondeterministic internal choice (either/or)
P Q Interlock parallel composition

O { P; | :ldx } Distributed composition, O = ||,[],[]

On a Triptych of Software Development 289

(A. A.7. Process Constructs A.7.3. Process Composition)
e We illustrate a schematic definition of simplified hub processes.

e The hub process alternates, internally non-deterministically, [|, be-
tween three sub-processes
— a sub-process which serves the link-hub connections,

— a sub-process which serves thos vehicles which communicate that

they somehow wish to enter or leave (or do something else with
respect to) the hub, and

— a sub-process which serves the hub itself — whatever that is !

hub(hi)(h) =

[J{let m = hi[(hi,li)] 7 in hub(hi)(&,(li)(m)(h)) end|[i:LMi € wLi(h)}
[l J{let m = vh[(vi,hi)] ? in hub(vi)(&p,, (vi)(m)(h)) end|vi:VIvi € vis}

[hub(hi)(&p,,,, (h)

On a Triptych of Software Development 290

(A. A.7. Process Constructs A.7.3. Process Composition)

e The three auxiliary processes:

— 8h€ update the hub with respect to (wrt.) connected link, /i, infor-
mation m,

_5hv update the hub with wrt. vehicle, vi, information m,

—&h,,,, update the hub with wrt. whatever the hub so decides. An
example could be signalling dependent on previous link-to-hub com-
municated information, say about traffic density.

Epy =M —=H—-H

Epy V=M —H—H
Ehpwn: H—H

e The student is encouraged to sketch/define similarly schematic link
and vehicle processes. m End of Example 47

April 22, 2010, 16:31, Vienna Lectures, April 2010

On a Triptych of Software Development 292

(A. A.7. Process Constructs A.7.4. Input/Output Events)

Example 48 — Modelling Vehicle Movements:

e Whereas hubs and links are modelled as basically static, passive, that
is, inert, processes we shall consider vehicles to be “highly” dynamic,
active processes.

e We assume that a vehicle possesses knowledge about the road net.

— The road net is here abstracted as an awareness of

— which links, by their link identifiers,

— are connected to any given hub, designated by its hub identifier,
— the length of the link,

— and the hub to which the link is connected “at the other end”, also
by its hub identifier

April 22, 2010, 16331, Vienna Lectures, April 2010 @ Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, D:

On a Triptych of Software Development 291

(A. A7. Process Constructs A.7.3. Process Composition)

A.7.4. Input/Output Events

e Let ¢ and k[i] designate channels of type A

e and e expression values of type A, then:

[1]c?, Kk[i]? input A value
[2] cle, k[i]le output A value
value
(3] P: ... moutc ..., P(...)=...cle... offer an A value,
(4] Q: ... —inc ..., Q(..)=..c? .. accept an A value
[5]S: ... — ..., S(...) = P(.)Q(..) synchronise and communicate

e [5] expresses the willingness of a process to engage in an event that
—[1,3] “reads” an input, respectively

—[2,4] “writes” an output.

On a Triptych of Software Development 293

(A. A.7. Process Constructs A.7.4. Input/Output Events)

e A vehicle is further modelled by its current position on the net in terms
of either hub or link positions

— designated by appropriate identifiers

—and, when “on a link” “how far down the link", by a measure of a
fraction of the total length of the link, the vehicle has progressed.

type
Net = HI 7 (LI 7 HI)
Pos = atH | onL
atH == patH(hi:HI)
onL == ponL(fhi:HLli:L1f:F,thi:HI)
F = {|fReal0<f<1|}

On a Triptych of Software Development 294
(A. A.7. Process Constructs A.7.4. Input/Output Events)

o We first assume that the vehicle is at a hub.
e There are now two possibilities (1-2] versus [4-8]).

— Either the vehicle remains at that hub

* [1] which is expressed by some non-deterministic wait

[2] followed by a resumption of being that vehicle at that location.
— [3] Or the vehicle (driver) decides to “move on”:

* [5] Onto a link, /i,

* [4] among the links, /is, emanating from the hub,

* [6] and towards a next hub, hf.

— [4,6] The lis and h/ quantities are obtained from the vehicles own knowledge of
the net.

— [7] The hub and the chosen link are notified by the vehicle of its leaving the hub
and entering the link,

— [8] whereupon the vehicle resumes its being a vehicle at the initial location on
the chosen link.

April 22, 2010, 16:31, Vienna Lectures, April 2010 © Dines Bjgrner 2010, Fredsvej 11, DK-2840 Holte, Denmark

On a Triptych of Software Development 296
(A. A.7. Process Constructs A.7.4. Input/Output Events)

e We then assume that the vehicle is on a link and at a certain distance “down”, f,
that link.

e There are now two possibilities ([1-2] versus [4-7]).

— Either the vehicle remains at that hub
* [1'] which is expressed by some non-deterministic wait
* [2'] followed by a resumption of being that vehicle at that location.
— [3'] Or the vehicle (driver) decides to “move on".
— [4'] Either
« [5'] The vehicle is at the very end of the link and signals the link and the hub
of its leaving the link and entering the hub,
« [6'] whereupon the vehicle resumes its being a vehicle at hub #.

— [7] or the vehicle moves further down, some non-zero fraction down the link.

e The vehicle chooses between these two possibilities by an internal non-deterministic
choice ([3]).

April 22, 2010, 16331, Vienna Lectures, April 2010 © Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark

On a Triptych of Software Development 295
(A. A.7. Process Constructs A.7.4. Input/Output Events)

e The vehicle chooses between these two possibilities by an internal non-deterministic
choice ([3]).

type
M == uL H(li:LLhi:HI) | oH L(hizHLli:LT)
value
vehicle: VI — (Pos x Net) — V — Unit
vehicle(vi)(patH(hi),net)(v) =
[1] (wait ;
2} |_\|/ehic|e(vi)(uatH(hi),net)(v))
] (let lis=dom net(hi) in
] let li:LIi € lis in
| let hi=(net(hi))(li) in
1 (vh[(vi,hi)]! peH-L(hi)| vI] (vi, 1) ' eH-L(hi 1i));
| vehicle(vi)(onL(hi,li,0,hi’),net)(v)
| end end end)

[
[
[
[
[
|
[
[

©O© 00 N O O &~ W

On a Triptych of Software Development 297

(A. A.7. Process Constructs A.7.4. Input/Output Events)

type

M == uL H(li:LLhi:HI) | zH L(hi:H1liLD)
value

d:Real = move(h,f) axiom 0<i<1

vehicle(vi)(ponL(hi,li,f,hi),net)(v) =

1] (wait ;
vehicle(vi)(uonL(hi,li,f,hi),net)(v))
1

[
2]
3]
[4"] (case f of

[5'] 1 — ((vI[vi,hi' 'l _H(li,hi)|[vh] vi,li]t L _H(li,hi"));
[6'] vehicle(vi)(uatH(hi),net)(v)),

[7"] _ — vehicle(vi)(uonL(hi,li,f+9,hi’),net)(v)

[8'] end)

move: H x F — F

m End of Example 48

April 22, 2010, 16:31, Vienna Lectures, April 2010 @ Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark

On a Triptych of Software Development 297

(A. A.7. Process Constructs A.7.4. Input/Output Events)

End of Lecture 10: RSL IMPERATIVE & PARALLEL CONSTRUCTS/

April 22, 2010, 16:31, Vienna Lectures, April 2010 © Dines Bjgrner 2010, Fredsvej 11, DK-2840 Holte, Denmark

