
Extending General-Purpose Registers
with Carry and Overflow Bits

Abstract
Many architectures have condition-code registers
that include carry and overflow bits. Carry is used
for multi-word precision arithmetic (e.g., for cryp-
tography). Overflow is used for growable (arbitrar-
ily long) integers available in many programming
languages. Having only a single instance of carry
and overflow makes it difficult to make full use in
a compiled programming language, and also makes
multi-word multiplication slower. We propose to
remedy this by adding carry and overflow to every
general-purpose register.

1 Introduction
Multi-word integer addition carries the (unsigned)
overflow of a single-word addition to the addition of
the two next-higher words of the addends. Similarly
for multi-word subtraction and comparison. Multi-
word addition and its carries also play a role in the
implementation of multi-word multiplication.
Arbitrary-precision (signed) integer arithmetic

(also known as bignum arithmetic) needs to know
whether signed addition, subtraction or multiplica-
tion overflows.
A common architectural way to provide this func-

tionality is through a carry and an overflow bit in a
condition-code register (e.g., present in the IA-32,
AMD64, and ARM A32, T32, and A64 instruction
sets).
However, such a unique condition code register

poses difficulties like other unique special-purpose
registers. In particular, it limits the use of the
condition codes in programming languages. Carry
and overflow have hardly been exposed at the pro-
gramming language level, and where they have been
exposed, compilers have had problems making effi-
cient use of the hardware feature.
We propose to add carry and overflow bits to

the general-purpose registers instead of having a
condition-code register. This makes these bits eas-
ier to deal with in compilers, as well as providing
increased opportunities for instruction-level paral-
lelism (Intel added the ADX extension for this pur-
pose).
The main contribution of the present paper is the

idea that carry and overflow are part of the general-

purpose registers. First we motivate it by showing
how carry and overflow are used (Section 2) and
give an overview of how existing architectures deal
with the problem (Section 3). Then we present the
idea as an instruction-set extension (Section 4), and
show its benefits (Section 5).

2 Motivation
2.1 Unsigned multi-precision arith-

metics
The main use for carry is (unsigned) multi-precision
arithemetics, used, e.g., for cryptography. An archi-
tecture without carry bit, e.g., RISC-V, takes 5 in-
structions with a latency of three cycles1 for an in-
ternal addition of two words (Fig. 1), in comparison
to one adc instruction on AMD64 with one cycle of
latency on recent high-end implementations.

For multi-precision multiplication, Fig. 2 shows
the shortcomings of having one dedicated carry bit
(in the AMD64 architecture without the ADX ex-
tension) [OGGF12, Table 2]:

• In each step the mulx instruction produces two
words. With ADX, these two words are added
to the respective words of the intermediate re-
sult (from other steps in the algorithm) right
away, and they produce two carry chains, one
for the low word and one for the high word of
each step.2 The instruction adcx uses the C bit
as carry-in and carry-out bit and does not over-
write the O bit; the instruction adox uses the
O (normally overflow) bit as carry-in carry-out
bit and does not overwrite C.

• Without ADX, there is only the C bit for stor-
ing carry, and the computation is organized

1assuming a one-cycle latency for simple ALU operations
and comparisons

2You may wonder if architectures that produce the low
and high words with separate instructions (e.g., ARM A64’s
mul and umulh instructions) have this problem. They do, be-
cause you don’t want to perform separate loops for dealing
with the low and the high results, so you still either have
two dependence chains or need workarounds involving extra
instructions. Moreover, it is a good idea to keep the two
instructions adjacent to each other to allow the microarchi-
tecture to fuse them (so the multiplier is used only once).
E.g., RISC-V suggests a specific sequence [WA17, Section
6.1].

#inputs: partm, partn, carry #C equivalent: all variables are uint64_t
add partsum0, partm, partn #partsum0 = partm+partn
sltu carry0, partsum0, partm #carry0 = partsum0<partm
add partsum, partsum0, carry #partsum = partsum0+carry
sltu carry1, partsum, partsum0 #carry1 = parstsum<partsum0
add carry, carry0, carry1 #carry = carry0+carry1
#outputs: partsum, carry

Figure 1: Addition with carry-in and carry-out on RISC-V (based on https://gmplib.org/repo/gmp-6.
2/file/402b9c4efacb/mpn/riscv/64/aors_n.asm)

with ADX without ADX
mulx TMP1, R’1, [pA+8*2] mulx TMP1,R’1, [pA+8*2]
adox R’1, R2 add R’1, R2
adcx R3, TMP1 adc TMP1, 0

add R’1, TMP2
adc TMP1, 0

Figure 2: Two ways ways to code one step in multi-precision multiplication on AMD64 (from [OGGF12])

differently: It adds the intermediate result R2,
the low-word result R’1 of the most recent mul-
tiplication and the high-word result TMP2 of
the previous multiplication, and puts the result
in R’1. It adds the carry-outs of these additions
to the high-word result of the current multi-
plication. This approach needs two additional
instructions per step. Each step also costs two
cycles of latency, compared to one with ADX.

While this shows that having a carry input and
carry output of an addition is useful, the imple-
mentation as a single dedicated bit, or even as two
special-purpose bits (as in ADX) makes them hard
for compilers to manage.

E.g., clang has the extension
__builtin_addcl() for performing an add
with carry-in carry-out; however, while AMD64
and ARM A64 each have 1 instruction (adc and
adcs, respectively) that performs the complete
functionality of __builtin_addcl(), clang-17.0.1
(without unrolling) translates this builtin to 6
instructions on AMD64 and 4 instructions on
ARM A64.3 That’s because these instructions
use the carry bit for carry-in and carry-out, but
many instructions write to this bit, too, including
the instructions that clang uses for loop control.
Therefore clang takes the carry-in from a general-
purpose register and produces the carry-out in a
general-purpose register (and it’s not particularly
clever in doing that).

3https://godbolt.org/z/99PdqvMTb

2.2 Growable Integers
Signed variable-length integers in various program-
ming languages can have arbitrary length. At run
time, in most cases the operands of, e.g., an addi-
tion fit in the smallest container available, but if the
addition results in a signed overflow, a slow multi-
word addition needs to be performed. This means
that a signed overflow test is needed after every ad-
dition of two small growable integers.

As an example, in the non-JIT variant of the
BC run-time system for Racket-8.6 a value is rep-
resented by a machine word; the machine word is
either such a small integer (tagged with 1), or a
pointer to a more elaborate (boxed) representation
Scheme_Object of all other kinds of values, includ-
ing larger integers. After checking the tags, the
addition of two small tagged integers is performed
by the code shown in the upper part of Fig. 3.

This code uses the additional bit originally used
by the tag to check for the overflow, yet the overflow
test still looks quite complex: The result of the ad-
dition is first tagged (giving o) and then untagged
(into r) again, so that r now contains the wrong sign
in case of an overflow. Then r is checked for correct-
ness by trying to undo the addition. In the common
(not overflowing) case, o is the tagged result, oth-
erwise ADD_slow() produces a boxed bignum.

This code can be improved by using the GCC
extension __builtin_add_overflow() (lower part
of Fig. 3). In this case, the overflow flag is used right
away and does not need to be preserved, resulting

5The shown code is derived from the original ADD function
by putting the untagging at the callee rather than the caller
side, expanding the macros, and simplifying the resulting
code. The C and assembler code for the lower part can also
be found at https://godbolt.org/z/TroqhsrrM

2

https://gmplib.org/repo/gmp-6.2/file/402b9c4efacb/mpn/riscv/64/aors_n.asm
https://gmplib.org/repo/gmp-6.2/file/402b9c4efacb/mpn/riscv/64/aors_n.asm
https://godbolt.org/z/99PdqvMTb
https://godbolt.org/z/TroqhsrrM

/* close to original */
Scheme_Object *ADD_tagged(sarq %rdi

Scheme_Object *tagged_a, sarq %rsi
Scheme_Object *tagged_b) leaq (%rdi,%rsi), %rax

{ leaq 1(%rax,%rax), %rax
intptr_t a = ((intptr_t)tagged_a)>>1; movq %rax, %rdx
intptr_t b = ((intptr_t)tagged_b)>>1; sarq %rdx
intptr_t r; subq %rdi, %rdx
Scheme_Object *o; cmpq %rdx, %rsi
r = (uintptr_t)a + (uintptr_t)b; jne .L6
o = (Scheme_Object *) ret

((((uintptr_t)r)<<1)|1); .L6:
r = ((intptr_t)o) >> 1; jmp ADD_slow@PLT
if (b == (uintptr_t)r - (uintptr_t)a)

return o ;
else

return ADD_slow (a , b) ;
}
--
/* using __builtin_add_overflow() */ leaq -1(%rsi), %rax
Scheme_Object *ADD_tagged1(addq %rdi, %rax

Scheme_Object *tagged_a, jo .L8
Scheme_Object *tagged_b) ret

.L8:
{ sarq %rsi

intptr_t a1=(intptr_t) tagged_a; sarq %rdi
intptr_t b1=(intptr_t) tagged_b; jmp ADD_slow
intptr_t r ;

#RISC-V
if (!__builtin_add_overflow(a1,(b1-1),&r)) addi a4,a1,-1

return (Scheme_Object *)r; mv a5,a0
add a0,a0,a4

intptr_t a = ((intptr_t)tagged_a)>>1; slti a3,a5,0
intptr_t b = ((intptr_t)tagged_b)>>1; slt a4,a0,a4
return ADD_slow (a , b); bne a3,a4,.L8

} ret
.L8:

srai a1,a1,1
srai a0,a5,1
tail ADD_slow

Figure 3: Two versions of adding two small growable integers in the non-JIT Racket-8.6 BC run-time
system5and the resulting AMD64 and RISC-V code

in good code produced for AMD64.
However, for RISC-V the resulting code is quite

a bit longer, because RISC-V has to synthesize
the overflow result by performing three compar-
isons. This is still shorter than the code pro-
duced for the ADD_tagged source code without
__builtin_add_overflow().

3 Previous work
There has been a lot of variation in dealing with
carry and overflow in instruction sets.

The IBM S/360 [36022] has, e.g., signed (e.g. A)
and unsigned (e.g., AL) addition instructions, which
indicate type-specific overflow through instruction-
specific settings of the two condition-code bits;
signed overflows trap unless masked by bit 20 in
the program status word. Instructions that support
carry-in, such as ALCR were added with ESA/390 in
1990.

Several architectures, among them AMD64 and
ARM A64, have flags for Negative/Sign, Zero,
Carry, and oVerflow (NZCV) in a condition code
register. Implementations of these architectures
with out-of-order execution (dominant in every-

3

thing from smartphones to servers) need to have
many physical condition-code registers to avoid
slowdowns from write-after-write hazards. E.g., In-
tel’s Golden Cove P-core has 280 physical flags reg-
isters, as many as physical integer registers.6
Yet, the architectural interface of providing only

one architectural flags register means that Intel had
to add the ADX extension [OGGF12] to allow using
two carry chains in multi-precision arithmetic, as we
saw in Section 2.1. We also saw the difficulties that
compilers have with this kind of interface.
Some other architectures have therefore tried to

avoid condition-code registers:
Instruction sets in the MIPS [MIP14] family

(e.g., Alpha, DLX, RISC-V) have no condition
codes and replace them with various combinations
of comparison instructions that put their results
in registers and compare-and-branch instructions;
MIPS, Alpha and DLX (but not RISC-V) also have
signed arithmetic instructions that trap (but, e.g.,
C compilers generate the “unsigned” instructions
for signed arithmetic instead). MIPS64r6 has added
BOVC and BNVC; BOVC branches (and BNVC does not
branch) if the signed addition of its two operands
overflows, covering the case discussed in Section 2.2.
The lack of addition with carry-in carry-out leads
to the five-instruction three-cycle workaround (see
Section 2.1).
The 88000 [Mot90] has a compare instruction

that writes a collection of flags to a general-purpose
register. But it also has a carry bit in the proces-
sor status register PSR, with carry-in and carry-out
explicitly controlled in the instruction word.
Power [IBM05] has a condition code register that

can hold 8 4-bit condition codes, improving on the
situation with a single condition code. However,
many integer instructions can only write to CR0,
but at least the programmer can control (with a
bit in the instruction encoding) whether or not the
instruction overwrites CR0. These condition codes
don’t include carry (CA) and overflow (OV), which
are kept separate in the XER register; Power also
has summary overflow (SO), i.e., a sticky overflow
bit. Writing to OV and SO is controlled by another
bit in the instruction encoding. In addition to nor-
mal add instructions that perform neither carry-
in nor carry-out, there are carry-out instructions
(e.g., addc and carry-in carry-out instructions (e.g.,
adde). As a result, while there is still only one carry
and one overflow bit, at least it is easy to avoid ac-
cidentally overwriting them.
Overall, the importance of carry and overflow

seems to have increased over time, as is witnessed
by the addition of the ALCR instruction in the IBM
ESA/390, the addition of the ADX extension to In-
tel CPUs since Broadwell (2014) and to AMD CPUs

6https://chipsandcheese.com/2021/12/21/
gracemont-revenge-of-the-atom-cores/

since Zen (2017), and the addition of BOVC/BNVC
to MIPS64r6 (2014). This increased importance is
probably due to the increasing use of cryptography,
and the increasing popularity of programming lan-
guages that support big integers.

Our explanation for the non-use of add with carry
input is that other operations between the invo-
cations of __builtin_addcl might be (and indeed
are) compiled to code that overwrites the condition-
code carry, so the compiler needs to save the con-
dition code into a general-purpose register which is
under the control of the register allocator. To make
better use of the carry flag, the compiler would need
to select code that does not change the carry flag
for all these other operations; given that the use of
an explicit carry flag is rare in most code, it is not
surprising that compilers are not set up for doing
this.

4 How to add carry and over-
flow to general-purpose reg-
isters

Our solution to these problems is to enhance the
general-purpose registers with bits for carry and
overflow.

In most of this section we present this as an ex-
tension to RISC-V, but the basic idea can also be
applied to other architectures, including architec-
tures that have a condition code register with carry
and overflow.

The benefits to RISC-V and other architectures
without carry and overflow flags are the reduced
instruction count and latency for multi-precision
arithmetic and for overflow detection, both in as-
sembly language and in compiled languages.

The benefits to architectures that have carry and
overflow flags in condition codes are: 1) Code that
has more than one carry bit alive at the same time,
e.g., multi-precision multiplication can be written
without having to materialize some carry bits in a
general-purpose register. 2) Compilers have an eas-
ier time managing these bits, allowing for compiled
code that is much closer in performance to hand-
written code by assembly programmers.

4.1 Extending the general-purpose
registers

Each general-purpose register gets two additional
bits. The way these bits are set depends on the
instructions; below we describe the typical meaning.

carry An instruction typically sets this if the com-
putation overflows the unsigned range when
the inputs are interpreted as unsigned.

4

https://chipsandcheese.com/2021/12/21/gracemont-revenge-of-the-atom-cores/
https://chipsandcheese.com/2021/12/21/gracemont-revenge-of-the-atom-cores/

overflow An instruction typically sets this if the
computation overflows or underflows the un-
signed range when the inputs are interpreted
as signed.

In x0 (the register always containing zero) the
carry and overflow bits are 0.

4.2 Adapting existing RV64G in-
structions

All existing instructions write the carry and over-
flow bits along with all the other bits of their desti-
nation register (if they have one). Unless otherwise
noted, the carry and overflow bits are cleared.
None of the existing instructions use the carry

or overflow bits as inputs (not even for computing
carry or overflow).
Addition instructions compute the carry bit as

the 65th bit of the sum of the zero-extended 64-
bit operands. There are various ways to compute
signed overflow; one way is to compute the 65th bit
of the sum of the sign-extended operands and xor
it with the 64th bit.
Subtraction instructions work like additions that

first two’s-complement the subtrahend in 64 bits.
As a result, the carry bit is set if the subtraction
did not underflow and is clear on underflow. I.e., in
the schism between carry and borrow, our extension
is on the carry side.
Bitwise operations (and, or, xor) operate on all

the bits, including carry and overflow. This al-
lows to perform boolean operations on the carry
and overflow bits before checking them.
RISC-V normally implements a register-to-

register move (mv) as addition with x0. This
clears both carry and overflow, so after adding
the extension the preferred way for the register-
to-register move is to use or rd, x0, rs2 or
xor rd, x0, rs2; unfortunately, there are no com-
pressed (16-bit) encodings (yet) for either of these
instructions.
Shift-left instructions set the carry bit if any of

the shifted-out bits is set (i.e., if the shift, inter-
preted as unsigned multiplication by a power of two,
overflows), and set the overflow bit if any of the
shifted-out bits are not equal to the sign bit of the
result.
The lower-part multiplication instruction (mul)

sets the carry bit if the result of the unsigned mul-
tiplication does not fit in 64 bits, and sets the over-
flow bit if any of the upper bits of the result of
signed multiplication is different from the sign bit
of the result.
Division and remainder instructions set carry on

division by zero, and set the overflow bit on division
by zero and on division overflow (signed division of
the smallest value by −1).

The instructions for dealing with 32-bit values in
RV64G (those with the w suffix) perform the 32-bit
analogues of the operations described above, i.e.,
they treat the 32nd bit as sign bit, the carry and
overflow bits represent the unsigned or signed over-
flow beyond the 32-bit range.

The other instructions clear the carry and over-
flow bits.

4.3 New instructions
This section describes the new instructions in ordi-
nary (user-level) code.

addc rd, rs1, rs2

The intention of this instruction is that rs1 contains
the result of an addition instruction. Addc adds the
carry bit of rs2 to the 65-bit unsigned and signed
data that the earlier addition has left in rs1. Addc
can also be used with the result of some other in-
struction in rs1, and will produce a deterministic
result in the carry and overflow bits (by just inter-
preting them as if they came from an addition), but
these bits of the result may not be very useful.

For the unsigned case, the 65th bit is the carry
bit.

For the signed case, the 65th bit has to be recon-
structed from the overflow bit: Since the overflow
bit is the xor of the 65th and 64th bit, the 65th bit
can be reconstructed by xoring the 64th bit with the
overflow bit. After adding the carry bit of rs2, the
overflow has to be recomputed again by xoring the
65th and 64th bit of the result.

The sequence

add r3, r1, r2
addc r3, r3, r4

performs an add of r1 and r2 with carry-in from
r4, giving a result with carry-out and overflow in
r5. This fits nicely in RISC-V’s usual scheme of
having two input operands. For some architectures
one instruction with three input operands may be
a better fit. For RISC-V, the instruction decoder
can fuse a sequence of two such instructions into a
single fused instruction [CDPA16].

Note that, even if the instructions are executed
separately, the latency of multi-precision arithmetic
is one cycle per result word, because the only long
dependence chain is from one addc instruction to
the next; the adds are all independent of each other.

For subtraction with carry-in, one can use the
following sequence:

not r3, r1
add r3, r2, r3
addc r3, r3, r4

5

This subtracts r1 from r3, with carry-in from r4.
If multi-precision subtraction is important enough,
we can also add a subc instruction that works with
the sub instruction. Or, alternatively, the instruc-
tion decoder could recognize the sequence above
and replace it with, e.g., a three-operand subtract-
with-carry micro-instruction.
Like for multi-precision addition, the latency of

multi-precision subtraction is one cycle per result
word, due to the carry chain.

bo rs1, rs2, target

If the overflow bit of rs1 or the overflow bit of
rs2 is set, branch to the target. Checking for two
overflows at once can reduce the number of branch
instructions needed for catching overflows in code
that checks the overflow status of all operations.
Picking apart which register contains the overflow
can be left to the slow overflow-handling path.

Other instructions?

We considered including a branch on carry (analo-
gous to bo), but it can be replaced with the sequence

or r3, r1, r2 #only if checking two registers
addc r3, x0, r3
bnez r3, target

and it’s not clear that branch on carry is needed
frequently enough to merit a separate instruction.
Alternatively, the bo instruction could be replaced
with an instruction that checks the overflow flag of
one source register and the carry flag of the other
source register.
X86-64 has instructions that rotate through the

carry bit (rcl rcr). However, they seem to be no
longer useful enough to justify adding an instruction
for them to an architecture that does not have them
already.7

4.4 Dealing with memory
While we have widened the registers, instructions
that deal with memory are still limited to 64 bits
or less, so we lose the contents of the carry and
overflow bits when storing values to memory in the
straightforward way.

... in user-level code

When a register is spilled and later reloaded (typi-
cally around a function call), the carry and overflow
bits are gone. That’s normally no problem: On ar-
chitectures with flags in a special-purpose register,

7https://stackoverflow.com/questions/26913354/
practical-uses-for-rotate-carry-left-right

that register is normally not preserved across calls,
either.

In the rare case when it is necessary to preserve
these bits across spilling and reloading, the bits
can be reified into the regular 64 bits of a general-
purpose register by using the addc and (if neces-
sary) bo instructions and the resulting values can be
stored into memory in a separate word. On reload-
ing the overflow bit can be used where it is in the
general-purpose register, while the carry bit can be
transferred into the carry bit of a general-purpose
register by adding −1.
The biggest problem of this approach is that it

loses a part of the compiler benefit of the idea pro-
posed in this work. The compiler now has to keep
track of which registers contain live carry and/or
overflow bits, and has to emit code for saving and
restoring them when necessary. It is probably very
rarely necessary, so the main problem is not in the
resulting code, but in the compiler complexity.

One may want to avoid that complexity by pro-
viding a not-too-expensive way to spill and refill
carry and overflow along with the rest of the reg-
ister, but we have not devised a way that we do
not deem too expensive on an implementation with
out-of-order execution.

... on context switching

On context switching the carry and overflow bits
have to be preserved. If we found good instructions
for user-level spilling and reloading, we could use
them for context switching as well. For now our
approach is:

Every store instruction updates two bits in a 64-
bit special-purpose register storeextra; the reg-
ister number of the register containing the stored
value determines which two bits in storeextra are
updated; e.g., writing r1 updates bits 2 and 3. Up-
dates from stores from different registers are inde-
penent and may be performed out-of-order. After
the general-purpose registers are stored, the value in
storeextra is transferred to a general-purpose reg-
ister; this operation needs to serialize the pipeline
in an implementation with out-of-order execution,
i.e., it has to wait for all earlier instructions to fin-
ish. Finally, that value is stored.

For reloading, first the word containing all the
carry and overflow bits is loaded and transferred
into a special-purpose register loadextra. Given
that we do not want to keep track of this register in
the out-of-order execution engine, the pipeline has
to be serialized at this point, but this can be the
same pipeline drain as before reading storeextra.
Afterwards, special load instructions ldx load the
64 regular bits from memory and fill the carry and
overflow bits from the bits in loadextra corre-
sponding to the target registers.

6

https://stackoverflow.com/questions/26913354/practical-uses-for-rotate-carry-left-right
https://stackoverflow.com/questions/26913354/practical-uses-for-rotate-carry-left-right

This approach is not very elegant, but it’s rela-
tively cheap to implement in hardware. How about
using it for spilling? That’s possible in principle,
but the pipeline serialization makes this approach
slow and the values would have to be reloaded into
the same registers from which they were spilled.
The slowness of the serialization is less of a problem
for context switching, because context switching is
less frequent, and is already a relatively slow oper-
ation.

5 Benefits
To evaluate the potential benefits, we created some
traces of the instructions executed by functions
from the multi-precision library gmp on RV64GC,
and computed the benefits in instruction count
and minimal latency that this code would enjoy if
rewritten to use addc. We selected the low-level
functions mpn_add_n() and mpn_mul_n(), which
are very good cases for our extension. In real-world
usage of multi-precision arithmetic, other code is
executed between calls to these functions, so the
benefits will be much less.
A 1024-bit mpn_add_n() performs 174 RV64GC

instructions with an overall latency of 51 cycles (as-
suming a latency of 3 for ld, 1 for add and sltu,
and 0 for mv); the latency is due to the carry chain.
By replacing the current RISC-V carry-computing
idiom with addc, the executed instructions can be
reduced to 126 instructions (factor 1.38), and the
latency can be reduced to 20 cycles (factor 2.55).
Figure 4 shows a comparison of one iteration of the
inner loop (with an unrolling factor of 2).
A 1024-bit × 1024-bit multiplication performs

4109 RV64GC instructions. They could be reduced
to 3613 instructions (factor 1.14). However, we
think that it is possible to keep more intermediate
results in registers; this would help both versions,
but would increase the improvement factor from us-
ing our extension. Figure 5 shows a comparison of
one iteration of the inner loop. The latency chain
works through the loop-carried dependency through
a6, and is reduced from 3 cycles to 2 cycles (factor
1.5), or 48 to 32 cycles for the complete inner loop.

For the growable integers in the Racket im-
plementation, the common path of the code for
ADD_tagged1 (Fig. 3) shrinks from 7 to 5 instruc-
tions (factor 1.4). The saved instructions are on the
dependence path of a predictable branch, so their
latency is usually not an issue (Fig. 6).

6 Conclusion
Carry and overflow are useful for multi-precision
arithmetic and growable integers. In existing in-

struction sets they are either single-instance flags
(even in architectures that avoid single-instance
comparison results like the 88000 and Power), or
they are not directly supported and have to be
synthesized from sequences of other instructions.
Our solution is to add carry and overflow to
general-purpose registers. This idea can be used
in any architecture. To present something con-
crete, we describe an extension to RISC-V, which
adds these bits and also adds three instructions
(addc bo ldx) and two special-purpose registers
(storeextra loadextra). The benefits of this ex-
tension are reductions in executed instructions and
in latency when performing multi-precision arith-
metic, and a reduction in executed instructions
when dealing with growable integers.

References
[36022] Wikibook: 360 assembly. https:

//en.wikibooks.org/w/index.
php?title=360_Assembly/360_
Instructions&stableid=4078098,
2022. 3

[CDPA16] Christopher Celio, Daniel Dabbelt,
David A. Patterson, and Krste
Asanović. The renewed case for
the reduced instruction set computer:
Avoiding ISA bloat with macro-op
fusion for RISC-V. Technical Report
UCB/EECS-2016-130, Berkeley, 2016.
4.3

[IBM05] IBM. PowerPC User Instruction Set
Architecture – Book I, version 2.02 edi-
tion, 2005. 3

[MIP14] MIPS. MIPS Architecture For Program-
mers Volume I-A: Introduction to the
MIPS64 Architecture, revision 6.01 edi-
tion, 2014. 3

[Mot90] Motorola, Inc. MC88100 RISC Micro-
processor User’s Manual, second edi-
tion, 1990. 3

[OGGF12] Erdinc Ozturk, James Guilford, Vinodh
Gopal, and Wajdi Feghali. New instruc-
tions supporting large integer arith-
metic on Intel architecture processors.
White Paper 327831-001, Intel, 2012.
2.1, 2, 3

[WA17] Andrew Waterman and Krste Asanovic̀,
editors. The RISC-V Instruction Set
Manual, Volume I: User-Level ISA.
RISC-V Foundation, document ver-
sion 2.2 edition, May 2017. 2

7

https://en.wikibooks.org/w/index.php?title=360_Assembly/360_Instructions&stableid=4078098
https://en.wikibooks.org/w/index.php?title=360_Assembly/360_Instructions&stableid=4078098
https://en.wikibooks.org/w/index.php?title=360_Assembly/360_Instructions&stableid=4078098
https://en.wikibooks.org/w/index.php?title=360_Assembly/360_Instructions&stableid=4078098

RV64G extended RV64G
ld a4,0(a1) ld a4,0(a1)
ld a6,0(a2) ld a6,0(a2)
addi a3,a3,-2 addi a3,a3,-2
addi a1,a1,16 addi a1,a1,16
add t0,a4,a6 add t4,a4,a6
sltu t2,t0,a4 addc t4,t4,t1
add t4,t0,t6
sltu t3,t4,t0
sd t4,0(a0) sd t4,0(a0)
add t6,t2,t3
ld a5,-8(a1) ld a5,-8(a1)
ld a7,8(a2) ld a7,8(a2)
addi a2,a2,16 addi a2,a2,16
addi a0,a0,16 addi a0,a0,16
add t1,a5,a7 add t1,a5,a7
sltu t2,t1,a5 addc t1,t1,t4
add t4,t1,t6
sltu t3,t4,t1
sd t4,-8(a0) sd t4,-8(a0)
add t6,t2,t3
bnez a3, loop bnez a3, loop

Figure 4: Inner loop body of multi-precision addition

#RV64G #extended RV64G
ld a7,0(a1) ld a7,0(a1)
addi a1,a1,8 addi a1,a1,8
ld a4,0(a0) ld a4,0(a0)
addi a0,a0,8 addi a0,a0,8
mul a5,a7,a3 mul a5,a7,a3
addi a2,a2,-1 addi a2,a2,-1
mulhu a7,a7,a3 mulhu a7,a7,a3
add a5,a5,a4 add a5,a5,a4
add a6,a6,a5 add a6,a6,a5
sltu a4,a5,a4
add a4,a4,a7 addc a4,a7,a5
sltu a5,a6,a5
sd a6,-8(a0) sd a6,-8(a0)
add a6,a4,a5 addc a6,a4,a6
bnez a2, loop bnez a2, loop

Figure 5: Inner loop body of multi-precision multiplication

8

#RV64G #extended RV64G
addi a4,a1,-1 addi a4,a1,-1
mv a5,a0 mv a5,a0
add a0,a0,a4 add a0,a0,a4
slti a3,a5,0
slt a4,a0,a4
bne a3,a4,.L8 bo a0,zero,.L8
ret ret

.L8: .L8:
srai a1,a1,1 srai a1,a1,1
srai a0,a5,1 srai a0,a5,1
tail ADD_slow tail ADD_slow

Figure 6: Growable integer addition

9

	Introduction
	Motivation
	Unsigned multi-precision arithmetics
	Growable Integers

	Previous work
	How to add carry and overflow to general-purpose registers
	Extending the general-purpose registers
	Adapting existing RV64G instructions
	New instructions
	addc rd, rs1, rs2
	bo rs1, rs2, target
	Other instructions?

	Dealing with memory
	... in user-level code
	... on context switching

	Benefits
	Conclusion

