
Efficient Programs
Group 20 - Optimizing [myjoin] using Rust



Rusty-join: 
● We implemented the program in Rust
● Compare various algorithmic versions and implementation improvements
● Benchmarking results for multithreaded versions with criterion
● https://github.com/mwage/rusty-join

Objective: Perform a join operation on files based on a specified key column.

Challenge: Efficiently process large datasets, ensuring low runtime and memory 
overhead.

https://github.com/mwage/rusty-join


Overview of Optimization steps 

1. Baseline Implementation: Initial naive join.
2. Sorting: Improve algorithm through sorting.
3. Hash-Based Joins : Efficient data structures for faster lookups.
4. Reduced Hash Joins: Reduces number of Hashmaps
5. Multithreading: Exploiting parallelism for further speedups.
6. Polars Library: Comparison with an external library.



Baseline implementation - V1
● Read all four files into vectors of vectors of Strings
● Perform sequential joins using specified key columns.



Baseline implementation - V1

Join: Nested for-loops iterate over rows of two datasets to find matching keys.



Baseline implementation - V2
Encoder: Avoid string copy in join by encoding each string as integer



Baseline implementation - V3

Generic Arrays: Arrays can be kept on the stack instead of heap (Vec)

in join:



Baseline implementation - V4

Loop Unrolling: “Force” compiler to unroll loops

in join:



Sorting - V1
Sort files based on join keys: 

● Similar performance => overhead neglectable
● Makes new algorithmic optimizations possible



Sorting - V2
● Uses a HashMap to store the index range in which each value in first column 

of second dataframe occurs
● only iterates the elements that are necessary



Sorting - V2

First benchmarks with full dataset:

myjoin and sorting v2
Benchmarks with small dataset



Sorting - V3
● Improve read by using faster Hashmaps: 
● Replace standard HashMap with FxHashMap (non-cryptographic hasher)



Hash Join - V1
● Read each file into hash maps
● Use String directly => no need to encode to integers anymore
● Join iterates over all hashmaps and looks for the corresponding keys



Hash Join - V1



Hash Join - V2
Output string buffer: Write into a String and output at the end



Hash Join - V3
Optimizing the buffer: Directly appends to the buffer without using [format!].



Hash Join - V4
Pre-allocate Vecs and Hashmaps



Hash Join - V5
Pattern Matching instead of ifs



Hash Join - V6
● Avoiding Entry API (overhead)
● Use split_once for parsing lines into key-value tuples

instead of:



Hash Join - V7
CompactString: Stores small strings on the stack instead of the heap.



Hash Join - V8
BufWriter: Writes results to stdout using a buffered stream



Hash Join - V9
SmallVec: Stores small vectors on the stack, reducing heap allocation



Reduced Hash - V1 
Fewer HashMaps: Uses only one hash map for the join of the first three files



Reduced Hash - V1 
Fewer HashMaps: Uses only one hash map for the join of the first three files



Reduced Hash - V2 
Parsing with split_once instead of lines() function - Not going over the string twice

instead of:



Reduced Hash - V3 
● Reordering files:

Second file is smallest -> use second file to initialize the join hash map



Reduced Hash - V4 
Preallocated Vec Capacity: Allocates maximum vector capacity upfront to avoid 
resizing



Different allocator
● Tested different allocators:

MiMalloc was faster than Jemallocater (and default)

Final result single-threaded:
● rusty-join: 30 to 38.4b cycles
● my-join: 162.1b cycles



Flamegraph of Reduced Hash v4



● Read files simultaneously
● In join, split first hash map 

into equally sized chunks
● Each worker performs join 

with his chunk and writes 
the result to a string

● Master prints the strings 
he receives

● Utilizes channels (from 
kanal crate) for 
communication between 
threads.

Optimization with Multithreading - V1 - Hash Join
Leverage multithreading to parallelize file reading and joining processes.



Optimization with Multithreading - V2 - Reduced Hash Join

● Files are read in parallel
● Once files 1-3 finish, create 

hashmap with them
● Once file 4 finishes, join
● Join parallelized the same 

way as for parallel hash join



Polars library for data frames

Leverage the Polars library for 
high-level, DataFrame-based joins.

Steps:

1. Data Loading
2. Join DataFrames
3. Select relevant columns and 

write the final output to a CSV 
format.



Criterion Benchmarks (Multithreaded)
Worst Best



Summary

Worked great! Not much changed Didn’t work as 
expected

Algorithmic 
optimizations,
stack-allocation,
buffered output

loop unrolling,
inlining

string slices


