
On a Triptych of Software Development 0

(-1. )

Start of Lecture 1: SUMMARY & INTRODUCTION

April 7, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 1

(-1. )

FROM DOMAINS TO REQUIREMENTS

April 16–30, 2010 Lectures, TUWien

Dines Bjørner

Fredsvej 11, DK-2840 Holte, Denmark

bjorner@gmail.com, www.imm.dtu.dk/˜db

April 7, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 2

0. Abstract

• We shall present core aspects of the Triptych approach to software
engineering.

• The benefits from deploying this approach are that we both achieve
the right software and software that is right[Boehm 1981]).

• The right software is software that meets all of the customers’ ex-
pectations and only those.

• Software that is right is software that is correct with respect to
specific requirements prescriptions.

April 7, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 3

(0. Abstract )

• Experience has shown that using also the formal techniques part of
the Triptych approach has lead to projects that are on time and at
initially estimated costs.

• To achieve the right software we “prefix” the phase of requirements
engineering with a phase of domain engineering – and these lecture
slides will present core aspects of domain engineering.

• To achieve software that is right we do two things:

– (i) “derive” requirements prescriptions from domain descriptions and software
design from requirements prescriptions – and this these lecture slides will
present core aspects of a somewhat different approach to requirements engi-
neering, and

– (ii) formulate descriptions and prescriptions both informally, in precise, say
English narratives, and formally. The latter is not shown in these lecture
slides.

April 7, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark



On a Triptych of Software Development 4

(0. Abstract )

• The “somewhat” different approach to requirements engineering,
however, and as we shall see, fits reasonably “smoothly” with current
requirements engineering approaches[van Lamsweerde].

• Precursors of the ‘triptych’ approach was used in DDC’s 44 man-year
Ada Compiler development project [Bjørner and Oest].

– That project was on time and at cost,

– and time and cost were significantly below those of other commer-
cial Ada compiler developments .

April 7, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 5

(0. Abstract )

• The ‘triptych’ approach has been in partial use since the early 1990s,

– including at the United Nations University’s International Insti-
tute for Software Technology (www.iist.unu.edu).

– Young software engineers, while being tutored by UNU-IIST’s sci-
ence & engineering staff,

∗ domain engineered,

∗ requirements engineered

∗ and software designed (incl. implemented)[2002, LNCS 2757]

· trustworthy software systems

· that have met customer expectations –

· with what seems be substantially fewer man-power resources
than usually experienced and within planned time limits.

April 7, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 6

(0. Abstract )

• Domain engineering, in the sense of these lecture slides,

– is offered as a means to help secure that software engineers deliver
the right software –

– where formalisation of relevant stages and steps of software devel-
opment helps secure that the software is right.

• In these lecture slides we shall present the essence of a software
development triptych:

– from domains

– via requirements

– to software design.

April 7, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 7

(0. Abstract )

• We emphasize the two first phases: domain engineering and re-
quirements engineering.

– We show the pragmatic stages of the construction of domain de-
scriptions: the facets of

– intrinsics,

– support technologies,

– rules & regulations,

– script (licenses and contracts),

– management & organisation, and

– human behaviour.

April 7, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark



On a Triptych of Software Development 8

(0. Abstract )

• And we show how to construct main facets of requirements pre-
scriptions:

– domain requirements and

– interface requirements.

• In this respect we focus in particular on the domain requirements
development stages of

– projection,

– instantiation,

– determination and

– extension.

April 7, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 9

Lecture Notes for TU Wien, April 2010

• The present version of this document is intended as the “written”
support for my April 2010 lectures at the Technical University of
Vienna. Austria.

– The www.imm.dtu.dk/˜db/wien web page gives details.

– From there you can see that Sects. 1–5 covers 5 lectures

– and that Appendix A covers 8 lectures.

April 7, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 10

(0. Abstract )

• To examples of sections 2–4 we have “added” formalisations.

• These formalisations are in the RAISE specification languages RSL.

• And I have additionally added an extensive appendix,

– An RSL Primer1,

• so that students can also learn RSL, the specification language for a
rigorous approach to industrial software engineering, RAISE.

• The primer contains many examples which expands on the examples
of sections 2–4.

1a small introductory book on a subject

April 7, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 11

(0. Abstract )

“Formalisation–Parametrised” Examples and Primer

• The formalisations of the examples of sections 2–4 could as well be expressed in
one of the other prominent formal specifications languages current at this time
(April 7, 2010), for example:

– Alloy,

– Event B,

– VDM-SL or

– Z.

• It could be interesting

– if this little book could entice

– my Alloy, Event B, VDM-SL and Z colleagues

– to “rewrite/reformulate” the formal parts of all examples

– into their main tool of formal expression (besides mathematics).

• I would be very willing to engage in such a project

– having the aim of making my and their notes

– Internet-based and thus publically available.

April 7, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark



On a Triptych of Software Development 12

(0. Abstract )

On Studying the Examples

• In order to learn to write poems one must read poetry.

• In order to learn th write formal specifications one must read formal specifications

• We have ourselves found

– that even if students attend pedagogically and didactically exciting and sound
lectures

– they must still, in the quiet of their study room, without listening to Ipod (or
the like),

– carefully study the examples we are presenting.

• And we are presenting many examples, 49 in all !

– To begin with little explanation is given of the formulas.

– Instead we rely on the student’s ability to relate the numbered formulas to the numbered annotation

textst.

– As from Appendix we present a schematic syntax and informal semantics of the spexification language,

RSL, used in these lectures.

• Students are well adviced in studying all examples.

April 7, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 13

(0. Abstract )

On Course Lectures Based on these Slides

1. Summary of Lectures and Introduction 0–36

2. The Triptych Specification Ontology 37–59

3. Domain Engineering 60–98

4. Requirements Engineering 99–140

5. Entities 313–348

6. RSL Types 163–189

7. RSL Values & Operations 190–235

8. RSL Logic and λ-Calculus 236–259

9. RSL Applicativeness 260–275

10. RSL Imperativeness and

Concurrency (CSP) 276–298

11. RSL Specifications 299–312

12. Mereology 362–454

13. Discussion and Conclusion 141–162

14. Discussion

15. Exam

April 7, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 14

1. Introduction
1.1. Some Observations

• Current software development,

– when it is pursued in a state-of-the-art,

– but still a conventional manner,

– starts with requirements engineering and

– proceeds to software design.

• Current software development practices

– appears to be focused on processes

– (viz.: “best practices’: tools and techniques’).

April 7, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 15

(1. Introduction 1.1. Some Observations )

• An aeronautics engineer to be hired by Airbus to their design team
for a next generation aircraft must be pretty well versed in applied
mathematics and in aerodynamics.

• A radio communications engineer to be hired by Ericsson to their
design team for a next generation mobile telephony antennas must
be likewise well versed in applied mathematics and in the physics of
electromagnetic wave propagation in matter.

• And so forth.

April 7, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark



On a Triptych of Software Development 16

(1. Introduction 1.1. Some Observations )

• Software engineers hired for the development of software

– for hospitals,

– or for railways,

• know little, if anything, about

– health care,

– respectively rail transportation (scheduling, rostering, signalling,
etc.).

• The Ericsson radio communications engineer can be expected to
understand Maxwell’s Equations, and to base the design of antenna
characteristics on the transformation and instantiation of these equa-
tions.

April 7, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 17

(1. Introduction 1.1. Some Observations )

• It is therefore quite reasonable to expect the domain-specific software
engineer to understand proper, including formal descriptions of their
domains:

– for railways cf. www.railwaydomain.org,

– and for pipelines pipelines.pdf,

– logistics logistics.pdf

– and for container lines container-paper.pdf –

– all at www.imm.dtu.dk/~db/.

• For the Vienna course the above — and other such — examples are
temporarily blocked !

April 7, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 18

(1. Introduction 1.1. Some Observations )

• The process knowledge and “best” practices of the triptych software
engineering

– is well-founded and takes place in

– the context of established domain model

– and an established, carefully phrased (and formalised) require-
ments model.

• The 24 hour 7 days a week trustworthy operation of many software
systems

– is so crucial that utmost care must be taken

– to ensure that they

∗ fulfill all (and only) the customers expectations

∗ and are correct.

April 7, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 19

(1. Introduction 1.1. Some Observations )

• Barry Boehm has coined the statement: it is the right software
and the software is right.

• Extra care must be taken to ensure those two “rights”.

• And here it is not enough to only follow current “best process, tech-
nique and tool practices”.

April 7, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark



On a Triptych of Software Development 20

(1. Introduction 1.1. Some Observations )

1.2. A Triptych of Software Engineering

Dogma:

• Before we can design software

• we must have a robust understanding of its requirements.

• And before we can prescribe requirements

• we must have a robust understanding of the environment,

– or, as we shall call it, the domain in which the software is to

serve

– and as it is at the time such software is first being contem-

plated.

• In consequence we suggest that software, “ideally”2, be developed in
three phases.

2Section [Item 5] will discuss renditions of “idealism”!

April 7, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 21

(1. Introduction 1.2. A Triptych of Software Engineering )

• First a phase of domain engineering.

– In this phase a reasonably comprehensive description is constructed
from an analysis of the domain.

– That description, as it evolves, is analysed with respect to incon-
sistencies, conflicts and relative completeness.

– Properties, as stated by domain stakeholders, are proved with
respect to the domain description (D|=P).

– This phase is the most important, we think, when it comes to
secure the first of the two “rights”: that we are on our way to
develop the right software.

April 7, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 22

(1. Introduction 1.2. A Triptych of Software Engineering )

• Then a phase of requirements engineering.

– This phase is strongly based on an available, necessary and suffi-
cient domain description.

– Guided by the domain and requirements engineers the require-
ments stakeholders points out which domain description parts
are

∗ to be kept (projected) out of the domain requirements,

and for those kept in,

∗ what instantiations,

∗ determinations

∗ and extensions are required.

April 7, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 23

(1. Introduction 1.2. A Triptych of Software Engineering )

– Similarly the requirements stakeholders, guided by the domain
and requirements engineers, informs as to

∗ which domain entities: simple, actions, events and behaviours

∗ are shared between the domain and the machine,

– that is, the hardware and the software being required.

• In these lectures we shall only very briefly cover aspects of machine
requirements.

April 7, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark



On a Triptych of Software Development 24

(1. Introduction 1.2. A Triptych of Software Engineering )

• And finally a phase of software design.

– We shall not cover this phase in these lectures –

– other than saying this:

∗ the design is “derived” from the requirements model.

April 7, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 25

(1. Introduction 1.2. A Triptych of Software Engineering )

• To ensure that the software being developed is right, that is, correct,

– we can then rigorously

– argue, informally,

– or formally – test, model check and/or prove,

– that the Software is correct

∗ with respect to the Requirements

∗ in the context of the Domain:

∗ D,S |= R.

April 7, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 26

(1. Introduction 1.2. A Triptych of Software Engineering )

1.3. What are Domains ?

• By a domain we shall here understand a universe of discourse,

– an area of nature subject to laws of physics and study by physi-
cists, or

– an area of human activity subject to its interfaces with other do-
mains and to nature.

• There are other domains – which we shall ignore.

• We shall focus on the human-made domains.

April 7, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 27

(1. Introduction 1.3. What are Domains ? )

• “Large scale” examples are

– the financial service industry: banking, insurance, securities
trading, portfolio management, etc.;

– health care: hospitals, clinics, patients, medical staff, etc.;

– transportation: road, rail/train, sea/shipping, and air/aircraft
transport (vehicles, transport nets, etc.);

– oil and gas systems: pumps, pipes, valves, refineries, distri-
bution, etc.

April 7, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark



On a Triptych of Software Development 28

(1. Introduction 1.3. What are Domains ? )

• “Intermediate scale” examples are

– automobiles: manufacturing or monitoring and control, etc.;

– heating systems;

– heart pumps;

– etc.

• The above explication was “randomised”:

– for some domains, to wit, the financial service industry, we men-
tioned major functionalities,

– for others, to wit, health care, we mentioned major entities.

April 7, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 29

(1. Introduction 1.3. What are Domains ? )

1.4. What is a Domain Description ?

• By a domain description we understand a description of

– the simple entities,

– the actions,

– the events and

– the behaviours

of the domain, including its interfaces to other domains.

• A domain description describes the domain as it is.

• A domain description does not contain requirements let alone refer-
ences to any software.

April 7, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 30

(1. Introduction 1.4. What is a Domain Description ? )

• A description is syntax.

• The meaning (semantics) of a domain description is usually a set of
domain models.

• We shall take domain models to be mathematical structures (the-
ories).

• The form of domain descriptions that we shall advocate “come in
pairs”: precise, say, English text alternates with clearly related for-
mula text.

April 7, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 31

(1. Introduction 1.4. What is a Domain Description ? )

1.5. Description Languages

• Besides using

– as precise a subset of a national language, as here English, as
possible, and in enumerated expressions and statements,

– we “pair” such narrative elements with corresponding enumerated
clauses of a formal specification language.

• We shall be using the RAISE Specification Language, RSL in our
formal texts.

• But any of the model-oriented approaches and languages offered by

– Alloy,

– Event B,

– VDM and

– Z,

should work as well.

April 7, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark



On a Triptych of Software Development 32

(1. Introduction 1.5. Description Languages )

• No single one of the above-mentioned formal specification languages,
however, suffices.

• Often one has to carefully combine the above with elements of

– Petri Nets,

– CSP: Communicating Sequential Processes,

– MSC: Message Sequence Charts,

– Statecharts,

– and some temporal logic, for example

∗ either DC: Duration Calculus

∗ or TLA+.

April 7, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 33

(1. Introduction 1.5. Description Languages )

1.6. Contributions of these Lectures

• We claim that the major contributions of the Triptych approach to
software engineering as presented in this paper are the following:

– (1) the clear identification of domain engineering, or, for some,
its clear separation from requirements engineering;

– (2) the identification and ‘elaboration’ of the pragmatically de-
termined domain facets of intrinsics, support technologies, man-
agement and organisation, rules and regulations, scripts (li-
censes and contracts) and human behaviour whereby ‘elabora-
tion’ we mean that we provide principles and techniques for the
construction of these facet description parts;

April 7, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 34

(1. Introduction 1.6. Contributions of these Lectures )

– (3) the re-identification and ‘elaboration’ of the concept of busi-
ness process re-engineering on the basis of the notion of busi-
ness processes;

– (4) the identification and ‘elaboration’ of the technically de-
termined domain requirements facets of projection, instanti-
ation, determination, extension and fitting requirements prin-
ciples and techniques – and, in particular the “discovery” that
these requirements engineering stages are strongly dependent on
necessary and sufficient domain descriptions ;

April 7, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 35

(1. Introduction 1.6. Contributions of these Lectures )

and

– (5) the identification and ‘elaboration’ of the technically deter-
mined interface requirements facets of shared entity, shared
action, shared event and shared behaviour requirements prin-
ciples and techniques. We claim that the facets of (2, 3, 4) and
(5) are all novel.

April 7, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark



On a Triptych of Software Development 36

(1. Introduction 1.6. Contributions of these Lectures )

1.7. Structure of Lectures

• Before going into some details on domain enginering and require-
ments engineering

• cover the basic concepts of specifications, whether domain descrip-
tions or requirements prescriptions.

• These are:

– entities,

– actions,

– events and

– behaviours.

April 7, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 36

(1. Introduction 1.7. Structure of Lectures )

End of Lecture 1: SUMMARY & INTRODUCTION

April 7, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark


