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Abstract
Many architectures have condition-code registers
that include carry and overflow bits. Carry is used
for multi-word precision arithmetic (e.g., for cryp-
tography). Overflow is used for growable (arbitrar-
ily long) integers available in many programming
languages. Having a single instance of carry and
overflow in a condition-code register makes it hard
to make full use in a compiled programming lan-
guage. We propose to remedy this by adding carry
and overflow to every general-purpose register.

1 Introduction
Many architectures have carry and overflow bits in
a condition code register.
Carry usually indicates an overflow after an un-

signed addition, underflow after an unsigned sub-
traction1, and this is used in (fixed-size unsigned)
multi-word arithmetics. Carry is also generated and
sometimes used in other instructions, in particular,
comparison, multiply, and certain shift or rotate in-
structions.
The overflow bit indicates an overflow or under-

flow after a signed addition, subtraction, or multi-
plication. One of its uses is in implementing grow-
able signed integers (also known as bignums, al-
though the common case is that the number fits
in one word).
The unique condition code register present in

many architectures poses difficulties like other
unique special-purpose registers. In particular, it
limits the use of the condition codes in program-
ming languages. Carry and overflow have hardly

1If the carry bit is set on an underflow (e.g., on x86-
64), it is also known as borrow bit. Some architectures (e.g.,
ARM A64) set the carry bit on non-underflow and clear it on
underflow; then it is called the carry bit even in subtraction.

been exposed at the programming language level,
and where they have been exposed, compilers have
had problems making efficient use of the hardware
feature.

Despite this problem, the importance of carry
and overflow seems to have increased over time, as
is witnessed by the addition of the ALC instruction
in the IBM S/390, the addition of the ADX exten-
sion to Intel CPUs since Broadwell (2014) and to
AMD CPUs since Zen (2017), and the addition of
BOVC/BNVC to MIPS64r6 (2014). This increased
importance is probably due to the increasing use
of cryptography, and the increasing popularity of
programming languages that support big integers.

We propose to add carry and overflow bits to
the general-purpose registers instead of having a
condition-code register. This makes these bits eas-
ier to deal with in compilers, as well as providing
increased opportunities for instruction-level paral-
lelism (Intel added the ADX extension for this pur-
pose).

The main contribution of the present paper is the
idea that carry and overflow are part of the general-
purpose registers. First we motivate it by showing
how carry and overflow are used (Section 2) and
why a condition code register is inadequate (Sec-
tion 3). Then we present the idea as an instruction-
set extension (Section 4), and show its benefits (Sec-
tion 5). Finally, we compare our extension with the
approaches various architectures have taken (Sec-
tion 7) over the decades.

2 Why carry and overflow are
useful

There are architectures like RISC-V that do not
have carry and overflow, and one can work around
this lack, but at a significant cost.



#inputs: partm, partn, carry #C equivalent: all variables are uint64_T
add partsum0, partm, partn #partsum0 = partm+partn
sltu carry0, partsum0, partm #carry0 = partsum0<partm
add partsum, partsum0, carry #partsum = partsum0+carry
sltu carry1, partsum, partsum0 #carry1 = parstsum<partsum0
add carry, carry0, carry1 #carry = carry0+carry1
#outputs: partsum, carry

Figure 1: Addition with carry-in and carry-out on RISC-V (based on https://gmplib.org/repo/gmp-6.
2/file/402b9c4efacb/mpn/riscv/64/aors_n.asm)

2.1 Unsigned multi-precision arith-
metics

For multi-precision addition m + n, one first adds
the first word of m and n with a word-wide result
and a carry, then adds the next two words and the
carry, again resulting in a word and a carry, and so
on. Figure 1 shows how this is coded on RISC-V.
This costs not only five instructions, but also

three cycles of latency for the carry propagation. By
comparison, on architectures with carry bits these
five instructions can typically be replaced with one
add-with-carry instruction, with typically one cycle
of latency from carry-in to carry-out.

2.2 Growable Integers
Signed variable-length integers in various program-
ming languages can have arbitrary length. At run
time, in most cases the operands of, e.g., an addi-
tion fit in the smallest container available, but if
the addition results in a signed overflow, the slow
multi-word addition needs to be performed. This
means that a signed overflow test is needed after
every addition of two such integers.
As an example, in the non-JIT variant of the

BC run-time system for Racket-8.6 a value is rep-
resented by a machine word; the machine word is
either such a small integer (tagged with 1), or a
pointer to a more elaborate (boxed) representation
Scheme_Object of all other kinds of values, includ-
ing larger integers. After checking the tags, the
addition of two small tagged integers is performed
by:2

2The shown code is derived from the original ADD function
by putting the untagging at the callee rather than the caller
side, expanding the macros, and simplifying the resulting
code.

Scheme_Object *ADD_tagged(
Scheme_Object *tagged_a,
Scheme_Object *tagged_b)

{
intptr_t a = ((intptr_t)tagged_a)>>1;
intptr_t b = ((intptr_t)tagged_b)>>1;
intptr_t r;
Scheme_Object *o;
r = (uintptr_t)a + (uintptr_t)b;
o = (Scheme_Object *)

((((uintptr_t)r)<<1)|1);
r = ((intptr_t )o) >> 1;
if (b == (uintptr_t)r - (uintptr_t)a)

return o ;
else
return ADD_slow (a , b) ;

}

This code uses the additional bit originally used
by the tag to check for the overflow, yet the overflow
test still looks quite complex: The result of the ad-
dition is first tagged (giving o) and then untagged
(into r) again, so that r now contains the wrong sign
in case of an overflow. Then r is checked for correct-
ness by trying to undo the addition. In the common
(not overflowing) case, o is the tagged result, oth-
erwise ADD_slow() produces a boxed bignum.

The resulting x86-64 code is

sarq %rdi
sarq %rsi
leaq (%rdi,%rsi), %rax
leaq 1(%rax,%rax), %rax
movq %rax, %rdx
sarq %rdx
subq %rdi, %rdx
cmpq %rdx, %rsi
jne .L6

https://gmplib.org/repo/gmp-6.2/file/402b9c4efacb/mpn/riscv/64/aors_n.asm
https://gmplib.org/repo/gmp-6.2/file/402b9c4efacb/mpn/riscv/64/aors_n.asm


ret
.L6:

jmp ADD_slow@PLT

This code can be optimized by using the
overflow flag of the x86-64 architecture (using
source code3 that employs the GCC feature
__builtin_add_overflow):

leaq -1(%rsi), %rax
addq %rdi, %rax
jo .L8
ret

.L8:
sarq %rsi
sarq %rdi
jmp ADD_slow

However, the same source code results in the fol-
lowing RISC-V code:

ADD_tagged1:
addi a4,a1,-1
mv a5,a0
add a0,a0,a4
slti a3,a5,0
slt a4,a0,a4
bne a3,a4,.L8
ret

.L8: srai a1,a1,1
srai a0,a5,1
tail ADD_slow

This is still shorter than the code produced for
the ADD_tagged source code above, but this exam-
ple shows that working around the lack of signed-
integer overflow has its costs.

3 Why a condition code regis-
ter is inadequate

As can be seen in the ADD_tagged example above,
an overflow bit in a condition-code register is better
than no overflow bit at all, but condition code reg-
isters suffer from the same shortcomings as other
special-purpose registers.
One disadvantage is that there is usually only one

carry flag, which can be insufficient for the natural
3https://godbolt.org/z/TroqhsrrM

expression of an algorithm. In particular, in multi-
precision multiplication each component multiplica-
tion produces two words of multiplication results4

that have to be added to the intermediate results,
which can be done without overhead if the archi-
tecture has at least two carry bits [OGGF12, Ta-
ble 2]. So Intel added the ADCX and ADOX in-
structions, where ADOX treats the O(verflow) bit
as another carry (and ADCX does not overwrite O,
unlike ADC).

Another disadvantage of condition-code registers
is that many instructions tend to overwrite condi-
tion codes, which may still be needed. E.g., the
MUL instruction on x86-64 overwrites the C and O
flags, so in multi-precision multiply there would be
overhead required for preserving these bits across
the MUL instruction. To avoid that problem, Intel
added the MULX instruction that does not change
the condition-code register.

The latter problem is a major obstacle in
making use of condition-code bits in compiler-
generated code: E.g., the clang compiler sup-
ports __builtin_addcl for performing an add-
with-carry, yet for a straightforward implementa-
tion of multi-precision addition results in ineffi-
cient code on both x86-64 (16 instructions with at
least 6 cycles of latency for two iterations) and on
ARM A64 (10 instructions with at least 3 cycles of
latency for one iteration).5 This code converts the
carry bit into a value in a general-purpose register
right after the addition and then does not use the
add instruction with carry input in all (ARM A64)
or half (x86-64) of the iterations. By contrast, the
corresponding gmp-6.2.1 code written in assembly
language takes 17 instructions with at least 4 cycles
of latency per 4 iterations (x86-646) and 12 instruc-
tions with at least 4 cycles of latency per 4 iterations
(ARM A647).
Our explanation for the non-use of add with carry

input is that other operations between the invo-

4While a number of architectures use separate instruc-
tions to generate the upper and lower result words, it is a
good idea to keep them adjacent to each other to allow the
microarchitecture to fuse them and use the multiplier only
once for the sequence; e.g. a specific sequence is suggested
for this for RISC-V [WA17, Section 6.1].

5https://godbolt.org/z/3916jffdq
6https://gmplib.org/repo/gmp-6.2/file/gmp-6.2.1/

mpn/x86_64/aors_n.asm#l142
7https://gmplib.org/repo/gmp-6.2/file/gmp-6.2.1/

mpn/arm64/aors_n.asm#l107

https://godbolt.org/z/TroqhsrrM
https://godbolt.org/z/3916jffdq
https://gmplib.org/repo/gmp-6.2/file/gmp-6.2.1/mpn/x86_64/aors_n.asm#l142
https://gmplib.org/repo/gmp-6.2/file/gmp-6.2.1/mpn/x86_64/aors_n.asm#l142
https://gmplib.org/repo/gmp-6.2/file/gmp-6.2.1/mpn/arm64/aors_n.asm#l107
https://gmplib.org/repo/gmp-6.2/file/gmp-6.2.1/mpn/arm64/aors_n.asm#l107


cations of __builtin_addcl might be (and indeed
are) compiled to code that overwrites the condition-
code carry, so the compiler needs to save the con-
dition code into a general-purpose register which is
under the control of the register allocator. To make
better use of the carry flag, the compiler would need
to select code that does not change the carry flag
for all these other operations; given that the use of
an explicit carry flag is rare in most code, it is not
surprising that compilers are not set up for doing
this.

4 How to add carry and over-
flow to general-purpose reg-
isters

Our solution to these problems is to enhance the
general-purpose registers with bits for carry and
overflow.

In most of this section we present this as an ex-
tension to RISC-V, but the basic idea can also be
applied to other architectures, including architec-
tures that have a condition code register with carry
and overflow.

The benefits to RISC-V and other architectures
without carry and overflow flags are the reduced
instruction count and latency for multi-precision
arithmetic and for overflow detection, both in as-
sembly language and in compiled languages.

The benefits to architectures that have carry and
overflow flags in condition codes are: 1) Code that
has more than one carry bit alive at the same time,
e.g., multi-precision multiplication can be written
without having to reify some carry bits in a register.
2) Compilers have an easier time managing these
bits, allowing for compiled code that is much closer
in performance to hand-written code by assembly
programmers.

We first describe one particular extension for
RV64G (64-bit RISC-V with the general-purpose
extensions), later describe an alternative to a part
of our design (Section 4.5), and finally a possible
clean-sheet variant (Section 4.6).

4.1 Extending the general-purpose
registers

Each general-purpose register gets two additional
bits. The way these bits are set depends on the
instructions; below we describe the typical meaning.

carry An instruction typically sets this if the com-
putation overflows the unsigned range when
the inputs are interpreted as unsigned.

overflow An instruction typically sets this if the
computation overflows or underflows the un-
signed range when the inputs are interpreted
as signed.

In x0 (the register always containing zero) the
carry and overflow bits are 0.

4.2 Adapting existing RV64G in-
structions

All existing instructions write the carry and over-
flow bits along with all the other bits of their desti-
nation register (if they have one). Unless otherwise
noted, the carry and overflow bits are cleared.

None of the existing instructions use the carry
or overflow bits as inputs (not even for computing
carry or overflow).

Addition instructions compute the carry bit as
the 65th bit of the sum of the zero-extended 64-
bit operands. There are various ways to compute
signed overflow; one way is to compute the 65th bit
of the sum of the sign-extended operands and xor
it with the 64th bit.

Subtraction instructions work like additions that
first two’s-complement the subtrahend in 64 bits.
As a result, the carry bit is set if the subtraction
did not underflow and is clear on underflow. I.e., in
the schism between carry and borrow, our extension
is on the carry side.

Bitwise operations (and, or, xor) operate on all
the bits, including carry and overflow. This al-
lows to perform boolean operations on the carry
and overflow bits before checking them.

RISC-V normally implements a register-to-
register move (mv) as addition with x0. This
clears both carry and overflow, so after adding
the extension the preferred way for the register-
to-register move is to use or rd, x0, rs2 or



xor rd, x0, rs2; unfortunately, there are no com-
pressed (16-bit) encodings (yet) for either of these
instructions.
Shift-left instructions set the carry bit if any of

the shifted-out bits is set (i.e., if the shift, inter-
preted as unsigned multiplication by a power of two,
overflows), and set the overflow bit if any of the
shifted-out bits are not equal to the sign bit of the
result.
The lower-part multiplication instruction (mul)

sets the carry bit if the result of the unsigned mul-
tiplication does not fit in 64 bits, and sets the over-
flow bit if any of the upper bits of the result of
signed multiplication is different from the sign bit
of the result.
Division and remainder instructions set carry on

division by zero, and set the overflow bit on division
by zero and on division overflow (signed division of
the smallest value by −1).
The instructions for dealing with 32-bit values in

RV64G (those with the w suffix) perform the 32-bit
analogues of the operations described above, i.e.,
they treat the 32nd bit as sign bit, the carry and
overflow bits represent the unsigned or signed over-
flow beyond the 32-bit range.
The other instructions clear the carry and over-

flow bits.

4.3 New instructions
This section describes the new instructions in ordi-
nary (user-level) code.

addc rd, rs1, rs2

The intention of this instruction is that rs1 contains
the result of an addition instruction. Addc adds the
carry bit of rs2 to the 65-bit unsigned and signed
data that the earlier addition has left in rs1. Addc
can also be used with the result of some other in-
struction in rs1, and will produce a deterministic
result in the carry and overflow bits (by just inter-
preting them as if they came from an addition), but
these bits of the result may not be very useful.
For the unsigned case, the 65th bit is the carry

bit.
For the signed case, the 65th bit has to be recon-

structed from the overflow bit: Since the overflow
bit is the xor of the 65th and 64th bit, the 65th bit
can be reconstructed by xoring the 64th bit with the

overflow bit. After adding the carry bit of rs2, the
overflow has to be recomputed again by xoring the
65th and 64th bit of the result.

The sequence

add r3, r1, r2
addc r3, r3, r4

performs an add of r1 and r2 with carry-in from
r4, giving a result with carry-out and overflow in
r5. This fits nicely in RISC-V’s usual scheme of
having two input operands. For some architectures
one instruction with three input operands may be
a better fit. For RISC-V, the instruction decoder
can fuse a sequence of two such instructions into a
single fused instruction [CDPA16].

Note that, even if the instructions are executed
separately, the latency of multi-precision arithmetic
is one cycle per result word, because the only long
dependence chain is from one addc instruction to
the next; the adds are all independent of each other.

For subtraction with carry-in, one can use the
following sequence:

not r3, r1
add r3, r2, r3
addc r3, r3, r4

This subtracts r1 from r3, with carry-in from r4.
If multi-precision subtraction is important enough,
we can also add a subc instruction that works with
the sub instruction. Or, alternatively, the instruc-
tion decoder could recognize the sequence above
and replace it with, e.g., a three-operand subtract-
with-carry micro-instruction.

Like for multi-precision addition, the latency of
multi-precision subtraction is one cycle per result
word, due to the carry chain.

bo rs1, rs2, target

If the overflow bit of rs1 or the overflow bit of
rs2 is set, branch to the target. Checking for two
overflows at once can reduce the number of branch
instructions needed for catching overflows in code
that checks the overflow status of all operations.
Picking apart which register contains the overflow
can be left to the slow overflow-handling path.



Other instructions?

We considered including a branch on carry (analo-
gous to bo), but it can be replaced with the sequence

or r3, r1, r2 #only if checking two registers
addc r3, x0, r3
bnez r3, target

and it’s not clear that branch on carry is needed
frequently enough to merit a separate instruction.
Alternatively, the bo instruction could be replaced
with an instruction that checks the overflow flag of
one source register and the carry flag of the other
source register.
X86-64 has instructions that rotate through the

carry bit (rcl rcr). However, they seem to be no
longer useful enough to justify adding an instruction
for them to an architecture that does not have them
already.8

4.4 Dealing with memory
While we have widened the registers, instructions
that deal with memory are still limited to 64 bits
or less, so we lose the contents of the carry and
overflow bits when storing values to memory in the
straightforward way.

... in user-level code

When a register is spilled and later reloaded (typi-
cally around a function call), the carry and overflow
bits are gone. That’s normally no problem: On ar-
chitectures with flags in a special-purpose register,
that register is normally not preserved across calls,
either.
In the rare case when it is necessary to preserve

these bits across spilling and reloading, the bits
can be reified into the regular 64 bits of a general-
purpose register by using the addc and bo instruc-
tions and the resulting values can be stored into
memory in a separate word. On reloading the over-
flow bit can be used where it is in the general-
purpose register, while the carry bit can be trans-
ferred into the carry bit of a general-purpose regis-
ter by adding −1.

8https://stackoverflow.com/questions/26913354/
practical-uses-for-rotate-carry-left-right

The biggest problem of this approach is that it
loses a part of the compiler benefit of the idea pro-
posed in this work. The compiler now has to keep
track of which registers contain live carry and/or
overflow bits, and has to emit code for saving and
restoring them when necessary. It is probably very
rarely necessary, so the main problem is not in the
resulting code, but in the compiler complexity.

One may want to avoid that complexity by pro-
viding a not-too-expensive way to spill and refill
carry and overflow along with the rest of the regis-
ter, but we have not devised a way that we do not
deem too expensive, in particular on an out-of-order
implementation.

... on context switching

On context switching the carry and overflow bits
have to be preserved. If we found good instructions
for user-level spilling and reloading, we could use
them for context switching as well. For now our
approach is:

Every store instruction updates two bits in a 64-
bit special-purpose register storeextra; the reg-
ister number of the register containing the stored
value determines which two bits in storeextra are
updated; e.g., writing r1 updates bits 2 and 3. Up-
dates from stores from different registers are inde-
penent and may be performed out-of-order. After
the general-purpose registers are stored, the value in
storeextra is transferred to a general-purpose reg-
ister; this operation needs to serialize the pipeline
in an implementation with out-of-order execution,
i.e., it has to wait for all earlier instructions to fin-
ish. Finally, that value is stored.

For reloading, first the word containing all the
carry and overflow bits is loaded and transferred
into a special-purpose register loadextra. Given
that we do not want to keep track of this register in
the out-of-order execution engine, the pipeline has
to be serialized at this point, but this can be the
same pipeline drain as before reading storeextra.
Afterwards, special load instructions ldx load the
64 regular bits from memory and fill the carry and
overflow bits from the bits in loadextra corre-
sponding to the target registers.

This approach is not very elegant, but it’s rela-
tively cheap to implement in hardware. How about
using it for spilling? That’s possible in principle,
but the pipeline serialization makes this approach

https://stackoverflow.com/questions/26913354/practical-uses-for-rotate-carry-left-right
https://stackoverflow.com/questions/26913354/practical-uses-for-rotate-carry-left-right


slow and the values would have to be reloaded into
the same registers from which they were spilled.
The slowness of the serialization is less of a problem
for context switching, because context switching is
less frequent, and is already a relatively slow oper-
ation.

4.5 Alternative
One variant we have considered is the register sib-
ling of a sticky overflow bit: If the overflow bit of
any of the source registers of an arithmetic instruc-
tion is set, set it in the destination register. This
is probably not useful for growable integers, but it
may be useful for reducing the number of bo invo-
cations when implementing integers that produce
errors on overflow. However, other uses of the over-
flow bit (e.g., for growable integers) need the non-
propagating variant, and we see no way to accomo-
date both without adding instructions.

4.6 Clean-sheet architecture
Many possible clean-sheet architectures are possi-
ble, but we do not want to cover every possibility,
so for this section we describe one based on RISC-
V, but that is not required to be compatible with
RISC-V.
Many architectures have four essential condition-

code bits: zero, sign, carry, and overflow. With our
extension every general-purpose register contains all
that information for the operation that generated
it: Sign, carry, and overflow are there as individual
bits, and zero holds if all regular bits of a register
are zero.
So we can leave away slt and sltu, and instead

use sub and addiu to produce comparison results
in a general-purpose register. Then a conditional-
branch instruction can read from that register and
branch based on a number of conditions, similar to
architectures with a condition-code register, except
that we use a general-purpose register instead of a
condition-code register. Likewise, we can also have
an instruction that sets a destination register to 0 or
1 depending on whether a condition (in the source
register) is true.
For cases that are covered by the RISC-V’s

branch and set instructions, this design would need
an additional instruction (sub) to achieve the same
result. But there are also cases that take as many

instructions (e.g., when branching after comparing
with a constant) or are shorter to express in this
design, e.g., when you check for the flags resulting
from an addition, shift, or a boolean operation on
the flags.

Another advantage of this design is that the
branch instructions now only need to encode one
register and a (slightly longer) condition instead of
two registers and a condition, leaving more bits for
the branch target address.

5 Benefits
To evaluate the potential benefits, we created some
traces of the instructions executed by functions
from the multi-precision library gmp on RV64GC,
and computed the benefits in instruction count
and minimal latency that this code would enjoy if
rewritten to use addc. We selected the low-level
functions mpn_add_n() and mpn_mul_n(), which
are very good cases for our extension. In real-world
usage of multi-precision arithmetic, other code is
executed between calls to these functions, so the
benefits will be much less.

A 1024-bit mpn_add_n() performs 174 RV64GC
instructions with an overall latency of 51 cycles (as-
suming a latency of 3 for ld, 1 for add and sltu,
and 0 for mv); the latency is due to the carry chain.
By replacing the current RISC-V carry-computing
idiom with addc, the executed instructions can be
reduced to 126 instructions (factor 1.38), and the
latency can be reduced to 20 cycles (factor 2.55).
Here’s the comparison of one iteration of the inner
loop (with an unrolling factor of 2):

ld a4,0(a1) ld a4,0(a1)
ld a6,0(a2) ld a6,0(a2)
addi a3,a3,-2 addi a3,a3,-2
addi a1,a1,16 addi a1,a1,16
add t0,a4,a6 add t4,a4,a6
sltu t2,t0,a4 addc t4,t4,t1
add t4,t0,t6
sltu t3,t4,t0
sd t4,0(a0) sd t4,0(a0)
add t6,t2,t3
ld a5,-8(a1) ld a5,-8(a1)
ld a7,8(a2) ld a7,8(a2)
addi a2,a2,16 addi a2,a2,16
addi a0,a0,16 addi a0,a0,16



add t1,a5,a7 add t1,a5,a7
sltu t2,t1,a5 addc t1,t1,t4
add t4,t1,t6
sltu t3,t4,t1
sd t4,-8(a0) sd t4,-8(a0)
add t6,t2,t3
bnez a3, loop bnez a3, loop

A 1024-bit × 1024-bit multiplication performs
4109 RV64GC instructions. They could be reduced
to 3613 instructions (factor 1.14). However, we
think that it is possible to keep more intermedi-
ate results in registers; this would help both ver-
sions, but would increase the improvement factor
from using our extension. Here is a comparison of
one iteration of the inner loop. The latency chain
works through the loop-carried dependency through
a6, and is reduced from 3 cycles to 2 cycles (factor
1.5), or 48 to 32 cycles for the complete inner loop.

ld a7,0(a1) ld a7,0(a1)
addi a1,a1,8 addi a1,a1,8
ld a4,0(a0) ld a4,0(a0)
addi a0,a0,8 addi a0,a0,8
mul a5,a7,a3 mul a5,a7,a3
addi a2,a2,-1 addi a2,a2,-1
mulhu a7,a7,a3 mulhu a7,a7,a3
add a5,a5,a4 add a5,a5,a4
add a6,a6,a5 add a6,a6,a5
sltu a4,a5,a4
add a4,a4,a7 addc a4,a7,a5
sltu a5,a6,a5
sd a6,-8(a0) sd a6,-8(a0)
add a6,a4,a5 addc a6,a4,a6
bnez a2, loop bnez a2, loop

We also planned to show results for growable inte-
gers in racket-8.7, but ran out of time for preparing
this paper.

6 Costs
This section discusses the costs that this extension
incurs.

6.1 Hardware
We did not implement these features in hardware,
so we have to go by rough estimates.
For RISC-V, the proposed extension means that

we have to:

• Add two bits to each general-purpose regis-
ter; this is 3% more bits for the registers, but
far less area increase overall. For comparison:
when IA-32 was extended to AMD64, the size
of the general-purpose registers doubled, but
extra hardware cost was reported to be 5%
overall (which included changes in the decoder
and in the ALUs in addition to the longer reg-
isters).

• Hardware in the ALU for generating the carry
and overflow flags. These flags only take a few
gates to compute, as evidened by the fact that
already the 6502 with its 3500 transistors gen-
erated carry and overflow.

• The registers loadextra and storeextra.
These will likely be located in the load/store
unit. The store and ldx instructions would
need to carry the physical register number R
of the stored-from or loaded-into register with
them, and these registers would need address-
ing hardware for accessing the carry and over-
flow bits corresponding to R. In an out-of-
order execution engine, this is probably a van-
ishing part of the cost (these two registers are
not renamed); for a small in-order implemen-
tation the cost may be noticable, though.

• The three additional instructions addc bo ldx
need to be decoded and executed. Executing
them is a minor variations on the execution of
add, branch instructions, and ld, respectively,
so the hardware cost for the execution of these
instructions is probably small. We expect the
decoding cost of a few additional instructions
which follow the typical encoding schemes of
RISC-V (e.g., two source registers) to be small,
too.

An architecture such as AMD64 or ARM A64
that has carry and overflow bits already, but in con-
dition codes, already incurs many of these hardware
costs. In particular, a number of AMD64 implemen-
tations (such as the most recent performance core
from Intel, Golden Cove) renames the flags with
the integer registers9, and likely keeps the flags as
extra bits in the general-purpose register file (re-

9https://chipsandcheese.com/2022/11/05/
amds-zen-4-part-1-frontend-and-execution-engine/
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naming them together would not make much sense
otherwise).
Compared to such an implementation, an imple-

mentation of an architecture where carry and over-
flow are explicitly part of the general-purpose reg-
isters is actually simpler (and probably costs less
hardware), because the implementor does not have
to deal with cases such as the register being updated
while the flags are not, or the flags being updated
while the registers are not.

6.2 System Software
The context-switch code has to be adapted to deal-
ing with storeextra and loadextra. The result
will be slower than a context switch that does not
have to deal with this extension.
The main performance cost here is serializing the

pipeline after transferring the data into loadextra
and before transferring the data from storeextra.
The serializing instruction cpuid costs 100–250 cy-
cles on Intel’s Ice Lake CPU and 140–170 cycles
on AMD’s Zen4 [Fog22]. Lmbench [MS96] (with
0KB of data exchanged between processes10) re-
ports 1.72µs of context switch latency on a 4.2GHz
Tiger Lake, i.e., about 7000 cycles; so adding this
serializing instruction increases the context switch
cost by 1.4%-3.5%. The overall cost on the sys-
tem depends on the frequency of context switches.
For a desktop and a laptop running Linux the tool
sar -w reported 1600–4000 context switches per
second; with 4000 context switches per second, 250
cycles and 4.2GHz, the additional overhead would
cost 0.02% of the CPU time. Of course, for a busy
server the number of context switches and the con-
tribution of the additional overhead could be quite
a bit higher; but a busy server probably also uses
more cryptography and benefits from performance
improvements from the proposed extension.
Other costs of this instruction set extension (like

every instruction set extension) are the cost of ex-
tending the tool chain (assemblers, disassemblers,
debuggers, compilers); and of course, to benefit
from it, you want to use it in libraries like gmp,
and language implementations like Racket.
A C compiler can ignore the extra bits and incur

no cost and no benefit from them. But if it makes
use of them, it has to either ensure that carry and
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overflow do not survive across calls (typically by re-
stricting code generation, resulting in a suboptimal
benefit); or it has to perform liveness analysis for
the carry and overflow flags, and has to spill and
reload them in the rare case where they are indeed
alive at a call site.

6.3 Is the benefit worth the cost?
We have been unsuccessful in finding numbers on
the proportion of time spent in multi-precision
arithmetics and in bignum processing, so we look
at what architects have done who know more about
the needs of their customers:

In particular, Intel added the ADX extension in
2014 for improving multi-precision arithmetic be-
yond what a single carry flag allows, so appar-
ently they have customers for whom multi-precision
arithmetic matters a lot. AMD adopted ADX in
2017.

MIPS has added the BOVC instruction, which
helps bignum addition (but only addition).

On the other hand, one might argue that fast
carry processing has not been important enough
(yet?) for MIPS, Alpha, and RISC-V to add a carry
flag. One reason for that may be the disadvantages
that a single carry flag or condition-code register
has in implementation and in usage. The proposed
extension relieves some of these disadvantages, how-
ever.

One cost that the proposed extension has that
the architectures with condition codes do not have
is a significantly increased context switch cost. It
may be worthwhile to add more hardware to allow
faster context switching (i.e., without pipeline seri-
alization).

7 Previous work
There has been a lot of variation in dealing with
carry and overflow in instruction sets.

The IBM S/360 [36022] has, e.g., signed (e.g. A)
and unsigned (e.g., AL) addition instructions, which
indicate type-specific overflow through instruction-
specific settings of the two condition-code bits;
signed overflows trap unless masked by bit 20 in
the program status word. Instructions that support
carry-in, such as ALCR were added with ESA/390 in
1990.



Several architectures have flags for Nega-
tive/Sign, Zero, Carry, and oVerflow (NZCV) flags
in a condition code register. While the implemen-
tors of x86-64 and ARM A64 CPUs have demon-
strated that these condition codes are no obstacle to
high-performance implementations, they still limit
what kind of code can be written to use them. This
has been demonstrated by Intel’s ADX extension,
which added three instructions to work around the
limitations coming from the use of condition codes
in existing instructions condition codes [OGGF12].
Some other architectures have therefore tried to

avoid condition-code registers:
Instruction sets in the MIPS [MIP14] family

(e.g., Alpha, DLX, RISC-V) have no condition
codes and replace them with various combinations
of comparison instructions that put their results
in registers and compare-and-branch instructions;
MIPS, Alpha and DLX (but not RISC-V) also have
signed arithmetic instructions that trap (but, e.g.,
C compilers generate the “unsigned” instructions
for signed arithmetic instead). MIPS64r6 has added
BOVC and BNVC; BOVC branches (and BNVC does not
branch) if the signed addition of its two operands
overflows. The lack of addition with carry leads
to the five-instruction three-cycle workaround (see
Section 2).
The 88000 [Mot90] has a compare instruction

that writes a collection of flags to a general-purpose
register. But it also has a carry bit in the proces-
sor status register PSR, with carry-in and carry-out
explicitly controlled in the instruction word.
Power [IBM05] has a condition code register that

can hold 8 4-bit condition codes, improving on the
situation with a single condition code. However,
many integer instructions can only write to CR0,
but at least the programmer can control (with a
bit in the instruction encoding) whether or not the
instruction overwrites CR0. These condition codes
don’t include carry (CA) and overflow (OV), which
are kept separate in the XER register; Power also
has summary overflow (SO), i.e., a sticky overflow
bit. Writing to OV and SO is controlled by another
bit in the instruction encoding. In addition to nor-
mal add instructions that perform neither carry-
in nor carry-out, there are carry-out instructions
(e.g., addc and carry-in carry-out instructions (e.g.,
adde). As a result, while there is still only one carry
and one overflow bit, at least it is easy to avoid ac-

cidentally overwriting them.

8 Conclusion
Carry and overflow are useful for multi-precision
arithmetic and growable integers. In existing in-
struction sets they are either single-instance flags
(even in architectures that avoid single-instance
comparison results like the 88000 and Power), or
they are not directly supported and have to be syn-
thesized from sequences of other instructions. We
present an extension to RV64G that adds carry
and overflow bits to the general-purpose regis-
ters. The extension also adds three instructions
(addc bo ldx) and two special-purpose registers
(storeextra loadextra). The benefits of this ex-
tension are reductions in executed instructions and
in latency when performing multi-precision arith-
metic, and a reduction in executed instructions
when dealing with growable integers.
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