
Oware - Optimization

Alexander Graf - 01429203
Christoph Hochrainer - 01429786

Anton Oellerer - 01429853



Introduction

Optimizations

Benchmarks

Conclusion



Introduction



Oware Rules1

1https://de.wikipedia.org/wiki/Oware



Project

Composed from two programs:

I turn

I comp



Goal

Optimize comp

I cycles

I branchmisses

I time



Our Comp Structure

comp variants:

I opt oware vs oware

I alphabeta search:

I openmp search vs table search



Optimizations

I Alpha-Beta Search

I Oware Micro Optimizations

I Profiling

I OpenMP

I Transposition table



Alpha-Beta Search

I Extends min-max search with pruning

I Finds optimal move for the specified depth

I Skips subtrees which can not yield better results

I Disadvantage: harder to parallelize



Oware Micro Optimizations

I Seeding done via loop from 0 to houses

I Increase of seeds per house is calculated once

I Manual loop unrolling

I Capturing is done in subsequent loop

I + Constant amount of loops

I - Divisions, Modulo operations

I - Branches



Profiling

I GCC Profiling 2

I Profile program to gather information

I Compile the program with optimization according to the
information

I + Optimized compiler optimizations

I - Needs to be run before it can be recompiled

I - Cannot deal well with parallelization

I - Optimized for the benchmark program

2https://gcc.gnu.org/onlinedocs/gcc/Cross-profiling.html



OpenMP

I Parallelize loops in the search implementation

I - No pruning at top level

I + All searches are parallel



Transposition table

I Array of fixed size

I Saves best move per board layout (+ depth)

I Using zobrist3 hash of the board

I Update entry on deeper depth

I Good reusability in one turn

I Hard to reuse over multiple turns

3https://en.wikipedia.org/wiki/Zobrist hashing



Testing and Benchmarks

I Automated generated oware instances

I Tests can be reproduced with same seed

I Tests compare to original program

I Automated via scripts

I Codequality via warning flags



Benchmarks - Setup

I Number of test instances: 50

I OS Version: Debian 9, Linux Kernel version 4.9.0

I GCC Version: 6.3.0

I CPU: Intel(R) Xeon(R) CPU E31220 @ 3.10GHz (4 cores)

I Number of test instances: 50

I Compilation flags: -O3



Benchmarks - Original/Alpha-Beta



Benchmarks - Original/Opt-oware



Benchmarks - Alpha-Beta/OpenMP



Benchmarks - Alpha-Beta/Profiling



Benchmarks - Alpha-Beta/Table



Benchmarks - Collected Stats



Benchmarks - Scaling



Benchmarks - Overview

optimization cycles instructions instruction/cycle branches branch-misses misses/branches time
alphabeta 6,013,453,676 12,170,956,782 2.02 2,070,344,913 87,272,090 4.22% 1.832

openmp 14,712,533,778 28,813,657,365 1.96 4,878,496,142 202,890,056 4.16% 1.685

opt oware 5,296,750,490 12,837,914,926 2.42 1,217,572,091 42,045,841 3.45% 1.622

profile 5,106,006,248 9,759,299,468 1.91 1,606,655,027 92,851,070 5.78% 1.582

table 7,867,361,553 15,984,091,676 2.03 2,840,728,195 86,013,593 3.03% 2.402



Further insights

I MFLOPs/s: 0.0001

I L3 Data Volume (Gbytes): 0.1941

I Arithmetic Intensity: 4.3E-05 FLOPs/Byte

I Bandwidth: 11.16 GB/s

I Attained: 0.00048 GB/s (0.02

I →Biggest amount of time spent on integer operations

I →Most of the tree seems to stay inside of the CPU memory



Conclusion

I Transposition table seems to have too few hits (more research
needed)

I OpenMP overhead only pays off after some time

I Alpha-Beta pruning very important

I Profiling most useful micro optmiziation

I Manual loop unrolling very useful

I Branching is expensive

I (Small) memcopys seem to be pretty cheap


	Introduction
	Optimizations
	Benchmarks
	Conclusion

