
Optimizing Indirect Branch Prediction

Accuracy in Virtual Machine Interpreters

Michal Revucky
michal.revucky@aon.at

January 6, 2007

Abstract

The paper [EG03b] deals with two methods, which are used to
reduce mispredictions of indirect branches in virtual machine inter-
preters. Interpreters designed for efficiency can spent a lot of their
execution time recovering from misprediction of indirect branches.
Branch target buffers is a common method of reducing mispredic-
tions, however the accuracy of this method in existing interpreters
is only 2% - 50%. The proposed methods of improving the branch
prediction accuracy of BTBs for interpreters are: replicating virtual
machine (VM) instructions and the use of superinstructions1. The use
of these techniques results in speedups by a factor of 3.17 over effi-
cient threaded code interpreters and speedups by a factor of 1.3 over
techniques relying on superinstructions only.

1 Introduction

Interpreters are popular language implementation technique, when choos-
ing this approach there are certain advantages like Ease of implementation,
Portability and Compilation Speed on the other hand the Execution Speed of
a program suffers by a factor of ten slowdown for general-purpose programs
over native code produced by an optimizing compiler [HATW99]. The Rea-
son for this slowdown is that modern interpreters execute a huge number of
indirect branches (up to 13% of the executed instructions). A misprediction
of an indirect branch on modern architectures is expensive (it costs about 10
cycles on a Pentium III and up to 20 cycles on a Pentium IV). This fact leads

1combing a sequence of instructions into a single instruction

1



to the problem that even an efficient interpreter can spend more than the
half of its execution time in recovering from branch mispredictions [EG01].

The best indirect branch predictor in today’s processors is the branch
target buffer (BTB). BTBs mispredict 50%-63% of the executed branches on
threaded code interpreters and 81%-98% in switch based interpreters.

The rest of this paper will deal with:

• Interpreters and their utilization of BTBs.

• Improving the branch prediction accuracy with the new method of
replicating VM instructions.

• Evaluation of this new method as well of the existing super instruction
method.

2 Background

2.1 Efficient Interpreters

If we want to implement an efficient interpreter it should be fast interpreting
a program, performing large number of simple operations rather than spend
most of its time in native code library. On programs implementing a large
number of simple operations, interpreters are slowest compared to native
code compilers. Interpreters are divided into a front-end and a back-end.
The reason for this is to avoid parsing the source over and over. The front-
end (compiler) therefore produces VM code which has a flat layout and may
be executed efficiently by the back-end.

The execution of one VM instruction consists of accessing its arguments
performing the function of the instruction and dispatching (fetching, decod-
ing and starting) the next VM instruction. Dispatch is common to each
VM instruction and inefficient dispatch leads to inefficient interpreters. A
dispatch of one VM instruction in efficient interpreters can be implemented
by 3 native instructions (including the indirect branch), this leads to a high
occurrence of indirect branches in the VM instruction mix.

There are two popular VM instruction dispatch methods:

Switch dispatch it is implemented by using a huge switch statement,
each case for each instruction implemented by the virtual machine. Although
this method is not very efficient [EG01] it must be used when building a VM
according to ANSI C.

2



Threaded code represents a VM instruction as address of the routine
that implements the instruction [Be73]. The code for dispatching the next
VM instruction consists of fetching the VM instruction, jumping to the
fetched address and incrementing the instruction pointer. This technique
may be implemented with GNU C using the labels-as-values extension.

2.2 BTBs and Interpreters

Over the time CPU pipelines grew in order to support faster clock rates and
out-of-order superscalar execution. Straight-line code are executed very fast
on such CPUs, but their weaknesses are the branches, since they are resolved
late in the pipeline (stage n), it would take n cycles until a branch is a the
same stage in the pipeline if there was no branch, that’s why they affect the
start of the pipeline.

The occurrence of this problem is reduced by the usage of branch pre-
diction. A widely spread branch predictor in modern CPUs is the branch
target buffer (BTB). An idealised BTB contains one entry for each branch
and predicts that the branch jumps to the same target as the last time the
branch was taken (see Fig. 1).

Figure 1: Branch Target Buffer

As research has shown BTBs mispredict 81%-98% of indirect branches in
switch-dispatch interpreters and 57%-63% of indirect branches in threaded
code interpreters. The reason for this difference is that in threaded code
each VM instruction has its own dispatch sequence. On the other hand
the switch dispatch has a single dispatch code and breaks are compiled into
unconditional branches to this common dispatch code.

When you consider the code fragment in Fig. 2. Imagine that that the
loop was executed at least once. With the switch dispatch there is only one
BTB entry involved. When jumping to native code of VM instruction A,
the BTB entry is updated to point to that native code routine. When the
next VM instruction is dispatched the BTB predicts A, which in our case is
wrong and the VM instruction B would be correct. In this example the BTB
always predicts wrong.

3



Figure 2: BTB Prediction on a small VM program

On the other hand for threaded code, each VM instruction has its own
indirect branch as well as its own BTB entry. Consider the code for threaded
code in Fig. 2, for example when VM instruction B is dispatched for the
first time the BTB br B entry is updated to A and the branch prediction will
be correct this also applies to GOTO. Since the VM instruction A appears
twice in this code fragment its branch prediction using BTB will never be
correct, because br A will alternatingly be updated to B and GOTO, but
never correctly.

The rest of the paper will deal with interpreters using separate dispatch
branches.

3 Improving Prediction Accuracy

Mispredictions are common when a VM instruction appears in the working
set of an interpreted program more than once. If a VM instruction appears
only once, the BTB will predict its dispatch correctly. Two methods were
developed or reused in order to reach this aim.

3.1 Replicating VM Instructions

While replicating VM instructions, it is avoided to have several VM instruc-
tions spread across the working set of an interpreted program. With replica-
tion of VM instructions there are copies for a single instruction. The aim is
that a replica appears only once, then its branch will be predicted correctly,
since each instruction will have its own BTB entry.

In Figure 3 you may see how this works. The VM instruction A has now
two replicas A1 and A2. Both of these copies have its own dispatch branch
and its own entry in the BTB. In our Example A1 is always followed by B

and A2 is always followed by GOTO and the dispatch branches for A1 and
A2 will be always predicted correctly, after the interpreter executed the loop
for the first time.

4



Figure 3: Replicating VM Instructions

3.2 Superinstructions

When using superinstructions several VM instructions are combinded into
a single superinstruction. This approach was use to reduce the size of VM
code. It has also positive effects on branch prediction accuracy. When you
consider Figure 4 it gets quite clear why this is the case. The sequence B and
A is combined into a single superinstruction B A. And now there are only
unique instructions in this code fragment, every dispatch of each instruction
has its own BTB entry and therefore after the first iteration of the loop the
targets will be predicted correctly.

Figure 4: BTB Accuracy and Superinstructions

4 Implementation

There are two ways of implementing these two methods, the static and the
dynamic approach. With the static approach the interpreter writer provides
replicas and/or superinstructions at interpreter build-time. This is usually
done by supplying C code to the interpreter. With the dynamic approach
the interpreter front-end generates VM code and produces replicas and/or
superinstructions.

5



5 Speedups

The new techniques provide nice speedups over existing techniques provided
by efficient interpreters. A speedup by a factor of 2.08 is reached with static

both (a combination of replication and super instructions, implemented with
the static approach). With static super (superinstructions only) a factor of
3.17 is reached.

6 Conclusion

VM code contains many indirect branches. Since common branch predictors
do not always predict an indirect branch correctly, software techniques have
to be implemented in order to exhaust a branch predictor entirely. This sum-
mary presented such two techniques. Both techniques brought a remarkable
speedup of the executed VM code.

References

[EG03b] M. Anton Ertl and David Gregg. Optimizing indirect branch pre-
diction accuracy in virtual machine interpreters. In SIGPLAN ’03 Con-
ference on Programming Language Design and Implementation, 2003.

[HATW99] J. Hoogerbrugge, L. Augusteijn, J. Trum and R. van de Wiel.
A code compression system based on pipelined interpreters. Software-

Practice and Experience, 29(11):1005-1023, Sept. 1999

[EG01] M. A. Ertl and D. Gregg. The behaviour of efficient virtual machine
interpreters on modern architectures. In Euro-Par 2001, pages 403-412.
Springer LNCS 2150, 2001.

[Be73] J. R. Bell. Threaded code. Commun. ACM, 16(6):370-372, 1973.

6


