
RustOS - A Custom
Operating System in Rust

Konstantin Unterweger, Köppl Michael, Loidolt Lukas, Pritzl Johannes

RustOS - Overview

● no_std environment (no standard library)
● Bare-metal x86-64 OS development
● Rust and WebAssembly
● Built from scratch following OS development principles

Requirements That Demand Low-Level Control

Key challenges requiring low-level programming:

● Direct hardware access (keyboard, memory, interrupts)
● No operating system underneath - RustOS IS the OS
● Manual memory management without allocator
● Interrupt handling at CPU level
● Performance-critical operations

CPU Segmentation Setup

Why low-level?

● Direct CPU segment register manipulation
● Required for x86-64 protected mode
● Task State Segment (TSS) configuration

pub fn initialize_global_descriptor_table() {

 GLOBAL_DESCRIPTOR_CONTEXT.gdt.load();

 unsafe {

 CS::set_reg(GLOBAL_DESCRIPTOR_CONTEXT.kernel_code);

 SS::set_reg(GLOBAL_DESCRIPTOR_CONTEXT.kernel_data);

 DS::set_reg(GLOBAL_DESCRIPTOR_CONTEXT.kernel_data);

 ES::set_reg(GLOBAL_DESCRIPTOR_CONTEXT.kernel_data);

 load_tss(GLOBAL_DESCRIPTOR_CONTEXT.task_state);

 }

}

Reading Keyboard Input - The Hardware Way
extern "x86-interrupt" fn keyboard_interrupt_handler(_stack_frame: InterruptStackFrame) {

 let mut ps2_port: Port<u8> = Port::new(0x60);

 let scancode = unsafe { ps2_port.read() };

 add_scancode(scancode);

 unsafe {

 PICS.lock()

 .notify_end_of_interrupt(u8::from(InterruptIndex::Keyboard));

 }

}

Why low-level?

● Direct port I/O (0x60 = PS/2 keyboard port)
● Custom interrupt descriptor table (IDT)
● Manual interrupt acknowledgment to PIC
● unsafe blocks for hardware access

Handling Catastrophic Errors
lazy_static! {

 static ref TASK_STATE_SEGMENT: TaskStateSegment = {

 let mut task_state_segment = TaskStateSegment::new();

 task_state_segment.interrupt_stack_table[DOUBLE_FAULT_IST_INDEX as usize] = {

 const STACK_SIZE: usize = 4096 * 5;

 static mut STACK: [u8; STACK_SIZE] = [0; STACK_SIZE];

 let stack_start = VirtAddr::from_ptr(&raw const STACK);

 stack_start + STACK_SIZE as u64

 };

 task_state_segment

 };

}

Handling Catastrophic Errors

Why low-level?

● Custom interrupt stack table (IST)
● Manual stack allocation for fault handlers
● Prevents infinite crashes from stack overflow

Building Our Own Heap
pub fn init_heap(mapper: &mut impl Mapper<Size4KiB>, frame_allocator: &mut impl

FrameAllocator<Size4KiB>) -> Result<(), MapToError<Size4KiB>> {

 ...

 for page in page_range {

 let frame = frame_allocator.allocate_frame().ok_or(MapToError::FrameAllocationFailed)?;

 let flags = PageTableFlags::PRESENT | PageTableFlags::WRITABLE;

 unsafe { mapper.map_to(page, frame, flags, frame_allocator)?.flush() };

 }

 unsafe {

 ALLOCATOR.lock().init(HEAP_START as *mut u8, HEAP_SIZE);

 }

 Ok(())

}

Building Our Own Heap

Why low-level?

● Manual page table manipulation
● Virtual to physical memory mapping
● No malloc/free - we implement it!

Custom Async Executor (Shell Task)
impl Stream for ScanCodeStream {

 type Item = u8;

 fn poll_next(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Option<u8>> {

 let queue = SCANCODE_QUEUE.try_get().expect("scancode queue not initialized");

 if let Some(scancode) = queue.pop() { return Poll::Ready(Some(scancode)); }

 WAKER.register(cx.waker());

 match queue.pop() {

 Some(scancode) => {

 WAKER.take();

 Poll::Ready(Some(scancode))

 }

 None => Poll::Pending,

 }

 }

}

Custom Async Executor (Shell Task)

Why low-level?

● Custom async runtime (no tokio!)
● Manual waker implementation
● Lock-free queue for interrupt → task communication

Running WASM without an OS
pub fn init_wasm_game(wasm_bytes: &'static [u8]) {

 let engine = Engine::default();

 let module = Module::new(&engine, wasm_bytes).expect("Failed to parse WASM module");

 let mut linker = Linker::new(&engine);

 linker

 .func_wrap("env", "put_pixel",

 |_caller: Caller<T>, x: i32, y: i32, r: i32, g: i32, b: i32| {

 let color = Rgb {

 r: r as u8,

 g: g as u8,

 b: b as u8,

 };

 framebuffer::put_pixel(x as usize, y as usize, color);

 },

)

 .unwrap();

}

Running WASM without an OS

Why low-level?

● WASM interpreter in no_std environment
● Custom host function bindings
● Manual memory bridge between Rust and WASM

Filesystem in Memory

Why low-level?

● Parse format manually
● No disk driver - ramdisk only
● Custom error handling without std::io

pub fn init_filesystem(ramdisk: &'static [u8]) -> Result<()> {

 let fs = FileSystem::from_tar(ramdisk.into())?;

 FILE_SYSTEM.init_once(|| Mutex::new(fs));

 Ok(())

}

Testing Without a Test Framework

Cannot use the test crate since no std!

Still wanted to make use of Rust’s test capabilities!

1. Compile each test as a bootable kernel
2. QEMU boots the test kernel (headless mode)
3. Test runner executes all #[test_case] functions
4. Results printed via serial port (not screen!)
5. QEMU exits with success/failure code
6. Build system interprets exit code

The Complete Picture

Shell (Async Task)

Custom Executor

Scancode Stream (Queue)

Keyboard Interrupt Handler

IDT + GDT + TSS

Memory Manager + Allocator

Bootloader

How we benefited from Rust

1. Hardware Control: Direct PS/2 port access, interrupt handling
2. No Runtime: No std lib, custom allocator, manual memory management
3. Performance: Zero-cost abstractions, no GC pauses
4. Safety: Rust's type system prevents common bugs
5. Complete Control: We decide EVERYTHING
6. Testing: Unit test capabilities built-in

Result: A functioning OS with shell, filesystem, and even WASM games!

