

PFORTH for MVS

Port of pforth to MVS 3.8j

PFORTH

 A portable forth written in ANSI-C
 Public Domain
 http://www.softsynth.com/pforth/

MVS 3.8j

 MVS is “Multiple Virtual Storage”
 IBM operating system for the S/370

architecture
 MVS 3.8j is a public domain version of

the ‘80
 Can be run under Linux using Hercules

Hercules

 Available at
http://www.conmicro.cx/hercules/

 Emulator for the IBM mainframe
hardware (System/370, System/390
and z/Series)

 Runs under Linux and is released
under the open source software
license QPL.

http://www.conmicro.cx/hercules/

Dignus C/C++

 A cross compiler targeting the 390
architecture

 Also available under an hobbist
license.

Objective

 A native pforth running on MVS under
TSO and under JES2

 A cross pforth running on Linux and
able to generate full resident load
modules (statically linked binary)

Hacking guidelines
 Free-time project
 Minimize the work needed to have a

version of pforth running on MVS (just
minimalist a port)

 As much ANS as possible for an
EBCDIC platform

 Start doing some forth on this platform
and decide about the next steps.

Make and install (1)

 The base dictionary is generated on
Linux using a big-endian version of
pforth

 This produce a .h containing the
dictionary

 But this .h contains hard coded ASCII
character

Make and install (2)

 Compile with the Python wrapper
Dcc.py (from a make –n) u.s.w.

 This produce a load module in XMIT
format that can be binary transferred
via 3270 and instantiated

 NPA100.TEST.BIN(PFORTH)
 NPA100.TEST.CLIST(PFORTH)

Run
 EX 'NPA100.TEST.CLIST(PFORTH)‘

(from TSO)
 /* ALLOCATE NEEDED DD AND RUN

/* PFORTH
ALLOC F(STDOUT) DA(*)
ALLOC F(STDERR) DA(*)
ALLOC F(STDIN) DA(*)
CALL 'NPA100.TEST.BIN(PFORTH)‚
FREE F(STDIN)
FREE F(STDERR)
FREE F(STDOUT)

Status

 „Half working“
 EBCDIC related problems: for ex. the

FORTH word .“ does not work because
search for “ that was hard coded in
ASCII during the cross generation of
the dictionary

Problems

 S390 is big-endian – x86 is little-
endian

 MVS is EBCDIC
 MVS has a unusual and complicated

record oriented file system

Solutions

 Read the dictionary from a file on MVS
 Generate the dictionary to be

embedded on an EBCDIC system

Questions

 Fragen ?
 Domande ?

