RustOS - A Custom
Operating System in Rust

Konstantin Unterweger, Koppl Michael, Loidolt Lukas, Pritzl Johannes

RustOS - Overview

no_std environment (no standard library)
Bare-metal x86-64 OS development
Rust and WebAssembly

[
o
[
e Built from scratch following OS development principles

Requirements That Demand Low-Level Control

Key challenges requiring low-level programming:

Direct hardware access (keyboard, memory, interrupts)
No operating system underneath - RustOS IS the OS
Manual memory management without allocator
Interrupt handling at CPU level

Performance-critical operations

CPU Segmentation Setup

pub fn initialize global descriptor tabld) {
GLOBAL DESCRIPTOR CONTEXT.gdt.load();
unsafe {
CS::set reg(GLOBAL DESCRIPTOR CONTEXT. kernel code)
SS::set reg(GLOBAL DESCRIPTOR CONTEXT kernel data);
()
)

14

14

DS::set reg(GLOBAL DESCRIPTOR CONTEXT. kernel data
ES::set reg(GLOBAL DESCRIPTOR CONTEXT. kernel data
load tss(GLOBAL DESCRIPTOR CONTEXT. task state);

14

)
Why low-level?

e Direct CPU segment register manipulation
e Required for x86-64 protected mode
e Task State Segment (TSS) configuration

Reading Keyboard Input - The Hardware Way

extern "x86-interrupt" fn keyboard interrupt handler(stack frame: InterruptStackFrame) {
let mut ps2 port: Port<u8> = Port::new(0x60);

let scancode = unsafe { ps2 port.read() };

add scancode(scancode) ;

unsafe {
PICS.lock()

.notify end of interrupt(u8::from(InterruptlIndex::Keyboard));

}
Why low-level?

Direct port 1/0O (0x60 = PS/2 keyboard port)
Custom interrupt descriptor table (IDT)
Manual interrupt acknowledgment to PIC
unsafe blocks for hardware access

Handling Catastrophic Errors

lazy static! {
static ref TASK STATE SEGMENT: TaskStateSegment = {

let mut task state segment = TaskStateSegment::new();

task state segment.interrupt stack table[DOUBLE FAULT IST INDEX as usize]
const STACK SIZE: usize = 4096 * 5;
static mut STACK: [u8; STACK SIZE] = [0; STACK SIZE];
let stack start = VirtAddr::from ptr(&raw const STACK);
stack start + STACK SIZE as u64
bi

task state segment

}s

Handling Catastrophic Errors

Why low-level?

e Custom interrupt stack table (IST)
e Manual stack allocation for fault handlers
e Prevents infinite crashes from stack overflow

Building Our Own Heap

pub fn init heap(mapper: &mut impl Mapper<Size4KiB>, frame allocator: &mut impl
FrameAllocator<kSizedKiB>) -> Result< (), MapToError<SizedKiB>> {

for page in page range {

let frame =

frame allocator.allocate frame().ok or(MapToError::FrameAllocationFailed ?;
let flags = PageTableFlags: :PRESENT | PageTableFlags: :WRITABLE;

unsafe { mapper.map to(page, frame, flags, frame allocator)?.flush() };

unsafe {

ALLOCATOR. lock() .init (HEAP START as *mut u8, HEAP SIZE);

Ok (())

Building Our Own Heap

Why low-level?

e Manual page table manipulation
e \Virtual to physical memory mapping
e No malloc/free - we implement it!

Custom Async Executor (Shell Task)

impl Stream for ScanCodeStream {
type Item = u8;
fn poll next(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Option<u8>> ({

let queue = SCANCODE QUEUE.try get() .expect("scancode queue not initialized');

if let Some(scancode) = queue.pop() { return Poll::Ready(Some(scancode)); }
WAKER.register(cx.waker());
match queue.pop () {

Some (scancode) => {
WAKER. take() ;
Poll: :Ready(Some (scancode))

}
None => Poll::Pending,

Custom Async Executor (Shell Task)

Why low-level?

e Custom async runtime (no tokio!)
e Manual waker implementation
e Lock-free queue for interrupt — task communication

Running WASM without an OS

pub fn init wasm game(wasm bytes: &'static [u8]) {
let engine = Engine::default();
let module = Module::new(&engine, wasm bytes) .expect("Failed to parse WASM module');
let mut linker = Linker::new(&engine);
linker
func wrap("env", "put pixel",
| caller: Caller<T>, x: 132, y: 132, r: 132, g: 132, b: 132] {
let color = Rgb {
r: r as us§,
g: g as us,
b: b as us§,
bi
framebuffer::put pixel(x as usize, y as usize, color);
by
)

.unwrap () ;

Running WASM without an OS

Why low-level?

e \WASM interpreter in no_std environment
e Custom host function bindings
e Manual memory bridge between Rust and WASM

Filesystem in Memory

pub fn init filesystem(ramdisk: &'static [u8]) -> Result<()> {
let fs = FileSystem::from tar(ramdisk.into())?;
FILE SYSTEM.init once(|| Mutex::new(fs));
Ok (())

}

Why low-level?

e Parse format manually
e No disk driver - ramdisk only
e Custom error handling without std::io

Testing Without a Test Framework

Cannot use the test crate since no std!

Still wanted to make use of Rust’s test capabilities!

SRS

Compile each test as a bootable kernel
QEMU boots the test kernel (headless mode)
Test runner executes all #[test_case] functions
Results printed via serial port (not screen!)
QEMU exits with success/failure code

Build system interprets exit code

The Complete Picture

Shell (Async Task)

Custom Executor

Scancode Stream (Queue)
Keyboard Interrupt Handler
IDT + GDT + TSS

Memory Manager + Allocator

Bootloader

How we benefited from Rust

Hardware Control: Direct PS/2 port access, interrupt handling

No Runtime: No std lib, custom allocator, manual memory management
Performance: Zero-cost abstractions, no GC pauses

Safety: Rust's type system prevents common bugs

Complete Control: We decide EVERYTHING

Testing: Unit test capabilities built-in

SRS

Result: A functioning OS with shell, filesystem, and even WASM games!

