On a Triptych of Software Development 0

Start of Lecture 1: SUMMARY & INTRODUCTION/

April 7, 2010, 17:41, Vienna Lectures, April 2010 © Dines Bjgrner 2010, Fredsvej 11, DK-2840 Holte, Denmark

On a Triptych of Software Development 2

0. Abstract

e We shall present core aspects of the Triptych approach to software
engineering.

e The benefits from deploying this approach are that we both achieve
the right software and software that is right[Boechm 1981]).

e The right software is software that meets all of the customers’ ex-
pectations and only those.

e Software that is right is software that is correct with respect to
specific requirements prescriptions.

On a Triptych of Software Development 1

FROM DOMAINS TO REQUIREMENTS

April 16-30, 2010 Lectures, TUWien

Dines Bjgrner
Fredsvej 11, DK-2840 Holte, Denmark

bjorner@gmail.com, www.imm.dtu.dk/~db

April 7, 2010, 17:41, Vienna Lectures, April 2010 © Dines Bjorner 2010, Fredsvej 11, DK 2840 Holte, Denmark

On a Triptych of Software Development 3
(0. Abstract)

e Experience has shown that using also the formal techniques part of
the Triptych approach has lead to projects that are on time and at
initially estimated costs.

e To achieve the right software we “prefix” the phase of requirements
engineering with a phase of domain engineering — and these lecture
slides will present core aspects of domain engineering,.

e To achieve software that is right we do two things:

— (i) “derive” requirements prescriptions from domain descriptions and software
design from requirements prescriptions — and this these lecture slides will
present core aspects of a somewhat different approach to requirements engi-
neering, and

— (i) formulate descriptions and prescriptions both informally, in precise, say
English narratives, and formally. The latter is not shown in these lecture
slides.

On a Triptych of Software Development 4
(0. Abstract)
e The “somewhat” different approach to requirements engineering,

however, and as we shall see, fits reasonably “smoothly” with current
requirements engineering approaches|van Lamsweerde].

e Precursors of the ‘triptych’ approach was used in DDC’s 44 man-year
Ada Compiler development project [Bjorner and Oest].
— That project was on time and at cost,

— and time and cost were significantly below those of other commer-
cial Ada compiler developments .

April 7, 2010, 17:41, Vienna Lectures, April 2010 © Dines Bjgrner 2010, Fredsvej 11, DK-2840 Holte, Denmark

On a Triptych of Software Development 6
(0. Abstract)
e Domain engineering, in the sense of these lecture slides,
—is offered as a means to help secure that software engineers deliver
the right software —
— where formalisation of relevant stages and steps of software devel-

opment helps secure that the software is right.

e In these lecture slides we shall present the essence of a software
development triptych:
— from domains
— via requirements

— to software design.

April 7, 2010, 17:41, Vienna Lectures, April 2010 © Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark

ot

On a Triptych of Software Development
(0. Abstract)
e The ‘triptych’” approach has been in partial use since the early 1990s,

—including at the United Nations University’s International Insti-
tute for Software Technology (www.iist.unu.edu).

— Young software engineers, while being tutored by UNU-IIST"s sci-
ence & engineering staff,
x domain engineered,
* requirements engineered
« and software designed (incl. implemented)[2002, LNCS 2757]
- trustworthy software systems
- that have met customer expectations —

- with what seems be substantially fewer man-power resources
than usually experienced and within planned time limits.

April 7, 2010, 17:41, Vienna Lectures, April 2010 © Dines Bigmer 2010, Fredsvej 11, DK-2840 Holte, Denmark

On a Triptych of Software Development 7
(0. Abstract)

e We emphasize the two first phases: domain engineering and re-
quirements engineering.

— We show the pragmatic stages of the construction of domain de-
scriptions: the facets of

— intrinsics,

— support technologies,

— rules & regulations,

— script (licenses and contracts),

— management & organisation, and

— human behaviour.

April 7, 2010, 17:41, Vienna Lectures, April 2010 @ Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark

On a Triptych of Software Development 8
(0. Abstract)

e And we show how to construct main facets of requirements pre-
scriptions:
— domain requirements and
— interface requirements.

e [n this respect we focus in particular on the domain requirements
development stages of
— projection,
— instantiation,
— determination and

— extension.

April 7, 2010, 17:41, Vienna Lectures, April 2010 © Dines Bjgmer 2010, Fredsvej 11, DK-2840 Holte, Denmark

On a Triptych of Software Development 10
(0. Abstract)
e To examples of sections 24 we have “added” formalisations.
e These formalisations are in the RAISE specification languages RSL.
e And I have additionally added an extensive appendix,

— An RSL Primer?,

e so that students can also learn RSL, the specification language for a
rigorous approach to industrial software engineering, RAISE.

e The primer contains many examples which expands on the examples
of sections 2-4.

1a small introductory book on a subject

April 7, 2010, 17:41, Vienna Lectures, April 2010 © Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark

On a Triptych of Software Development 9

Lecture Notes for T U Wien, April 2010

e The present version of this document is intended as the “written”
support for my April 2010 lectures at the Technical University of
Vienna. Austria.

— The www.imm.dtu.dk/~db/wien web page gives details.
— From there you can see that Sects. 1-5 covers 5 lectures

—and that Appendix A covers 8 lectures.

April 7, 2010, 17:41, Vienna Lectures, April 2010 © Dines Bigmer 2010, Fredsvej 11, DK-2840 Holte, Denmark

On a Triptych of Software Development 11
(0. Abstract)

“Formalisation—Parametrised” Examples and Primer

e The formalisations of the examples of sections 2-4 could as well be expressed in
one of the other prominent formal specifications languages current at this time
(April 7, 2010), for example:

—Alloy, — VDM-SL or
— Event B, —Z.

e [t could be interesting

— if this little book could entice

— my Alloy, Event B, VDM-SL and Z colleagues

— to “rewrite/reformulate” the formal parts of all examples

— into their main tool of formal expression (besides mathematics).
e [would be very willing to engage in such a project

— having the aim of making my and their notes

— Internet-based and thus publically available.

April 7, 2010, 17:41, Vienna Lectures, April 2010 @ Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark

On a Triptych of Software Development 12
(0. Abstract)

On Studying the Examples

e In order to learn to write poems one must read poetry.
e In order to learn th write formal specifications one must read formal specifications
e We have ourselves found

— that even if students attend pedagogically and didactically exciting and sound
lectures
— they must still, in the quiet of their study room, without listening to Ipod (or
the like),
— carefully study the examples we are presenting.
e And we are presenting many examples, 49 in all |

— To begin with little explanation is given of the formulas.

— Instead we rely on the student’s ability to relate the numbered formulas to the numbered annotation
textst.

— As from Appendix we present a schematic syntax and informal semantics of the spexification language,
RSL, used in these lectures.

e Students are well adviced in studying all examples.

April 7, 2010, 17:41, Vienna Lectures, April 2010 © Dines Bjgrner 2010, Fredsvej 11, DK-2840 Holte, Denmark

On a Triptych of Software Development 14

1. Introduction
1.1. Some Observations

e Current software development,

—when it is pursued in a state-of-the-art,

— but still a conventional manner,

— starts with requirements engineering and

— proceeds to software design.
e Current software development practices

— appears to be focused on processes

— (viz.: “best practices’: tools and techniques’).

April 7, 2010, 17:41, Vienn: © Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark

On a Triptych of Software Development 13

(0. Abstract)

On Course Lectures Based on these Slides

1. Summary of Lectures and Introduction 0-36
2. The Triptych Specification Ontology 37-59
3. Domain Engineering 60-98
4. Requirements Engineering 99-140
5. Entities 313-348
6. RSL Types 163-189 11. RSL Specifications 299-312
7. RSL Values & Operations 190-235 19 Mereology 362-454
8 RSL Logic and A-Caleulus 236259 13. Discussion and Conclusion 141-162
9. RSL Applicativeness 260-275

14. Discussion
10. RSL Imperativeness and

Concurrency (CSP) 276-298 15. Exam
April 7, 2010, 17:41, Vienna Lectures, April 2010 © Dines Bjgrer 2010, Fredsvej 11, DK 2840 Holte, Denmarl Kk
On a Triptych of Software Development 15

(1. Introduction 1.1. Some Observations)

e An aeronautics engineer to be hired by Airbus to their design team
for a next generation aircraft must be pretty well versed in applied
mathematics and in aerodynamics.

e A radio communications engineer to be hired by Ericsson to their
design team for a next generation mobile telephony antennas must
be likewise well versed in applied mathematics and in the physics of
electromagnetic wave propagation in matter.

e And so forth.

April 7, 2010, 17:41, Vienna Lectures, April 2010 @ Dines Bjgrner 2010, Frodsvej 11, DK 2810 Holte, T

On a Triptych of Software Development 16

(1. Introduction 1.1. Some Observations)

e Software engineers hired for the development of software

— for hospitals,

— or for railways,
e know little, if anything, about

— health care,

— respectively rail transportation (scheduling, rostering, signalling,
etc.).

e The Ericsson radio communications engineer can be expected to
understand Maxwell’s Equations, and to base the design of antenna
characteristics on the transformation and instantiation of these equa-
tions.

April 7, 2010, 17:41, Vienna Lectures, April 2010 © Dines Bjgrner 2010, Fredsvej 11, DK-2840 Holte, Denmark

On & Thiptych of Software Development 18
(1. Introduction 1.1. Some Observations)
e The process knowledge and “best” practices of the triptych software
engineering
—is well-founded and takes place in
— the context of established domain model
—and an established, carefully phrased (and formalised) require-

ments model.

e The 24 hour 7 days a week trustworthy operation of many software
systems
—1is so crucial that utmost care must be taken
— to ensure that they

* fulfill all (and only) the customers expectations
* and are correct.

April 7, 2010, 17:41, Vienna

© Dines Bjgrer 2010, Fredsvej 11, DK 2840 Holte, Denmar)

On a Triptych of Software Development 17
(1. Introduction 1.1. Some Observations)

e [t is therefore quite reasonable to expect the domain-specific software
engineer to understand proper, including formal descriptions of their
domains:

— for railways cf. www.railwaydomain.org,

—and for pipelines pipelines.pdf,

— logistics logistics.pdf

—and for container lines container-paper.pdf —
—all at www.imm.dtu.dk/"db/.

e For the Vienna course the above — and other such — examples are
temporarily blocked !

April 7, 2010, 17:41, Vienna Lectures, April 2010 © Dines Bigmer 2010, Fredsvej 11, DK-2840 Holte, Denmark

On a Triptych of Software Development 19
(1. Introduction 1.1. Some Observations)

e Barry Boehm has coined the statement: it is the right software
and the software is right.

e [ixtra care must be taken to ensure those two “rights”.

e And here it is not enough to only follow current “best process, tech-
nique and tool practices”.

April 7, 2010, 17:41, Vien

@ Dines Bjgrner 2010, Frodsvej 11, DK 2840 Holte,

On a Triptych of Software Development 20
(1. Introduction 1.1. Some Observations)
1.2. A Triptych of Software Engineering
Dogma:

e Before we can design software

e we must have a robust understanding of its requirements.
e And before we can prescribe requirements

e we must have a robust understanding of the environment,

— or, as we shall call it, the domain in which the software is to
serve

—and as it is at the time such software is first being contem-
plated.

e In consequence we suggest that software, “ideally”?, be developed in
three phases.

2Section [Item 5] will discuss renditions of “idealism”!

April 7, 2010, 17:41, Vienna Lectures, April 2010

© Dines Bjorner 2010, Fredsve] 11, DK 2810 Holte, Denmark

On a Triptych of Software Development 22
(1. Introduction 1.2. A Triptych of Software Engineering)
e Then a phase of requirements engineering.
— This phase is strongly based on an available, necessary and suffi-
cient domain description.

— Guided by the domain and requirements engineers the require-

ments stakeholders points out which domain description parts
are

*x to be kept (projected) out of the domain requirements,
and for those kept in,

* what instantiations,

% determinations

x and extensions are required.

April 7, 2010, 17:41, Vienna

© Dines Bjgrer 2010, Fredsvej 11, DK 2840 Holte, Denmar)

On a Triptych of Software Development 21
(1. Introduction 1.2. A Triptych of Software Engineering)
e First a phase of domain engineering.

— In this phase a reasonably comprehensive description is constructed
from an analysis of the domain.

— That description, as it evolves, is analysed with respect to incon-
sistencies, conflicts and relative completeness.

— Properties, as stated by domain stakeholders, are proved with
respect to the domain description (DEP).

— This phase is the most important, we think, when it comes to
secure the first of the two “rights”: that we are on our way to
develop the right software.

April 7, 2010, 17:41, Vienna Lectures, April 2010

© Dines Bjorner 2010, Fredsvej 11, DK 2840 Holte, Denmark

On a Triptych of Software Development 23

(1. Introduction 1.2. A Triptych of Software Engineering)

— Similarly the requirements stakeholders, guided by the domain
and requirements engineers, informs as to

« which domain entities: simple, actions, events and behaviours
x are shared between the domain and the machine,

— that is, the hardware and the software being required.

e [n these lectures we shall only very briefly cover aspects of machine
requirements.

April 7, 2010, 17:41, Vien

@ Dines Bjgrner 2010, Frodsvej 11, DK 2840 Holte,

On a Triptych of Software Development 24
(1. Introduction 1.2. A Triptych of Software Engineering)
e And finally a phase of software design.
— We shall not cover this phase in these lectures —

— other than saying this:
* the design is “derived” from the requirements model.

April 7, 2010, 17:41, Vienna Lectures, April 2010 © Dines Bjgrner 2010, Fredsvej 11, DK-2840 Holte, Denmark

On a Triptych of Software Development 26

(1. Introduction 1.2. A Triptych of Software Engineering)

1.3. What are Domains ?

e By a domain we shall here understand a universe of discourse,

—an area of nature subject to laws of physics and study by physi-
cists, or

—an area of human activity subject to its interfaces with other do-
mains and to nature.

e There are other domains — which we shall ignore.

e We shall focus on the human-made domains.

April 7, 2010, 17:41, Vienna Lectures, April 2010

© Dines Bjgrer 2010, Fredsvej 11, DK 2840 Holte, Denmar)

On a Triptych of Software Development 25

April 7, 2010, 17:41, Vienna Lectures, April 2010

(1. Introduction 1.2. A Triptych of Software Engineering)

e To ensure that the software being developed is right, that is, correct,

— we can then rigorously
— argue, informally,
— or formally — test, model check and/or prove,
— that the Software is correct
* with respect to the Requirements

% in the context of the Domain:

*D,S ER.

© Dines Bjorner 2010, Fredsvej 11, DK 2840 Holte, Denmark

On a Triptych of Software Development 27

i1 7, 2010, 17:41, Vien

(1. Introduction 1.3. What are Domains ?)
e “Large scale” examples are
— the financial service industry: banking, insurance, securities
trading, portfolio management, etc.;
— health care: hospitals, clinics, patients, medical staff, etc.;

— transportation: road, rail/train, sea/shipping, and air/aircraft
transport (vehicles, transport nets, etc.);

—oil and gas systems: pumps, pipes, valves, refineries, distri-
bution, etc.

@ Dines Bjgrner 2010, Frodsvej 11, DK 2840 Holte,

On a Triptych of Software Development 28
(1. Introduction 1.3. What are Domains ?)
e “Intermediate scale” examples are

— automobiles: manufacturing or monitoring and control, etc.;
— heating systems;
— heart pumps;
— ete.
e The above explication was “randomised”:
— for some domains, to wit, the financial service industry, we men-
tioned major functionalities,

— for others, to wit, health care, we mentioned major entities.

April 7, 2010, 17:41, Vienna Lectures, April 2010 © Dines Bjgrner 2010, Fredsvej 11, DK-2840 Holte, Denmark

On a Triptych of Software Development 30
(1. Introduction 1.4. What is a Domain Description 7)
e A description is syntax.

e The meaning (semantics) of a domain description is usually a set of
domain models.

e We shall take domain models to be mathematical structures (the-
ories).

e The form of domain descriptions that we shall advocate “come in
pairs”: precise, say, English text alternates with clearly related for-
mula text.

April 7, 2010, 17:41, Vienna Lectures, April 2010

© Dines Bjgrer 2010, Fredsvej 11, DK 2840 Holte, Denmar)

April 7, 2010, 17:41, Vien

On a Triptych of Software Development 29

(1. Introduction 1.3. What are Domains ?)

1.4. What is a Domain Description ?

e By a domain description we understand a description of
—the simple entities,
—the actions,
— the events and
— the behaviours
of the domain, including its interfaces to other domains.

e A domain description describes the domain as it is.

e A domain description does not contain requirements let alone refer-
ences to any software.

April 7, 2010, 17:41, Vienna Lectures, April 2010 © Dines Bigmer 2010, Fredsvej 11, DK-2840 Holte, Denmark

On a Triptych of Software Development 31
(1. Introduction 1.4. What is a Domain Description 7)
1.5. Description Languages
e Besides using
—as precise a subset of a national language, as here English, as
possible, and in enumerated expressions and statements,

—we “pair” such narrative elements with corresponding enumerated
clauses of a formal specification language.

e We shall be using the RAISE Specification Language, RSL in our
formal texts.

e But any of the model-oriented approaches and languages offered by

— Alloy, — VDM and
— Event B, - Z,

should work as well.

@ Dines Bjgrner 2010, Frodsvej 11, DK 2840 Holte,

On a Triptych of Software Development 32 On a Triptych of Software Development 33

(1. Introduction 1.5. Description Languages) (1. Introduction 1.5. Description Languages)

e No single one of the above-mentioned formal specification languages, 1.6. Contributions of these Lectures

however, suffices. e We claim that the major contributions of the Triptych approach to

e Often one has to carefully combine the above with elements of software engineering as presented in this paper are the following:

— (1) the clear identification of domain engineering, or, for some,

—Petri Nets,
its clear separation from requirements engineering;

—CSP: Communicating Sequential Processes,
— (2) the identification and ‘elaboration’ of the pragmatically de-

—MSC: Message Sequence Charts,)) T)
termined domain facets of intrinsics, support technologies, man-

— Statecharts, L . . .
agement and organisation, rules and regulations, scripts (Ii-
—and some temporal logic, for example censes and contracts) and human behaviour whereby ‘elabora-
* either DC: Duration Calculus tion” we mean that we provide principles and techniques for the
* or TLA+. construction of these facet description parts;
On a Triptych of Software Development 34 On a Triptych of Software Development 35
(1. Introduction 1.6. Contributions of these Lectures) (1. Introduction 1.6. Contributions of these Lectures)
— (3) the re-identification and ‘elaboration’ of the concept of busi- and
ness process re-engineering on the basis of the notion of busi- — (5) the identification and ‘elaboration’ of the technically deter-
Nness processes; mined interface requirements facets of shared entity, shared
— (4) the identification and ‘elaboration’ of the technically de- action, shared event and shared behaviour requirements prin-
termined domain requirements facets of projection, instanti- ciples and techniques. We claim that the facets of (2, 3, 4) and
ation, determination, extension and fitting requirements prin- (5) are all novel.

ciples and techniques — and, in particular the “discovery” that
these requirements engineering stages are strongly dependent on
necessary and sufficient domain descriptions ;

April 7, 2010, 17:41, Vienna Lectures, April 2010 © Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark April 7, 2010, 17:41, Vienna Lectures, April 2010 @ Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark

On a Triptych of Software Development 36 On a Triptych of Software Development 36
(1. Introduction 1.6. Contributions of these Lectures) (1. Introduction 1.7. Structure of Lectures)
1.7. Structure of Lectures
e Before going into some details on domain enginering and require-

ments engineering

e cover the basic concepts of specifications, whether domain descrip- End of Lecture 1: SUMMARY & INTRODUCTION|
tions or requirements prescriptions.

e These are:
— entities,
— actions,
— events and

— behaviours.

April 7, 2010, 17:41, Vienna Lectures, April 2010 © Dines Bjgrner 2010, Fredsvej 11, DK-2840 Holte, Denmark April 7, 2010, 17:41, Vienna Lectures, April 2010 © Dines Bigmer 2010, Fredsvej 11, DK-2840 Holte, Denmark

