
PAGE 1

EFFICIENT
PROGRAMS

GROUP 14 CONSISTED OF
Milica Aleksic

Ege Aydin
Veneta Grigorova

Thomas Klar
Adigun Oladapo Oludele

Pedro Silva
Christoph Winkler

185.190 VU 2024W

PAGE 2

PROGRAM SPECIFICATION
185.190 VU 2024W

HIGH-LEVEL DESIGN CHOICES
● Implementation of myjoin project
● Written entirely in C
● Focus on Large input files, potentially ≫12 Mio rows
● Field structure and join order fixed
● Fields can only contain A-Z, a-q, 0-9, \0 characters

ARCHITECTURE
● Data is never entirely loaded into memory
● External merge sorting
● Sort-merge join operations

https://github.com/venetagrigorova/csvmerge

PAGE 3

BASE CODE
The base implementation performs a
sequential 4-way join in the obvious way

DETAILS
● Sequential Chunked merge-sorting
● Record-wise Sort-merge join
● Temp results are written to disk

PERFORMANCE
● ~300 billion cycles, 70 seconds

runtime
● Inefficiency distributed, many small

function calls accumulate

185.190 VU 2024W

A | B A | C D | EA | D

A | B | C

SORT SORT SORT SORT

SORT

A | B | C | D

SORT

D | A | B | C | E
100%

PAGE 4

WHAT
IMPROVEMENTS

WERE
IMPLEMENTED?

185.190 VU 2024W

PAGE 5

THREE-WAY MERGE JOIN
WHAT CHANGED
● Combined three tables in a single step

instead of pairwise joins.

BENEFITS
● Improves performance by reducing

intermediate file writes and disk I/O
compared to pairwise joins

185.190 VU 2024W

A | B A | C D | EA | D

SORT SORT SORT SORT

A | B | C | D

SORT

D | A | B | C | E

-19%

PAGE 6

INT128 FIELD ENCODING
185.190 VU 2024W

WHAT CHANGED
● Replace strings with 128 bit Integer numeric encoding
● 22*log_2(56) ≅ 127.76 bits necessary for 56 possible characters
● Encode at start, keep temp files encoded, decode at the very end

BENEFITS / DRAWBACKS
+ 16 bytes per field vs (up to) 23 bytes
+ Fixed-length fields
+ Faster comparisons, copying, access operations
− Requires expensive integer division for encoding and decoding

-33%

PAGE 7

CONTIGUOUS MEMORY STORAGE
WHAT CHANGED
● Stored fields of a chunk continuously in memory

(previously only pointers contiguous)

BENEFITS
● Improved cache locality.
● Faster memory access during sorting and joining.

185.190 VU 2024W

-5%

PAGE 8

INTERNAL TABLE BUFFERS
WHAT CHANGED

● Previously: Records are read just-in-time and written to disk immediately after use
● Tables now have internal buffers → prefetching of records
● Keep a fraction of previous records for backwards traversal in join phase

BENEFITS
● Minimizes redundant memory allocations and deallocations.
● I/O operations concentrated and far less frequent
● Improves cache locality by storing records in contiguous memory.
● Eliminates Need for record buffering during join phase

185.190 VU 2024W

-6%

PAGE 9

INTERNAL TABLE BUFFERS
185.190 VU 2024W

Record Index Field A Field B

0 Key0 Value0

1 Key1 Value1

2 Key2 Value2

… … …

… … …

99 Key99 Value99

currentPos Key100 Value100

BEFORE BUFFER REFILL AFTER BUFFER REFILL

Record Index Field A Field B

90 Key90 Value90

… … …

99 Key99 Value99

100 Key100 Value100

currentPos Key101 Value101

… … …

190 Key190 Value190

-6%

PAGE 10

SORTING ALGORITHM
185.190 VU 2024W

WHAT CHANGED
● External merge sort: Sorting and Merging Phase
● In Sorting Phase: Use custom Merge Sort to sort chunks
● In Merging Phase: Use k-way Merge Algorithm to merge sorted chunks

BENEFITS
● Less function overhead
● Merge Sort performs well on highly unsorted data

○ O(n ln(n)) instead of O(n^2)
● K-way Merge reduces number of comparisons (expensive!)

-5%

PAGE 11

MINOR OPTIMIZATIONS
185.190 VU 2024W

WHAT CHANGED
● Multiple techniques from lecture applied on critical parts of the code
● Done almost at the end, after algorithmic optimizations

LOOP UNROLLING
● Many iteration steps in loops do not depend on previous steps
● Improves execution speed by enabling compiler optimizations

ARITHMETIC FLAG OPTIMIZATIONS
● Branch reduction and possible compiler optimizations

PRECOMPUTATION OF VALUES
● Precompute Encoding/Decoding of all characters
● Gave very strong performance boost

CODE MOTION OUT OF LOOPS
● A few critical loops have to iterate many times (e.G.. sorting)
● Any saved computation huge win performance-wise

-5%

PAGE 12

PARAMETER OPTIMIZATION
185.190 VU 2024W

HYPERPARAMETERS
● Chunk Size/Number of chunks

○ Strong performance at 100.000 Records/Chunk, ≈120 chunks
● Table Buffer Size

○ 4096 Records/Buffer
● Table Buffer History Size

○ 32 Records sufficient
● Optimized experimentally through grid search
● Hard to give theoretical reason for optimal size

-2%

PAGE 13

PERFORMANCE (CYCLES)
185.190 VU 2024W

Reference Implementation Base Implementation Final Implementation

155,414,886,890 cycles 310,116,076,286 cycles 82,717,600,559 cycles

PAGE 14

OTHER PERFORMANCE METRICS
185.190 VU 2024W

Metric Reference Base Final Base to Final

Execution Time (s) 39 73 17.9 75% reduced

Cycles user (Billion) 144.97 287.99 72.85 75% reduced

Cycles system (Billion) 15.21 22.88 8.74 62% reduced

Instructions (Billion) 245.25 529.02 174.96 66% reduced

Instructions per Cycle (IPC) 1.51 1.71 2.21 30% improved

Branches (Million) 53,795 123,352 29,979 75% reduced

Branch Miss Rate 2.03% 1.69% 2.47% 50% worse

PAGE 15

MULTITHREADING
The g0 machine has 8 active threads → multithreading

CHALLENGES FACED

SYNCHRONIZATION OVERHEAD
● Managing shared resources (e.g., memory buffers, file writes) caused significant overhead.
● Required complex thread synchronization mechanisms (e.g., mutexes), reducing performance benefits.

INCREASED COMPLEXITY
● Multithreading introduced race conditions and debugging challenges.
● Added significant code complexity, making the implementation harder to maintain.

I/O BOTTLENECKS
● Sorting relies heavily on file I/O.
● File I/O is inherently sequential, limiting the gains from multithreading.

185.190 VU 2024W

PAGE 16

PERFORMANCE (CYCLES)
185.190 VU 2024W

Reference Implementation Base Implementation Final Implementation

155,414,886,890 cycles 310,116,076,286 cycles 82,717,600,559 cycles

PAGE 17

CONCLUSIONS
WHAT WORKED WELL
+ Integer Encoding of strings
+ Precomputation of Int Encoding
+ Sorting Algorithm optimizations
+ Minor local Optimizations
- Multithreading
- Branchless Programming

185.190 VU 2024W

PAGE 18

THANK YOU FOR
LISTENING :)

ANY QUESTIONS?

185.190 VU 2024W

