A Call-by-Need Lambda Calculus with Scoped Work Decorations

David Sabel and Manfred Schmidt-Schauß

Goethe University Frankfurt am Main, Germany

ATPS 2016, Vienna, Austria

Reasoning on program transformations, like

$$
\operatorname{map} f(\operatorname{map} g x s) \rightarrow \operatorname{map}(\lambda x . f(g x)) x s
$$

Are transformations optimizations / improvements?

- w.r.t. time consumption, i.e. the number of computation steps
- in a core language of Haskell:
- extended polymorphically typed lambda calculus
- with call-by-need evaluation

Some Previous and Related Work

[Moran \& Sands, POPL'99]:
Improvement theory in an untyped call-by-need lambda calculus

- counting based on an abstract machine semantics
- tick-algebra for modular reasoning on improvements
- no concrete technique for list induction proofs
[Hackett \& Hutton, ICFP'14]:
Improvement for worker-wrapper-transformations
- based on Moran \& Sands' tick algebra
- argue for the requirement of a typed language
[Schmidt-Schauß \& S., PPDP'15, IFL'15]:
Improvement in call-by-need lambda calculi: untyped LR, typed LRP
- counting essential reduction steps of a small-step semantics
- core language with seq-operator
- proving list-laws being improvements, using work-decorations

Motivation: Equational Reasoning for List-Expressions

Example:

```
\(s_{1}:=\) letrec \(x s=0: x s\) in \(x s\)
\(s_{2}:=\) letrec \(y=((\lambda x \cdot x) 0), x s=y: y: x s\) in \(x s\)
\(s_{3}:=\) letrec \(y=((\lambda x . x) 0), x s=y:((\lambda x . x) y): x s\) in \(x s\)
\(s_{4}:=\) letrec \(x s=\lambda y . y:(x s y)\) in ( \(x s 0\) )
```

Contextual equivalence: $s \sim_{c} t$ iff \forall contexts $C: C[s] \downarrow \Longleftrightarrow C[t] \downarrow$
Prove $s_{i} \sim_{c} s_{j}$ for all $i, j \in\{1,2,3,4\}$

Motivation: Equational Reasoning for List-Expressions

Example:

```
\(s_{1}:=\) letrec \(x s=0: x s\) in \(x s\)
\(s_{2}:=\) letrec \(y=((\lambda x \cdot x) 0), x s=y: y: x s\) in \(x s\)
\(s_{3}:=\) letrec \(y=((\lambda x . x) 0), x s=y:((\lambda x . x) y): x s\) in \(x s\)
\(s_{4}:=\) letrec \(x s=\lambda y . y:(x s y)\) in ( \(x s 0\) )
```

Contextual equivalence: $s \sim_{c} t$ iff \forall contexts $C: C[s] \downarrow \Longleftrightarrow C[t] \downarrow$
Prove $s_{i} \sim_{c} s_{j}$ for all $i, j \in\{1,2,3,4\}$

- For list-expressions r_{1}, r_{2} define:
$r_{1} R r_{2}$ iff $r_{1} \sim_{c}\left(h_{1}: t_{1}\right), r_{2} \sim_{c}\left(h_{2}: t_{2}\right)$ such that $h_{1} \sim_{c} h_{2}$ and $t_{1} R t_{2}$
- Principle of co-induction: $r_{1} \operatorname{gfp}(R) r_{2} \Longrightarrow r_{1} \sim_{c} r_{2}$

Motivation: Equational Reasoning for List-Expressions

Example:

```
s1 := letrec }xs=0:xs\mathrm{ in }x
s}\mp@subsup{\mp@code{2}}{2}{:= letrec y=((\lambdax.x) 0), xs=y:y:xs in xs
s3 := letrec }y=((\lambdax.x)0),xs=y:((\lambdax.x) y):xs in x
s
```

Contextual equivalence: $s \sim_{c} t$ iff \forall contexts $C: C[s] \downarrow \Longleftrightarrow C[t] \downarrow$
Prove $s_{i} \sim_{c} s_{j}$ for all $i, j \in\{1,2,3,4\}$

- For list-expressions r_{1}, r_{2} define:
$r_{1} R r_{2}$ iff $r_{1} \sim_{c}\left(h_{1}: t_{1}\right), r_{2} \sim_{c}\left(h_{2}: t_{2}\right)$ such that $h_{1} \sim_{c} h_{2}$ and $t_{1} R t_{2}$
- Principle of co-induction: $r_{1} \operatorname{gfp}(R) r_{2} \Longrightarrow r_{1} \sim_{c} r_{2}$

Motivation: Equational Reasoning for List-Expressions

Example:

```
s1 ~
s}2 := letrec y=((\lambdax.x) 0), xs=y:y:xs in xs
s3 := letrec }y=((\lambdax.x)0),xs=y:((\lambdax.x)y):xs in x
s
```

Contextual equivalence: $s \sim_{c} t$ iff \forall contexts $C: C[s] \downarrow \Longleftrightarrow C[t] \downarrow$
Prove $s_{i} \sim_{c} s_{j}$ for all $i, j \in\{1,2,3,4\}$

- For list-expressions r_{1}, r_{2} define:
$r_{1} R r_{2}$ iff $r_{1} \sim_{c}\left(h_{1}: t_{1}\right), r_{2} \sim_{c}\left(h_{2}: t_{2}\right)$ such that $h_{1} \sim_{c} h_{2}$ and $t_{1} R t_{2}$
- Principle of co-induction: $r_{1} \operatorname{gfp}(R) r_{2} \Longrightarrow r_{1} \sim_{c} r_{2}$

Motivation: Equational Reasoning for List-Expressions

Example:

```
\(s_{1} \sim_{c}\) 0:0:(letrec \(x s=0: x s\) in \(\left.x s\right)\)
\(s_{2}:=\) letrec \(y=((\lambda x \cdot x) 0), x s=y: y: x s\) in \(x s\)
\(s_{3}:=\) letrec \(y=((\lambda x \cdot x) 0), x s=y:((\lambda x \cdot x) y): x s\) in \(x s\)
\(s_{4}:=\) letrec \(x s=\lambda y . y:(x s y)\) in ( \(x s 0\) )
```

Contextual equivalence: $s \sim_{c} t$ iff \forall contexts $C: C[s] \downarrow \Longleftrightarrow C[t] \downarrow$
Prove $s_{i} \sim_{c} s_{j}$ for all $i, j \in\{1,2,3,4\}$

- For list-expressions r_{1}, r_{2} define:
$r_{1} R r_{2}$ iff $r_{1} \sim_{c}\left(h_{1}: t_{1}\right), r_{2} \sim_{c}\left(h_{2}: t_{2}\right)$ such that $h_{1} \sim_{c} h_{2}$ and $t_{1} R t_{2}$
- Principle of co-induction: $r_{1} \operatorname{gfp}(R) r_{2} \Longrightarrow r_{1} \sim_{c} r_{2}$

Motivation: Equational Reasoning for List-Expressions

Example:

```
\(s_{1} \sim_{c} 0: 0:(\) letrec \(x s=0: x s\) in \(x s)\)
\(s_{2} \sim_{c} 0: 0:(\) letrec \(x s=0: 0: x s\) in \(x s)\)
\(s_{3}:=\) letrec \(y=((\lambda x . x) 0), x s=y:((\lambda x . x) y): x s\) in \(x s\)
\(s_{4}:=\) letrec \(x s=\lambda y . y:(x s y)\) in \((x s 0)\)
```

Contextual equivalence: $s \sim_{c} t$ iff \forall contexts $C: C[s] \downarrow \Longleftrightarrow C[t] \downarrow$
Prove $s_{i} \sim_{c} s_{j}$ for all $i, j \in\{1,2,3,4\}$

- For list-expressions r_{1}, r_{2} define:
$r_{1} R r_{2}$ iff $r_{1} \sim_{c}\left(h_{1}: t_{1}\right), r_{2} \sim_{c}\left(h_{2}: t_{2}\right)$ such that $h_{1} \sim_{c} h_{2}$ and $t_{1} R t_{2}$
- Principle of co-induction: $r_{1} \operatorname{gfp}(R) r_{2} \Longrightarrow r_{1} \sim_{c} r_{2}$

Motivation: Equational Reasoning for List-Expressions

Example:

```
\(s_{1} \sim_{c} 0: 0:(\) letrec \(x s=0: x s\) in \(x s)\)
\(s_{2} \sim_{c} 0: 0:(\) letrec \(x s=0: 0: x s\) in \(x s)\)
\(s_{3}:=\) letrec \(y=((\lambda x . x) 0), x s=y:((\lambda x . x) y): x s\) in \(x s\)
\(s_{4}:=\) letrec \(x s=\lambda y . y:(x s y)\) in \((x s 0)\)
```

Contextual equivalence: $s \sim_{c} t$ iff \forall contexts $C: C[s] \downarrow \Longleftrightarrow C[t] \downarrow$
Prove $s_{i} \sim_{c} s_{j}$ for all $i, j \in\{1,2,3,4\}$

- For list-expressions r_{1}, r_{2} define:
$r_{1} R r_{2}$ iff $r_{1} \sim_{c}\left(h_{1}: t_{1}\right), r_{2} \sim_{c}\left(h_{2}: t_{2}\right)$ such that $h_{1} \sim_{c} h_{2}$ and $t_{1} R t_{2}$
- Principle of co-induction: $r_{1} \operatorname{gfp}(R) r_{2} \Longrightarrow r_{1} \sim_{c} r_{2}$

Motivation: Equational Reasoning for List-Expressions

Example:

$s_{1} \sim_{c} 0: 0:($ letrec $x s=0: x s$ in $x s)$
$s_{2} \sim_{c} 0: 0:($ letrec $x s=0: 0: x s$ in $x s)$
$s_{3} \sim_{c} 0: 0:($ letrec $x s=0: 0: x s$ in $x s)$
$s_{4}:=$ letrec $x s=\lambda y \cdot y:(x s y)$ in $(x s 0)$

Contextual equivalence: $s \sim_{c} t$ iff \forall contexts $C: C[s] \downarrow \Longleftrightarrow C[t] \downarrow$
Prove $s_{i} \sim_{c} s_{j}$ for all $i, j \in\{1,2,3,4\}$

- For list-expressions r_{1}, r_{2} define:
$r_{1} R r_{2}$ iff $r_{1} \sim_{c}\left(h_{1}: t_{1}\right), r_{2} \sim_{c}\left(h_{2}: t_{2}\right)$ such that $h_{1} \sim_{c} h_{2}$ and $t_{1} R t_{2}$
- Principle of co-induction: $r_{1} \operatorname{gfp}(R) r_{2} \Longrightarrow r_{1} \sim_{c} r_{2}$

Motivation: Equational Reasoning for List-Expressions

Example:

$s_{1} \sim_{c} 0: 0:($ letrec $x s=0: x s$ in $x s)$
$s_{2} \sim_{c} 0: 0:($ letrec $x s=0: 0: x s$ in $x s)$
$s_{3} \sim_{c} 0: 0:($ letrec $x s=0: 0: x s$ in $x s)$
$s_{4}:=$ letrec $x s=\lambda y \cdot y:(x s y)$ in $(x s 0)$

Contextual equivalence: $s \sim_{c} t$ iff \forall contexts $C: C[s] \downarrow \Longleftrightarrow C[t] \downarrow$
Prove $s_{i} \sim_{c} s_{j}$ for all $i, j \in\{1,2,3,4\}$

- For list-expressions r_{1}, r_{2} define:
$r_{1} R r_{2}$ iff $r_{1} \sim_{c}\left(h_{1}: t_{1}\right), r_{2} \sim_{c}\left(h_{2}: t_{2}\right)$ such that $h_{1} \sim_{c} h_{2}$ and $t_{1} R t_{2}$
- Principle of co-induction: $r_{1} \operatorname{gfp}(R) r_{2} \Longrightarrow r_{1} \sim_{c} r_{2}$

Motivation: Equational Reasoning for List-Expressions

Example:

```
s1 ~
s}\mp@subsup{\mp@code{~}}{c}{c}0:0:(\mathrm{ letrec }xs=0:0:xs in xs)
s3 ~
s4 ~}\mp@subsup{c}{c}{0:0:(letrec xs=\lambday.y:(xs y) in (xs 0))
```

Contextual equivalence: $s \sim_{c} t$ iff \forall contexts $C: C[s] \downarrow \Longleftrightarrow C[t] \downarrow$
Prove $s_{i} \sim_{c} s_{j}$ for all $i, j \in\{1,2,3,4\}$

- For list-expressions r_{1}, r_{2} define:
$r_{1} R r_{2}$ iff $r_{1} \sim_{c}\left(h_{1}: t_{1}\right), r_{2} \sim_{c}\left(h_{2}: t_{2}\right)$ such that $h_{1} \sim_{c} h_{2}$ and $t_{1} R t_{2}$
- Principle of co-induction: $r_{1} \operatorname{gfp}(R) r_{2} \Longrightarrow r_{1} \sim_{c} r_{2}$

Motivation: Equational Reasoning for List-Expressions

Example:

$s_{1} \sim_{c} 0: 0:($ letrec $x s=0: x s$ in $x s)$
$s_{2} \sim_{c} 0: 0:($ letrec $x s=0: 0: x s$ in $x s)$
$s_{3} \sim_{c} 0: 0:($ letrec $x s=0: 0: x s$ in $x s)$
$s_{4} \sim_{c} 0: 0:($ letrec $x s=\lambda y \cdot y:(x s y)$ in $(x s 0))$
further processing with the tails indeed shows $s_{i} \sim_{c} s_{j}$

Contextual equivalence: $s \sim_{c} t$ iff \forall contexts $C: C[s] \downarrow \Longleftrightarrow C[t] \downarrow$
Prove $s_{i} \sim_{c} s_{j}$ for all $i, j \in\{1,2,3,4\}$

- For list-expressions r_{1}, r_{2} define:
$r_{1} R r_{2}$ iff $r_{1} \sim_{c}\left(h_{1}: t_{1}\right), r_{2} \sim_{c}\left(h_{2}: t_{2}\right)$ such that $h_{1} \sim_{c} h_{2}$ and $t_{1} R t_{2}$
- Principle of co-induction: $r_{1} \operatorname{gfp}(R) r_{2} \Longrightarrow r_{1} \sim_{c} r_{2}$

In [Schmidt-Schauß \& S., IFL 2015]:

- analogous reasoning,
- but w.r.t. improvement and cost-equivalence

Improvement and Cost-Equivalence

Improvement:
$s \preceq t$ iff $s \sim_{c} t$ and \forall closing contexts $C: r \ln (C[s]) \leq \operatorname{rln}(C[t])$ where $r \ln (\cdot)$ is the reduction length, counting essential reduction steps

Cost-Equivalence:
$s \approx t$ iff $s \preceq t$ and $t \preceq s$

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:
$s_{1}:=$ letrec $x s=0: x s$ in $x s$
$s_{2}:=$ letrec $y=((\lambda x . x) 0), x s=y: y: x s$ in $x s$
$s_{3}:=$ letrec $y=((\lambda x . x) 0), x s=y:((\lambda x . x) y): x s$ in $x s$
$s_{4}:=$ letrec $x s=\lambda y . y:(x s y)$ in $(x s 0)$

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:
$s_{1}:=$ letrec $x s=0: x s$ in $x s$
$s_{2}:=$ letrec $y=((\lambda x . x) 0), x s=y: y: x s$ in $x s$
$s_{3}:=$ letrec $y=((\lambda x . x) 0), x s=y:((\lambda x . x) y): x s$ in $x s$
$s_{4}:=$ letrec $x s=\lambda y . y:(x s y)$ in $(x s 0)$

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:

```
\(s_{1} \approx 0: 0:(\) letrec \(x s=0: x s\) in \(x s)\)
\(s_{2}:=\) letrec \(y=((\lambda x \cdot x) 0), x s=y: y: x s\) in \(x s\)
\(s_{3}:=\) letrec \(y=((\lambda x . x) 0), x s=y:((\lambda x . x) y): x s\) in \(x s\)
\(s_{4}:=\) letrec \(x s=\lambda y . y:(x s y)\) in \((x s 0)\)
```


Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:

$$
\begin{aligned}
& s_{1} \approx 0: 0:(\text { letrec } x s=0: x s \text { in } x s) \\
& s_{2}:=\text { letrec } y=((\lambda x \cdot x) 0), x s=y: y: x s \text { in } x s \\
& s_{3}:=\text { letrec } y=((\lambda x . x) 0), x s=y:((\lambda x . x) y): x s \text { in } x s \\
& s_{4}:=\text { letrec } x s=\lambda y . y:(x s y) \text { in }(x s 0)
\end{aligned}
$$

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:

```
\(s_{1} \approx 0: 0:(\) letrec \(x s=0: x s\) in \(x s)\)
\(s_{2} \approx\) letrec \(y=0^{[1]}, x s=y: y: x s\) in \(x s\)
\(s_{3}:=\) letrec \(y=((\lambda x . x) 0), x s=y:((\lambda x . x) y): x s\) in \(x s\)
\(s_{4}:=\) letrec \(x s=\lambda y . y:(x s y)\) in ( \(x s 0\) )
```

Work-decorations to keep track of rln-work:

- ${ }^{[n]}:=n$ essential reduction steps

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:
$s_{1} \approx 0: 0:($ letrec $x s=0: x s$ in $x s)$
$s_{2} \approx$ letrec $x s=0^{[a \mapsto 1]}: 0^{[a \mapsto 1]}: x s$ in $x s$
$s_{3}:=$ letrec $y=((\lambda x . x) 0), x s=y:((\lambda x . x) y): x s$ in $x s$
$s_{4}:=$ letrec $x s=\lambda y . y:(x s y)$ in ($x s 0$)

Work-decorations to keep track of rln-work:

- ${ }^{[n]}:=n$ essential reduction steps
- $[a \mapsto n]:=n$ shared essential reduction steps (label a marks the sharing)

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:

```
\(s_{1} \approx 0: 0:(\) letrec \(x s=0: x s\) in \(x s)\)
\(s_{2} \approx 0^{[a \mapsto 1]}: 0^{[a \mapsto 1]}:\left(\right.\) letrec \(x s=0^{[a \mapsto 1]}: 0^{[a \mapsto 1]}: x s\) in \(\left.x s\right)\)
\(s_{3}:=\) letrec \(y=((\lambda x . x) 0), x s=y:((\lambda x . x) y): x s\) in \(x s\)
\(s_{4}:=\) letrec \(x s=\lambda y . y:(x s y)\) in ( \(x s 0\) )
```

Work-decorations to keep track of rln-work:

- ${ }^{[n]}:=n$ essential reduction steps
- ${ }^{[a \mapsto n]}:=n$ shared essential reduction steps (label a marks the sharing)

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:

```
\(s_{1} \approx 0: 0:(\) letrec \(x s=0: x s\) in \(x s)\)
\(s_{2} \approx 0^{[a \mapsto 1]}: 0^{[a \mapsto 1]}:\left(\right.\) letrec \(x s=0^{[a \mapsto 1]}: 0^{[a \mapsto 1]}: x s\) in \(\left.x s\right)\)
\(s_{3}:=\) letrec \(y=((\lambda x . x) 0), x s=y:((\lambda x . x) y): x s\) in \(x s\)
\(s_{4}:=\) letrec \(x s=\lambda y . y:(x s y)\) in ( \(x s 0\) )
```

Work-decorations to keep track of rln-work:

- ${ }^{[n]}:=n$ essential reduction steps
- $[a \mapsto n]:=n$ shared essential reduction steps (label a marks the sharing)

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:

```
\(s_{1} \approx 0: 0:(\) letrec \(x s=0: x s\) in \(x s)\)
\(s_{2} \approx 0^{[a \mapsto 1]}: 0^{[a \mapsto 1]}:\left(\right.\) letrec \(x s=0^{[a \mapsto 1]}: 0^{[a \mapsto 1]}: x s\) in \(\left.x s\right)\)
\(s_{3} \approx\) letrec \(y=0^{[1]}, x s=y:((\lambda x . x) y): x s\) in \(x s\)
\(s_{4}:=\) letrec \(x s=\lambda y . y:(x s y)\) in \((x s 0)\)
```

Work-decorations to keep track of rln-work:

- ${ }^{[n]}:=n$ essential reduction steps
- ${ }^{[a \mapsto n]}:=n$ shared essential reduction steps (label a marks the sharing)

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:

```
\(s_{1} \approx 0: 0:(\) letrec \(x s=0: x s\) in \(x s)\)
\(s_{2}\)
\(s_{3} \approx\) letrec \(x s=0^{[a \mapsto 1]}:\left((\lambda x . x) 0^{[a \mapsto 1]}\right): x s\) in \(x s\)
\(s_{4}:=\) letrec \(x s=\lambda y . y:(x s y)\) in \((x s 0)\)
```

Work-decorations to keep track of rln-work:

- ${ }^{[n]}:=n$ essential reduction steps
- ${ }^{[a \mapsto n]}:=n$ shared essential reduction steps (label a marks the sharing)

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:
$s_{1} \approx 0: 0:($ letrec $x s=0: x s$ in $x s)$
$s_{2} \approx 0^{[a \mapsto 1]}: 0^{[a \mapsto 1]}:\left(\right.$ letrec $x s=0^{[a \mapsto 1]}: 0^{[a \mapsto 1]}: x s$ in $\left.x s\right)$
$s_{3} \approx$ letrec $x s=0^{[a \mapsto 1]}:\left(0^{[a \mapsto 1]}\right)^{[1]}: x s$ in $x s$
$s_{4}:=$ letrec $x s=\lambda y . y:(x s y)$ in ($x s 0$)

Work-decorations to keep track of rln-work:

- ${ }^{[n]}:=n$ essential reduction steps
- $[a \mapsto n]:=n$ shared essential reduction steps (label a marks the sharing)

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:

```
\(s_{1} \approx 0: 0:(\) letrec \(x s=0: x s\) in \(x s)\)
\(s_{2}\)
\(s_{3} \approx 0^{[a \mapsto 1]}: 0^{[a \mapsto 1, b \mapsto 1]}:\left(\right.\) letrec \(x s=0^{[a \mapsto 1]}: 0^{[a \mapsto 1, b \mapsto 1]}: x s\) in \(\left.x s\right)\)
\(s_{4}:=\) letrec \(x s=\lambda y . y:(x s y)\) in \((x s 0)\)
```

Work-decorations to keep track of rln-work:

- ${ }^{[n]}:=n$ essential reduction steps
- ${ }^{[a \mapsto n]}:=n$ shared essential reduction steps (label a marks the sharing)

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:
$s_{1} \approx 0: 0:($ letrec $x s=0: x s$ in $x s)$
s_{2}
$\approx 0^{[a \mapsto 1]}: 0^{[a \mapsto 1]}:\left(\right.$ letrec $x s=0^{[a \mapsto 1]}: 0^{[a \mapsto 1]}: x s$ in $\left.x s\right)$
$s_{3} \approx 0^{[a \mapsto 1]}:\left(0^{[a \mapsto 1, b \mapsto 1]}\right):\left(\right.$ letrec $x s=0^{[a \mapsto 1]}: 0^{[a \mapsto 1, b \mapsto 1]}: x s$ in $\left.x s\right)$
$s_{4}:=$ letrec $x s=\lambda y . y:(x s y)$ in ($x s$ 0)

Work-decorations to keep track of rln-work:

- ${ }^{[n]}:=n$ essential reduction steps
- $[a \mapsto n]:=n$ shared essential reduction steps (label a marks the sharing)

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:

```
\(s_{1} \approx 0: 0:(\) letrec \(x s=0: x s\) in \(x s)\)
\(s_{2} \approx 0^{[a \mapsto 1]}: 0^{[a \mapsto 1]}:\left(\right.\) letrec \(x s=0^{[a \mapsto 1]}: 0^{[a \mapsto 1]}: x s\) in \(\left.x s\right)\)
\(s_{3} \approx 0^{[a \mapsto 1]}:\left(0^{[a \mapsto 1, b \mapsto 1]}\right):\left(\right.\) letrec \(x s=0^{[a \mapsto 1]}: 0^{[a \mapsto 1, b \mapsto 1]}: x s\) in \(\left.x s\right)\)
\(s_{4} \approx\) letrec \(x s=\lambda y . y:(x s y)\) in \(((\lambda y . y:(x s y)) 0)\)
```

Work-decorations to keep track of rln-work:

- ${ }^{[n]}:=n$ essential reduction steps
- ${ }^{[a \mapsto n]}:=n$ shared essential reduction steps (label a marks the sharing)

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:
$s_{1} \approx 0: 0:($ letrec $x s=0: x s$ in $x s)$
$s_{2} \approx 0^{[a \mapsto 1]}: 0^{[a \mapsto 1]}:\left(\right.$ letrec $x s=0^{[a \mapsto 1]}: 0^{[a \mapsto 1]}: x s$ in $\left.x s\right)$
$s_{3} \approx 0^{[a \mapsto 1]}:\left(0^{[a \mapsto 1, b \mapsto 1]}\right):\left(\right.$ letrec $x s=0^{[a \mapsto 1]}: 0^{[a \mapsto 1, b \mapsto 1]}: x s$ in $\left.x s\right)$
$s_{4} \approx \operatorname{letrec} x s=\lambda y \cdot y:(x s y)$ in $(0:(x s 0))^{[1]}$

Work-decorations to keep track of rln-work:

- ${ }^{[n]}:=n$ essential reduction steps
- ${ }^{[a \mapsto n]}:=n$ shared essential reduction steps
(label a marks the sharing)

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:
$s_{1} \approx 0: 0:($ letrec $x s=0: x s$ in $x s)$
$s_{2} \approx 0^{[a \mapsto 1]}: 0^{[a \mapsto 1]}:\left(\right.$ letrec $x s=0^{[a \mapsto 1]}: 0^{[a \mapsto 1]}: x s$ in $\left.x s\right)$
$s_{3} \approx 0^{[a \mapsto 1]}:\left(0^{[a \mapsto 1, b \mapsto 1]}\right):\left(\right.$ letrec $x s=0^{[a \mapsto 1]}: 0^{[a \mapsto 1, b \mapsto 1]}: x s$ in $\left.x s\right)$
$s_{4} \approx \operatorname{letrec} x s=\lambda y \cdot y:(x s y)$ in $(0:((\lambda y \cdot y:(x s y)) 0))^{[1]}$

Work-decorations to keep track of rln-work:

- ${ }^{[n]}:=n$ essential reduction steps
- ${ }^{[a \mapsto n]}:=n$ shared essential reduction steps
(label a marks the sharing)

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:
$s_{1} \approx 0: 0:($ letrec $x s=0: x s$ in $x s)$
$s_{2} \approx 0^{[a \mapsto 1]}: 0^{[a \mapsto 1]}:\left(\right.$ letrec $x s=0^{[a \mapsto 1]}: 0^{[a \mapsto 1]}: x s$ in $\left.x s\right)$
$s_{3} \approx 0^{[a \mapsto 1]}:\left(0^{[a \mapsto 1, b \mapsto 1]}\right):\left(\right.$ letrec $x s=0^{[a \mapsto 1]}: 0^{[a \mapsto 1, b \mapsto 1]}: x s$ in $\left.x s\right)$
$s_{4} \approx \operatorname{letrec} x s=\lambda y \cdot y:(x s y)$ in $\left(0:(0:(x s 0))^{[1]}\right)^{[1]}$

Work-decorations to keep track of rln-work:

- ${ }^{[n]}:=n$ essential reduction steps
- ${ }^{[a \mapsto n]}:=n$ shared essential reduction steps
(label a marks the sharing)

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:
$s_{1} \approx 0: 0:($ letrec $x s=0: x s$ in $x s)$
$s_{2} \approx 0^{[a \mapsto 1]}: 0^{[a \mapsto 1]}:\left(\right.$ letrec $x s=0^{[a \mapsto 1]}: 0^{[a \mapsto 1]}: x s$ in $\left.x s\right)$
$s_{3} \approx 0^{[a \mapsto 1]}:\left(0^{[a \mapsto 1, b \mapsto 1]}\right):\left(\right.$ letrec $x s=0^{[a \mapsto 1]}: 0^{[a \mapsto 1, b \mapsto 1]}: x s$ in $\left.x s\right)$
$s_{4} \approx\left(0:(0: \text { letrec } x s=\lambda y \cdot y:(x s y) \text { in }(x s 0))^{[1]}\right)^{[1]}$

Work-decorations to keep track of rln-work:

- ${ }^{[n]}:=n$ essential reduction steps
- ${ }^{[a \mapsto n]}:=n$ shared essential reduction steps
(label a marks the sharing)

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:

```
\(s_{1} \approx 0: 0:(\) letrec \(x s=0: x s\) in \(x s)\)
\(s_{2} \approx 0^{[a \mapsto 1]}: 0^{[a \mapsto 1]}:\left(\right.\) letrec \(x s=0^{[a \mapsto 1]}: 0^{[a \mapsto 1]}: x s\) in \(\left.x s\right)\)
\(s_{3} \approx 0^{[a \mapsto 1]}:\left(0^{[a \mapsto 1, b \mapsto 1]}\right):\left(\right.\) letrec \(x s=0^{[a \mapsto 1]}: 0^{[a \mapsto 1, b \mapsto 1]}: x s\) in \(\left.x s\right)\)
\(s_{4} \approx\left(0:(0: \text { letrec } x s=\lambda y \cdot y:(x s y) \text { in }(x s 0))^{[1]}\right)^{[1]}\)
```

further processing shows $s_{1} \preceq s_{2} \preceq s_{3} \preceq s_{4}$

Work-decorations to keep track of rln-work:

- ${ }^{[n]}:=n$ essential reduction steps
- ${ }^{[a \mapsto n]}:=n$ shared essential reduction steps
(label a marks the sharing)

Motivation: Reasoning including Resources

Equational reasoning w.r.t. cost equivalence:

```
\(s_{1} \approx 0: 0:(\) letrec \(x s=0: x s\) in \(x s)\)
\(s_{2} \approx 0^{[a \mapsto 1]}: 0^{[a \mapsto 1]}:\left(\right.\) letrec \(x s=0^{[a \mapsto 1]}: 0^{[a \mapsto 1]}: x s\) in \(\left.x s\right)\)
\(s_{3} \approx 0^{[a \mapsto 1]}:\left(0^{[a \mapsto 1, b \mapsto 1]}\right):\left(\right.\) letrec \(x s=0^{[a \mapsto 1]}: 0^{[a \mapsto 1, b \mapsto 1]}: x s\) in \(\left.x s\right)\)
\(s_{4} \approx\left(0:(0: \text { letrec } x s=\lambda y \cdot y:(x s y) \text { in }(x s 0))^{[1]}\right)^{[1]}\)
```

further processing shows $s_{1} \preceq s_{2} \preceq s_{3} \preceq s_{4}$

Work-decorations to keep track of rln-work:

- ${ }^{[n]}:=n$ essential reduction steps
- ${ }^{[a \mapsto n]}:=n$ shared essential reduction steps
(label a marks the sharing)

Goal of current paper:
 Define and analyze the exact semantics of $[a \mapsto n]$

Our Contribution

- Exact semantics of (shared) work-decorations ${ }^{[a \mapsto n]}$ (and ${ }^{[n]}$)
- Prove computation rules, like $S\left[s^{[a \mapsto n]}, t^{[a \mapsto n]}\right] \preceq S[s, t]^{[n]}$
- The notation ${ }^{[a \mapsto n]}$ is ambiguous, e.g. in
letrec $x=\lambda y . s^{[a \mapsto n]}$ in $C[x]$ when inlining the binding for x :
Possibilities:
- letrec $x=\lambda y . s^{[a \mapsto n]}$ in $C\left[\lambda y . s^{[a \mapsto n]}\right]$
- letrec $x=\lambda y . s^{[a \mapsto n]}$ in $C\left[\lambda y . s^{[b \mapsto n]}\right]$ (where b is fresh)
- Exact semantics of (shared) work-decorations ${ }^{[a \mapsto n]}$ (and ${ }^{[n]}$)
- Prove computation rules, like $S\left[s^{[a \mapsto n]}, t^{[a \mapsto n]}\right] \preceq S[s, t]^{[n]}$
- The notation ${ }^{[a \mapsto n]}$ is ambiguous, e.g. in letrec $x=\lambda y . s^{[a \mapsto n]}$ in $C[x]$ when inlining the binding for x :

Possibilities:

- letrec $x=\lambda y . s^{[a \mapsto n]}$ in $C\left[\lambda y . s^{[a \mapsto n]}\right]$
- letrec $x=\lambda y . s^{[a \mapsto n]}$ in $C\left[\lambda y . s^{[b \mapsto n]}\right]$ (where b is fresh)
- We change the notation to add a scoping for work-decorations:

Instead of ${ }^{[a \mapsto n]}$ we use a binding $a:=n$ and a label ${ }^{[a]}$

Our Contribution

- Exact semantics of (shared) work-decorations ${ }^{[a \mapsto n]}$ (and ${ }^{[n]}$)
- Prove computation rules, like $S\left[s^{[a \mapsto n]}, t^{[a \mapsto n]}\right] \preceq S[s, t]^{[n]}$
- The notation ${ }^{[a \mapsto n]}$ is ambiguous, e.g. in letrec $x=\lambda y . s^{[a \mapsto n]}$ in $C[x]$ when inlining the binding for x :

Possibilities:

- letrec $x=\lambda y . s^{[a \mapsto n]}$ in $C\left[\lambda y . s^{[a \mapsto n]}\right]$
- letrec $x=\lambda y . s^{[a \mapsto n]}$ in $C\left[\lambda y . s^{[b \mapsto n]}\right]$ (where b is fresh)
- We change the notation to add a scoping for work-decorations:

Instead of ${ }^{[a \mapsto n]}$ we use a binding $a:=n$ and a label ${ }^{[a]}$

- Examples:
- letrec $a:=n, x=\lambda y . s^{[a]}$ in $C[x]$
- letrec $x=\lambda y$.(letrec $a:=n$ in $\left.s^{[a]}\right)$ in $C[x]$

The Calculus LRPw

LRPw extends LRP by work decorations

Types:

$$
\begin{array}{ll}
\tau \in \operatorname{Typ} & ::=A\left|\left(\tau_{1} \rightarrow \tau_{2}\right)\right| K \tau_{1} \ldots \tau_{\operatorname{ar}(K)} \\
\rho \in P T y p & ::=\tau \mid \lambda A . \rho
\end{array}
$$

Expressions:

$$
\begin{aligned}
& u \in \operatorname{PExpr}_{F}::=\Lambda A_{1} \ldots . \Lambda A_{k} \cdot \lambda x . s \\
& s, t \in \operatorname{Expr}_{F}::=u|x:: \rho|(s \tau)|(s t)|(\operatorname{seq} s t) \\
& \text { (letrec bind }{ }_{1}, \ldots, \text { bind }_{m} \text { in } t \text {) } \\
& \left(c_{K, i}:: \tau s_{1} \ldots s_{\mathrm{ar}\left(c_{K, i}\right)}\right) \\
& \left(\operatorname{case}_{K} s \text { of }\left(\text { pat }_{K, 1}->t_{1}\right) \ldots\left(\text { pat }_{K,\left|D_{K}\right|}->t_{\left|D_{K}\right|}\right)\right) \\
& s^{[a]} \text {, where } a \text { is a label } \\
& \text { pat }_{K, i} \\
& ::=\left(c_{K, i}:: \tau x_{1}:: \tau_{1} \ldots x_{\operatorname{ar}\left(c_{K, i}\right)}:: \tau_{\operatorname{ar}\left(c_{K, i}\right)}\right) \\
& \operatorname{bind}_{i} \\
& ::=x_{i}:: \rho_{i}=s_{i} \mid a:=n \text {, where } n \in \mathbb{N} \text { and } a \text { is a label }
\end{aligned}
$$

The Calculus LRPw: Operational Semantics

Normal Order Reduction $\xrightarrow{\text { LRPw }}$

- Small-step reduction relation
- Call-by-need strategy using reduction contexts R
- Several reduction rules, e.g.
(Ibeta) $((\lambda x . s) t) \rightarrow$ letrec $x=t$ in s
(cp-in) letrec $x_{1}=(\lambda y . t),\left\{x_{i}=x_{i-1}\right\}_{i=2}^{m}$, Env in $C\left[x_{m}\right]$
\rightarrow letrec $x_{1}=(\lambda y . t),\left\{x_{i}=x_{i-1}\right\}_{i=2}^{m}$, Env in $C[(\lambda y . t)]$
(seq-c) (seq $v t) \rightarrow t$ if v is a value
(case-c) case $_{K}\left(c t_{1} \ldots t_{n}\right) \ldots\left(\left(c y_{1} \ldots y_{n}\right) \rightarrow s\right) \ldots$
\rightarrow letrec $\left\{y_{i}=t_{i}\right\}_{i=1}^{n}$ in s
(letwn) letrec $\ldots a:=n \ldots C\left[\left(s^{[a]}\right)\right] \rightarrow$ letrec $\ldots a:=n-1 \ldots C\left[s^{[a]}\right]$
(letw0) letrec $\ldots a:=0 \ldots C\left[\left(s^{[a]}\right)\right] \rightarrow$ letrec $\ldots a:=0 \ldots C[s]$

Contextual Equivalence in LRPw

Convergence

A weak head normal form (WHNF) is

- a value: $\lambda x . s, \Lambda A . u$, or $c \vec{s}$.
- letrec Env in v, where v is a value
- letrec $x_{1}=c \vec{s},\left\{x_{i}=x_{i-1}\right\}_{i=2}^{m}$, Env in x_{m}

Convergence:

- $s \downarrow t$ iff $s \xrightarrow{\text { LRPw,* }} t \wedge t$ is a WHNF
- $s \downarrow$ iff $\exists t: s \downarrow t$.

Contextual Equivalence

For $s, t:: \rho, s \sim_{c} t$ iff for all contexts $C[\cdot:: \rho]: C[s] \downarrow \Longleftrightarrow C[t] \downarrow$
Program transformation P is correct iff $\left(s \xrightarrow{P} t \Longrightarrow s \sim_{c} t\right)$

Improvement in LRPw

Counting Essential Reductions

For $\{$ lbeta,letwn $\}=A_{0} \subseteq A \subseteq \mathfrak{A}=\{$ lbeta, case, seq, letwn $\}$:

$$
\operatorname{rln}_{A}(t):= \begin{cases}\text { number of } A \text {-reductions in } t \xrightarrow{\text { LRPw }, *} t^{\prime}, & \text { if } t \downarrow t^{\prime} \\ \infty, & \text { otherwise }\end{cases}
$$

Improvement Relation

For $s, t:: \rho, s$ improves t (written $s \preceq_{A} t$) iff

- $s \sim_{c} t$, and
- for all $C[\cdot:: \rho]$ s.t. $C[s], C[t]$ are closed: $\operatorname{rln}_{A}(C[s]) \leq \operatorname{rln}_{A}(C[t])$.

We write $s \approx_{A} t \Longleftrightarrow s \preceq_{A} t \wedge t \preceq_{A} s$ (cost-equivalence)
Program transformation P is an improvement iff $s \xrightarrow{P} t \Longrightarrow t \preceq_{A} s$

Do Work-Decorations Change the Semantics?

Questions:

- Is there a change w.r.t. contextual equivalence?
- Is there a change w.r.t. improvement and cost-equivalence?

No, since:
Theorem
The embedding of LRP into LRPw w.r.t. \sim_{c} is conservative and the calculi LRP and LRPw are isomorphic: The isomorphism is $[s]_{\sim_{c, \text { LRPw }}}=[\operatorname{rmw}(s)]_{\sim_{c, \text { LRP }}}$ where $\operatorname{rmw}(\cdot)$ removes the decorations.

Q2: Is there a change w.r.t. cost-equivalence?
No, if (seq)-reductions do not count for rln:

Theorem

Let $A_{0} \subseteq A \subset \mathfrak{A}$, such that seq $\notin A$.
Then LRP and LRPw are isomorphic w.r.t. \approx_{A}.
Encode letrec $a:=n, E n v$ in s as
letrec $x_{a}:=$ id $^{n+1}, E n v\left[\right.$ seq $\left.x_{a} t / t^{[a]}\right]$ in $s\left[\right.$ seq $\left.x_{a} t / t^{[a]}\right]$

Q2: Is there a change w.r.t. cost-equivalence?
No, if (seq)-reductions do not count for rln:

Theorem

Let $A_{0} \subseteq A \subset \mathfrak{A}$, such that seq $\notin A$.
Then LRP and LRPw are isomorphic w.r.t. \approx_{A}.
Encode letrec $a:=n, E n v$ in s as
letrec $x_{a}:=\mathbf{i d}^{n+1}, E n v\left[\right.$ seq $\left.x_{a} t / t^{[a]}\right]$ in $s\left[\right.$ seq $\left.x_{a} t / t^{[a]}\right]$
Yes, for the isomorphism property if $A=\mathfrak{A}$

Proposition

Let $A=\mathfrak{A}$ and let c_{1} and c_{2} be different constants. Then

$$
\text { letrec } \left.a:=1 \text { in (Pair } c_{1}^{[a]} c_{2}^{[a]}\right)
$$

is not equivalent w.r.t. \approx_{A} to any LRP-expression.

Q2: Is there a change w.r.t. cost-equivalence?
No, if (seq)-reductions do not count for rln:

Theorem

Let $A_{0} \subseteq A \subset \mathfrak{A}$, such that seq $\notin A$.
Then LRP and LRPw are isomorphic w.r.t. \approx_{A}.
Encode letrec $a:=n, E n v$ in s as
letrec $x_{a}:=$ id $^{n+1}, E n v\left[\right.$ seq $\left.x_{a} t / t^{[a]}\right]$ in $s\left[\right.$ seq $\left.x_{a} t / t^{[a]}\right]$
Yes, for the isomorphism property if $A=\mathfrak{A}$

Proposition

Let $A=\mathfrak{A}$ and let c_{1} and c_{2} be different constants. Then

$$
\text { letrec } \left.a:=1 \text { in (Pair } c_{1}^{[a]} c_{2}^{[a]}\right)
$$

is not equivalent w.r.t. \approx_{A} to any LRP-expression.
Open for conservativity: $s \approx_{\mathfrak{A}, \mathrm{LRP}} t \Longrightarrow s \approx_{\mathfrak{A}, \mathrm{LRPw}} t$?

Equations for Transformations

Theorem

Let $A_{0} \subseteq A \subseteq \mathfrak{A}$.

- If $s \xrightarrow{\text { LRPw }, a} t$ where $a \in A$ then $s \approx_{A} t^{[1]}$
- If $s \xrightarrow{C, a} t$ where $a \in A$ then $t \preceq_{A} s$
- If $s \xrightarrow{C, a} t, a$ is (III), (cp), (letw0), (cpx), (cpcx), (abs), (abse), (Iwas), (ucp), (gc), (gcW), then $s \approx_{A} t$
(III) letrec $E n v_{1}$ in letrec $E n v_{2}$ in $s \rightarrow$ letrec $E n v_{1}, E n v_{2}$ in s
(III) letrec $E n v_{1}, x=\left(\right.$ letrec $E n v_{2}$ in $\left.s\right)$ in $t \rightarrow$ letrec $E n v_{1}, E n v_{2}, x=s$ in t
(III) (letrec Env in $s) t \rightarrow$ letrec Env in ($s t$)
(gc) letrec $\left\{x_{i}=s_{i}\right\}_{i=1}^{n}$, Env in $t \rightarrow$ letrec Env in t, if $\forall i: x_{i} \notin F V(t, E n v)$
(gc) letrec $\left\{x_{i}=s_{i}\right\}_{i=1}^{n}$ in $t \rightarrow t$, if for all $i: x_{i} \notin F V(t)$
(gcW) letrec $\left\{a_{i}:=n_{i}\right\}_{i=1}^{m}$, Env in $s \rightarrow$ letrec Env in s, if all a_{i} do not occur in Env, s (gcW) letrec $\left\{a_{i}:=n_{i}\right\}_{i=1}^{m}$ in $s \rightarrow s$, if a_{1}, \ldots, a_{m} do not occur in s
(cpx) letrec $x=y, \ldots C[x] \ldots \rightarrow$ letrec $x=y, \ldots C[y] \ldots$
(cpcx) letrec $x=\left(c t_{1} \ldots t_{n}\right) \ldots C[x] \ldots \rightarrow$ letrec $x=\left(c y_{1} \ldots y_{n}\right),\left\{y_{i}=t_{i}\right\}_{i=1}^{n} \ldots C\left[c y_{1} \ldots y_{n}\right] \ldots$

Computation Rules

Theorem

Let $A_{0} \subseteq A \subseteq \mathfrak{A}$ and S, T be surface contexts
(1) $\left(s^{[n]}\right)^{[m]} \approx_{A} s^{[n+m]}$
(2) letrec $a:=n$ in $\left(s^{[a]}\right)^{[a]} \approx_{A}$ letrec $a:=n$ in $s^{[a]}$
(3) $S\left[\right.$ letrec $a:=n$ in $\left.T\left[s^{[a]}\right]\right] \preceq_{A}$ letrec $a:=n$ in $S[T[s]]^{[a]}$
(4) $S\left[\right.$ letrec $a:=n$ in $\left.T\left[s^{[a]}\right]\right] \approx_{A}$ letrec $a:=n$ in $S[T[s]]^{[a]}$, if $S[T]$ is strict.
(3) letrec $a:=n, b:=m$ in $\left(s^{[a]}\right)^{[b]} \approx_{A}$ letrec $a:=n, b:=m$ in $\left(s^{[b]}\right)^{[a]}$
(6) letrec $a:=n$ in $S\left[s_{1}^{[a]}, \ldots, s_{n}^{[a]}\right] \preceq_{A}$ letrec $a:=n$ in $S\left[s_{1}, \ldots, s_{n}\right]^{[a]}$.
(1) letrec $a:=n$ in $S\left[s_{1}^{[a]}, \ldots, s_{n}^{[a]}\right] \approx_{A}$ letrec $a:=n$ in $S\left[s_{1}, \ldots, s_{n}\right]^{[a]}$, if some hole in S is in strict position

- $\mathrm{LRPw}=$ Call-by-need calculus with scoped work-decorations
- LRPw not obviously encodable in LRP
- Several improvements and cost-equivalences hold in LRPw
- Expected computation rules hold in LRPw
- Apply the results to prove further improvements and cost-equivalences
- Automation of program optimization
- Automation of proving improvement
- Space-improvements

