
PAGE  1 

EFFICIENT 
PROGRAMS

GROUP 14 CONSISTED OF
Milica Aleksic

Ege Aydin
Veneta Grigorova

Thomas Klar
Adigun Oladapo Oludele

Pedro Silva
Christoph Winkler

185.190 VU 2024W



PAGE  2 

PROGRAM SPECIFICATION
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HIGH-LEVEL DESIGN CHOICES
● Implementation of myjoin project
● Written entirely in C 
● Focus on Large input files, potentially ≫12 Mio rows
● Field structure and join order fixed
● Fields can only contain A-Z, a-q, 0-9, \0 characters

ARCHITECTURE
● Data is never entirely loaded into memory
● External merge sorting
● Sort-merge join operations

https://github.com/venetagrigorova/csvmerge
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BASE CODE
The base implementation performs a 
sequential 4-way join in the obvious way

DETAILS
● Sequential Chunked merge-sorting
● Record-wise Sort-merge join 
● Temp results are written to disk

PERFORMANCE
● ~300 billion cycles, 70 seconds 

runtime
● Inefficiency distributed, many small 

function calls accumulate
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WHAT 
IMPROVEMENTS 

WERE 
IMPLEMENTED?
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THREE-WAY MERGE JOIN
WHAT CHANGED
● Combined three tables in a single step 

instead of pairwise joins.

BENEFITS
● Improves performance by reducing 

intermediate file writes and disk I/O 
compared to pairwise joins

185.190 VU 2024W

A | B A | C D | EA | D

SORT SORT SORT SORT

A | B | C | D

SORT

D | A | B | C | E

-19%



PAGE  6 

INT128 FIELD ENCODING
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WHAT CHANGED
● Replace strings with 128 bit Integer numeric encoding
● 22*log_2(56) ≅ 127.76 bits necessary for 56 possible characters
● Encode at start, keep temp files encoded, decode at the very end 

BENEFITS / DRAWBACKS
+ 16 bytes per field vs (up to) 23 bytes
+ Fixed-length fields
+ Faster comparisons, copying, access operations
− Requires expensive integer division for encoding and decoding

-33%
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CONTIGUOUS MEMORY STORAGE
WHAT CHANGED
● Stored fields of a chunk continuously in memory

(previously only pointers contiguous)

BENEFITS
● Improved cache locality.
● Faster memory access during sorting and joining.
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INTERNAL TABLE BUFFERS
WHAT CHANGED

● Previously: Records are read just-in-time and written to disk immediately after use
● Tables now have internal buffers → prefetching of records
● Keep a fraction of previous records for backwards traversal in join phase

BENEFITS
● Minimizes redundant memory allocations and deallocations.
● I/O operations concentrated and far less frequent
● Improves cache locality by storing records in contiguous memory.
● Eliminates Need for record buffering during join phase
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INTERNAL TABLE BUFFERS
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Record Index Field A Field B

0 Key0 Value0

1 Key1 Value1

2 Key2 Value2

… … …

… … …

99 Key99 Value99

currentPos Key100 Value100

BEFORE BUFFER REFILL      AFTER BUFFER REFILL

Record Index Field A Field B

90 Key90 Value90

… … …

99 Key99 Value99

100 Key100 Value100

currentPos Key101 Value101

… … …

190 Key190 Value190

-6%
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SORTING ALGORITHM 
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WHAT CHANGED
● External merge sort: Sorting and Merging Phase
● In Sorting Phase: Use custom Merge Sort to sort chunks
● In Merging Phase: Use k-way Merge Algorithm to merge sorted chunks

BENEFITS
● Less function overhead
● Merge Sort performs well on highly unsorted data

○ O(n ln(n)) instead of O(n^2)
● K-way Merge reduces number of comparisons (expensive!)

-5%
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MINOR OPTIMIZATIONS
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WHAT CHANGED
● Multiple techniques from lecture applied on critical parts of the code
● Done almost at the end, after algorithmic optimizations

LOOP UNROLLING
● Many iteration steps in loops do not depend on previous steps
● Improves execution speed by enabling compiler optimizations

ARITHMETIC FLAG OPTIMIZATIONS
● Branch reduction and possible compiler optimizations

PRECOMPUTATION OF VALUES
● Precompute Encoding/Decoding of all characters
● Gave very strong performance boost

CODE MOTION OUT OF LOOPS
● A few critical loops have to iterate many times (e.G.. sorting)
● Any saved computation huge win performance-wise

-5%
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PARAMETER OPTIMIZATION
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HYPERPARAMETERS
● Chunk Size/Number of chunks

○ Strong performance at 100.000 Records/Chunk, ≈120 chunks
● Table Buffer Size

○ 4096 Records/Buffer
● Table Buffer History Size

○ 32 Records sufficient
● Optimized experimentally through grid search
● Hard to give theoretical reason for optimal size

-2%
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PERFORMANCE (CYCLES) 
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Reference Implementation Base Implementation Final Implementation

155,414,886,890 cycles 310,116,076,286 cycles 82,717,600,559 cycles
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OTHER PERFORMANCE METRICS
185.190 VU 2024W

Metric Reference Base Final Base to Final

Execution Time (s) 39 73 17.9 75% reduced

Cycles user (Billion) 144.97 287.99 72.85 75% reduced

Cycles system (Billion) 15.21 22.88 8.74 62% reduced

Instructions (Billion) 245.25 529.02 174.96 66% reduced

Instructions per Cycle (IPC) 1.51 1.71 2.21 30% improved

Branches (Million) 53,795 123,352 29,979 75% reduced

Branch Miss Rate 2.03% 1.69% 2.47% 50% worse
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MULTITHREADING
The g0 machine has 8 active threads → multithreading

CHALLENGES FACED

SYNCHRONIZATION OVERHEAD
● Managing shared resources (e.g., memory buffers, file writes) caused significant overhead.
● Required complex thread synchronization mechanisms (e.g., mutexes), reducing performance benefits.

INCREASED COMPLEXITY
● Multithreading introduced race conditions and debugging challenges.
● Added significant code complexity, making the implementation harder to maintain.

I/O BOTTLENECKS
● Sorting relies heavily on file I/O.
● File I/O is inherently sequential, limiting the gains from multithreading.
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PERFORMANCE (CYCLES) 
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Reference Implementation Base Implementation Final Implementation

155,414,886,890 cycles 310,116,076,286 cycles 82,717,600,559 cycles
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CONCLUSIONS
WHAT WORKED WELL
+ Integer Encoding of strings
+ Precomputation of Int Encoding
+ Sorting Algorithm optimizations
+ Minor local Optimizations
- Multithreading
- Branchless Programming
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THANK YOU FOR 
LISTENING :)

ANY QUESTIONS?
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