
A Reversible Computing Approach to Forth

Floating Point.

Angel Robert Lynas and Bill Stoddart
Formal Methods and Programming Research Group

University of Teesside, UK

Abstract

We describe an implementation of floating point numbers in Re-
versible Forth using immutable references, and outline the advantages
and disadvantages of this approach for the user and system.

Via a probabilistic algorithm example which requires a large num-
ber of random trials to create a sufficient sample size, we demon-
strate the disadvantage of a naive program with regard to garbage
creation, and its semi-automatic resolution using inbuilt features of
the reversible virtual machine.

This allows otherwise prohibitively memory-intensive operations
to be split into manageable pieces, interim results being saved while
garbage is collected after each stage.

Keywords: Forth, Floating Point, Reversible Computing, Garbage
Collection

1 Introduction

Forth works particularly well as a means of manipulating values that fit
into a cell. Such values may be held as an item on the parameter stack,
manipulated by the core stack operations such as DUP and SWAP, stored in
standard (cell sized) constants and variables, and moved to and from the
return stack to provide an alternative form of temporary storage. When
floating point extensions are added, the situation is not quite so convenient:
we now have values that may not fit in a cell. Most implementations use a
separate stack to hold these values, they require their own stack operations,
and (although we generally think of Forth as untyped) they require their own
special variables and constants.

A cleaner approach, which need have only a marginal effect on speed
of execution, is to use an “immutable reference semantics”. A reference to
a value of any kind will fit into a cell, and if the item referenced is im-
mutable, we can hide the difference between references and the values they
reference, leaving the application programmer free to to think of such refer-
ences as being the values referenced. This approach can be applied to any

immutable data type, for example complex numbers. We also use it in our
sets package, as described in a previous EuroForth article[8]. More generally
immutable references are important in a number of languages, including Java
and Python.

The disadvantage of our approach is that it generates garbage. This leads
to the second theme of our paper, which is to describe how we handle garbage
by exploiting our reversible version of Forth, the Reversible Virtual Machine
(RVM)1

The rest of the paper is organised as follows. In Section 2 we introduce
simple examples which use both integer and floating point types, and we
introduce the RVM dispensation for local variables. In section 3 introduce our
main working example, a probabilistic algorithm for the calculation of π. We
give a naive version of the algorithm, which ignores collection of garbage, and
then show how this is “wrapped” in a program structure which preserves the
result of the computation and then collects any garbage by reverse execution.
In Section 4 we look at memory issues: we describe the memory organisation
of the RVM and we calculate the memory requirements for our probabilistic
algorithm, and see that for a given level of accuracy it may be necessary to
exceed the memory capacity of our virtual machine. In Section 5 we present
an algorithm that takes as input a required level of accuracy, calculates the
sample size, and, if the computation space requirements exceed the available
memory, will collect garbage during the computation. In Section 6 we draw
our conclusions.

2 Simple floating point examples

We can define a constant to give the value of π with

3.14159 CONSTANT PI

and then print the value of PI with:

PI F. <enter> 3.14159 ok

Here the Forth interpreter has been designed to leave a reference on the
stack when it encounters a floating point literal in the input stream, and
the definition of F. has been written to take a reference to a floating point
number. However, since we never see, at this level, a floating point number as
such, and all appropriate operations are written to use references to floating

1The RVM for Linux on the i386 Intel platform and its associated documentation is
available from www.scm.tees.ac.uk/formalmethods

point values, we can safely think of the reference as representing the floating

point value.
As a second example consider the following program which calculates the

maturity value of a capital sum invested at a given annual rate of compound
interest.

: MV (r1 n r2 -- r3, calculate the maturity value of an in-

vestment of r1 for n years at annual compound interest of r2%)

100. F+ 100. F/ (convert % rate to yearly ratio)

SWAP >R SWAP (P: ratio capital, R: years)

R> 0 DO (ratio capital)

OVER F*

LOOP NIP ;

Here we see Forth stack manipulation operations being used to manip-
ulate both floating and integer values. To find the maturity value of 1000
currency units invested for two years at 5% we could use:

1000. 2 5. MV F. <enter> 1102.5 ok

We present this value again using a local variable approach. In our dispen-
sation of Forth we use VALUE as a defining word within definitions to create
local variables. Locals defined within (: .. :) brackets2 are initialised from
values which are in the stack at the point the stack frame is declared (gen-
erally at the start of the definition). Those values are matched against the
declared locals from left to right (unlike the Forth Standard approach). Lo-
cals declared in the body of the procedure are initialised from stack values
created by code which follows the stack frame. We also need to state how
many stack cell are returned by the definition.

: MV (r1 n r2 -- r3, calculate the maturity value of an in-

vestment of r1 for n years at annual compound interest of r2%)

(: VALUE CAPITAL VALUE YEARS VALUE RATE :)

RATE 100. F+ 100. F/ VALUE RATIO

YEARS 0 DO

CAPITAL RATIO F* to CAPITAL

LOOP

CAPITAL 1LEAVE ;

Here we see that the same defining word can be used for both integer and
real variables. We still need to distinguish integers and floats when it comes

2Our original work on local variables from 1985[7] uses { } brackets to enclose variable
lists. However, since the RVM makes extensive use of sets, and these brackets are the
standard math set brackets, we now reserve them for this purpose.

to performing operations on them however: if asked to calculate 1. 2. + the
system will add the references to the floating point values given, a totally
meaningless computation.

The disadvantages of using a reference semantics in this context are, firstly
a slight speed penalty associated with accessing data values via references,
and secondly that we need to manage the memory locations in which the
floating point values are stored: we need a garbage collector.

Our method of collecting garbage, previously suggested by Henry Baker[1]
is based on the use of a reversible machine. Such machines, which preserve
information at each step, are of theoretical interest because they minimise
the absolute energy requirements of a computation[3, 5].

3 Example application: a probabilistic algo-

rithm for the calculation of π

.
As a working example for the rest of the paper we present a probabilistic

algorithm for estimating of the value of π. Consider Figure 1. If we choose
a random value for x, uniformly distributed in the interval −1, to 1, and a
random value for y, also uniformly distributed in the interval −1, to 1 we
obtain a random point within the given square. The probability that this
point will fall within the circle is given by the ratio of the areas of the circle
and the square, namely π/4.

A simple way to estimate π/4 is therefore to choose n points, record the
number S

n
that fall within the circle, and calculate the estimate

π/4 ≈ S
n
/n

We use our random number generator RAND, which gives values in the
range 0..MAXINT, to provide a word that gives uniformly distributed floating
point values within a given range r1 to r2. We also make use of the word
S>F, which converts a single precision integer to a floating point value.

: FUNIFORM (r1 r2 -- r3,

r3 is chosen from the uniform distribution between r1 and r2)

(: VALUE r1 VALUE r2 :)

RAND S>F VALUE frand

RAND_MAX S>F VALUE frmax

r1 r2 r1 F- frand frmax F/ F* F+

1LEAVE ;

y

(1, 1)

(1,−1)

(−1, 1)

(−1,−1)

x

Figure 1: A circle of area π inscribed within a square of area 4.

Thus -1. 1. FUNIFORM will yield a random value between -1. and 1.
We can now code a naive word to estimate π/4. As input we give the

sample size n on which the estimate is to be based. On each iteration of the
loop we generate a random point (x, y) and calculate whether it is within
the circle according to whether x2 + y2 < 1. If it is we add one to the count
of “successes” S

n
. Finally we calculate an estimate of π/4 using a floating

point division of S
n
/n.

: PI/4_0 (n -- r, n<20000 and r is an estimate of pi/4 based on

a sample size n. Values of n>20000 may cause problems)

(: VALUE n :)

0 VALUE Sn NULL VALUE x NULL VALUE y

n 0 DO

-1. 1. FUNIFORM to x

-1. 1. FUNIFORM to y

x x F* y y F* F+ 1. F<

IF Sn 1+ to Sn THEN

LOOP

Sn S>F n S>F F/

1LEAVE ;

We have called this program naive because it leaves garbage and because
its sample size is limited by the memory configuration of the RVM. We first
deal with the garbage by wrapping the definition within a programming
structure which is particular to reversible computing. The effect of this
structure was first described in terms of reversible Turing machines by Lecerf
in 1963[6] and was independently given by Bennett[2], who also related it to
the physics of reversible computation. Within the RVM it is formulated as
follows. Let prog represent Forth code whose stack effect is to generate a
floating point value. Then the structure:

<RUN prog FLOAT>

will run prog, preserve the floating point value created, reverse execution
and thus undo all the other effects of prog (including removing the garbage
that prog created) and finally leave the value created by prog on the stack.
With this structure we can code a refinement of PI/4_0 called PI/4_1 which
returns the same value as PI/4_0 but collects garbage.

: PI/4_1 (n -- r, as PI/4_0, but garbage is collected)

<RUN DUP PI/4_0 FLOAT> NIP ;

this program is still limited in the sample size it can handle, and we now
turn our attention to calculating the approximate sample size required for
our algorithm to (probably) give us some given degree of accuracy.

4 Memory Issues

In our immutable references approach each floating point value created during
a computation remains in memory until it is removed by reverse computation.
The most general way to hold such memory references is on a heap, but the
fixed size and atomic (unnested) nature of floating point values allows us
to manage them more efficiently as a stack. Unlike the floating point stack
of most implementations, items are only dropped from our floating point
stack during reverse execution. The floating point stack is, in effect, a large
floating point array, and this form of organisation places an absolute limit

on the number of floating point values that can be accommodated before a
program needs to reverse.

The program developed so far is thus strictly limited in the sample size
it can handle, and we now turn our attention to calculating the approximate
sample size required to give us some given degree of accuracy with a given
degree of confidence. The conclusions will be that much larger samples be
needed than can be accommodated within the allocated floating point stack
memory of the RVM.

We are interested in knowing the number of trials required to obtain an
estimate of π which is accurate to within plus or minus some error e with
(say) 95% confidence.

Note that if p is the probability of a particular trial falling within the
circle, and S

n
, the number of trials that fall within the circle when n trials

are performed, then S
n

follows a binomial distribution with mean n ∗ p and
variance n*p*(1-p). For large n this binomial distribution approximates to
the normal distribution with the same mean and variance.

Now in general, if X is a random variable with mean µ and variance
σ2 then a ∗ X is a random variable with mean a ∗ µ and variance (a ∗ σ)2,
thus S

n
/n will have mean p and variance p ∗ (1 − p)/n and accordingly also

standard deviation
√

p ∗ (1 − p)/n. A normally distributed random variable
has probability of just over 0.95 of being within ±1.96 standard deviations
of its mean. Thus to have a probability of 0.95 of S

n
/n being within ±e of

p we choose n to obtain:

e > 1.96 ∗

√

p ∗ (1 − p)

n

Recalling that p = π/4 we have

e > 1.96 ∗

√

π

4
∗ (1 − π

4
)

n

assuming a positive square root and squaring both sides

e2 > 1.962 ∗
π

4
∗ (1 − π

4
)

n

multiplying each size by n

e
2

n >
(

1.96

e

)2

∗
π

4
∗

(

1 −
π

4

)

This tells us the minimum sample size for use with our random algorithm
when a certain degree of accuracy is required, but this result depends on π

the value we are trying to calculate! However, if we insert a low estimate of
π, say 3.1, we will obtain a high estimate of n since if we treat π as a variable
the term π ∗ (4 − π) has a single maximum where π = 2.

The following word calculates the value of n as a double number.

: ?TRIALS (e -- d, calculate no of trials d required to have

95% conf of obtaining result within pi-e to pi+e. We use the

crude (and low) estimate of 3.1 for pi in this calculation,

giving a higher value for d than is strictly required)

(: VALUE e :)

1.96 e F/ DUP F* ((1.96/e)^2)

3.1 (crude estimate of pi, but referred to as pi in stack

comments)

4. F/ ((1.96/e)^2 pi/4)

1. OVER F- ((1.96/e)^2 pi/4 1-pi/4)

F* F* F>D

2LEAVE ;

Some example calculations showing the number of trial required for various
degrees of accuracy are:

0.01 ?TRIALS D. 6474 ok

0.001 ?TRIALS D. 647493 ok

0.0001 ?TRIALS D. 64749356 ok

0.00001 ?TRIALS D. 6474935678 ok

And we note that the last value is beyond the range of 32 bit integers. We see
that our algorithm is not a practical way to calculate a very accurate value.
On the other hand it is a simple method of obtaining a rough estimate for
π. Since the value of π has been known to over a million places for more
than 30 years, the value of this algorithm is purely didactic, suggesting quick
solutions to a range of problems where similar techniques can be employed.

5 Estimating π to a given level of accuracy

Our next refinement divides the calculation up into a number of separate
experiments, each of which can be accommodated within the memory lim-
itations of the RVM, assumed to be able to handle a sample size of 10000
before needing to reverse.

We use some global variables as an alternative to declaring a stack frame.
Their longevity will give us increased visibility in case any debugging is re-
quired.

NULL VALUE PI_TOTALS 10000 CONSTANT INNER-LOOP

NULL VALUE OUTER-LOOP

In the following word the estimates of π/4 produced by each invocation
of PI/4_1 each use the maximum allowable sample size. These estimates
are added together and kept in PI-TOTALS. The final total is divided by the
outer loop count to find the average estimate of π/4.

: PI/4_2 (n -- pi,

produce an n estimate sample of pi/4. If n is too

large for a single pass the calculation is split

into a number of stages. Garbage from the outer

loop is not collected yet)

INNER-LOOP / 1+ to OUTER-LOOP

0. to PI_TOTALS

OUTER-LOOP 0 DO

I SRAND (seed pseudo random number generator)

INNER-LOOP PI/4_1 PI_TOTALS F+ to PI_TOTALS

LOOP PI_TOTALS OUTER-LOOP S>F F/ ;

In the above definition, we see that we are using a pseudo-random number
generator. We must seed this with a different value for each iteration. The
use of pseudo-random numbers makes our algorithm heavily dependent on the
performance of the particular pseudo random number generator employed.
Using gnu C library routine rand, for example, it is not possible to reliably
obtain a result accurate to more than 4 or 5 significant figures.

We now present our final program, It takes as input a required level of
accuracy. From this is calculates the required sample size, and will issue
an error if more than UMAXINT trials are required. Otherwise is uses the
<RUN .. FLOAT> wrapper to encapsulate the previous program and thus col-
lects the garbage that program leaves. Finally it multiplies the estimate of
π/4 by 4 to give an estimate of π.

: ESTIMATE_PI (e -- r, produce a probabilistic estimate of pi

which has probability 0.95 of being accurate to within an

error of +/- e. All garbage is collected. If more than UMAXINT

trials are required an error will be reported)

<RUN

DUP ?TRIALS ABORT" Too many trials needed by ESTIMATE-PI"

PI/4_2

FLOAT> NIP 4. F* ;

6 Conclusions

An immutable reference semantics allows us to deal neatly with data types,
such as floating point, that cannot be held in a cell of memory. The three
qualifications to this approach are that the data referenced must be im-
mutable (so it is not a suitable approach for use with arrays), there will be
a small speed penalty incurred, and the referenced values remain in memory
as garbage until removed by reverse computation.

The availability of reverse execution allows us to collect garbage at no ad-
ditional cost, and an appropriate program structure, particular to reversible
computing, is available to do this in our Reversible Virtual Machine. Where
a program has more extensive memory requirements than can be accommo-
dated by a “one pass” algorithm, the application programmer must split its
execution into stages, each of which returns information required for the final
result, and each of which collects its own garbage. Thus garbage collection
is best thought of as “semi-automatic” in our approach. A more general
approach to re-use of memory resources during reversible computation is
studied in [4]. Unlike the method given there, our approach, which is spe-
cific to a certain class of problems, requires virtually no additional execution
overhead.

Since the value of π has been known to over a million places for more
than thirty years, the value of the algorithm presented in this paper is purely
didactic, suggesting simple solutions to a range of problems where similar
techniques can be employed. As an example of such a problem consider a
circle of radius r1 with a second circle of radius r2 constructed with its centre
on the circumference of r1. The problem is to find what proportion of each
circle lies within the other.

References

[1] H G Baker. The Thermodynamics of Garbage Collection. In Y Bekkers
and Cohen J, editors, Memory Management: Proc IWMM’92, number
637 in Lecture Notes in Computer Science, 1992.

[2] C Bennett. The Logical Reversibility of Computation. IBM Journal of

Research and Development, 6, 1973.

[3] C Bennett. The Thermodynamics of Computation. International Journal

of Theoretical Physics, 21 pp 905-940, 1982.

[4] C Bennett. Time-space Trade-offs for Reversible Computation. SIAM

Journal of Computing, 18, 1989.

[5] R P Feynman. Lectures on Computation. Westview Press, 1996.

[6] Yves Lecerf. Machines de Turing Reversibles. Comptes rendus de

l’Académie Française des Sciences, 257(1963), 1963.

[7] W. J. Stoddart. Readable and Efficient Parameter Access via Argument
Records. The Journal of Forth Application and Research, 3(1), 1985.

[8] W. J. Stoddart and F. Zeyda. Implementing Sets for Reversible Com-
putation. In M. A. Ertl, editor, 18th EuroForth Conference Proceedings,
September 2002. On-line proceedings.

