
Gforth’s libcc C Function Call Interface

M. Anton Ertl∗

TU Wien

Abstract

A major problem in our earlier proposal for a C
interface was that a part of the interface was not
portable between platforms. The libcc interface
solves this problem by using a C compiler and its
.h-files. The .h-files contain knowledge about the
specific platform, and the C compiler automatically
inserts the necessary conversions between Forth and
C types. In this paper we describe the libcc imple-
mentation and interface. We also discuss how a
Forth-C interface might be standardized.

1 Introduction

The programming interfaces of many useful libraries
are defined as collections of C functions and C data
structures, so being able to call C functions is a very
useful capability for a Forth system.

In an earlier paper [Ert06], we discussed general
design issues for a function call interface and de-
signed a C interface based on these ideas that was
intended to be implemented using foreign function
call libraries like the ffcall libraries1 or libffi.

In the meantime, we have explored a new imple-
mentation approach for foreign function calls that
makes it possible to eliminate the non-portable C
part of the declaration in most cases. In this pa-
per we describe this implementation approach (Sec-
tion 3) and the resulting C interface (Section 4). We
also mention some of the issues in standardizing a
C interface (Section 5).

2 Portability

Portability is a central problem addressed in our
earlier work, and it has led to our new implementa-
tion approach, so we revisit it here.

The primary form of portability that we are inter-
ested in is in being able to use the same Forth pro-
gram on several platforms (e.g., Linux-i386, Linux-
AMD64, MacOS X, and Cygwin), even if the Forth
program calls C functions. Portability between

∗Correspondence Address: Institut für Computer-

sprachen, Technische Universität Wien, Argentinierstraße 8,

A-1040 Wien, Austria; anton@mips.complang.tuwien.ac.at
1http://www.haible.de/bruno/packages-ffcall.html

Forth systems is another issue that we discuss in
Section 5.

The platform portability problem is that equiv-
alent C functions (same name, same functionality)
have different argument and return types on dif-
ferent platforms. A typical example is the POSIX
function

off_t lseek(int fd, off_t offset,

int whence);

On some ancient platforms, this function is in-
stead defined as follows:

long lseek(int fd, long offset,

int whence);

However, even if we use the official POSIX defini-
tion, off_t can be different things on different plat-
forms: either long long or long; what’s worse, it
can even be different things on the same platform,
depending on the way that lseek() etc. are com-
piled2.

In our earlier work we propose to deal with this
problem by having a platform-dependent C part in
the function declaration, e.g.:

c-types lseek int longlong int -- longlong

We suggested that these C parts could be gener-
ated automatically out of the .h-files, reducing the
amount of per-platform work needed.

How does C avoid this problem? Primarily by
having .h-files with standard names, that contain
(among other things) platform-specific definitions,
e.g., of types like off_t (that’s why automatioc gen-
eration of C parts out of .h-files would help.

C has another benefit: the C compiler knows
more about data types of parameters than a Forth
compiler (at least if the function prototype is
#included); this allows it to insert the necessary
type conversions transparently.

3 Implementation approach

Instead of implementing a C parser that translates
.h-files into Forth, libcc uses the existing C com-
piler’s knowledge of C and its ability to read and

2Whether FILE OFFSET BITS is set to 64 or not.

Ertl libcc

Gforth

libcc

Forth Word lseek

lseek_wrapper (C)

C Compiler

lseek Declaration, Forth Part

lseek_wrapper (Code)

Dynamic Linker

libc
lseek

Data flow

Call

Figure 1: A foreign function call for lseek with libcc

understand .h-files, and to insert the necessary type
conversions.

For each Forth part of a foreign function declara-
tion, libcc generates a wrapper function in C that
accesses the cells and floats on the Forth stacks and
passes them as parameters to the target C function
(e.g., lseek()), then calls the target function, and
finally takes the return value and pushes it on the
appropriate Forth stack. The wrapper function is
later compiled by a C compiler, which automati-
cally inserts the necessary conversions between the
Forth types and the C types, and also knows about
the C calling convention on the particular platform.

Finally, the wrapper function and the target func-
tion are linked dynamically, and when the Forth
program calls the word corresponding to the tar-
get function, it calls the wrapper function, which
in turn calls the target function. All the wrapper
functions can be called through a simple indirect
call, without needing a library like libffi.

This approach is depicted in Fig. 1.

A major advantage of this approach is that any
tricks that the .h-files play with C macros (e.g., re-
naming C functions, as is usually done for lseek())
take full effect in the wrapper function, so it will call
exactly the function that we were interested in.

Disadvantages of this approach are:

• It requires a C compiler at run-time.

• The actual call of the C compiler is quite
target-specific (in particular because it is nec-
essary to generate a dynamically linkable bi-
nary). Fortunately that’s just one small piece
of code per platform.

• The compilation of a wrapper function is much
more expensive than similar operations neces-
sary with ffcall and libffi. We are exploring
batching and caching to reduce this cost, and

will report on that in more detail in future pa-
pers.

4 The libcc interface

This section describes the libcc interface, in par-
ticular the differences from our earlier interface
proposal [Ert06]. This section gives an overview,
mainly through the lseek example. For a complete
specification, read the current version of the Gforth
manual.3

4.1 Declarations

As in our earlier work [Ert06], the declarations for
a target C function consist of a C part and a Forth
part. The Forth part is exactly as described in our
earlier work, but the C part is completely different:
it consists of lines of C code prefixed with \C; the
programmer has to ensure that the C code declares
the target C function (and its parameter and re-
turn types). A complete set of declarations for two
lseek-calling words can look as follows:

\c #define _FILE_OFFSET_BITS 64

\c #include <sys/types.h>

\c #include <unistd.h>

c-function lseek lseek n n n -- n

c-function dlseek lseek n d n -- d

In our implementation the \C declarations are
copied to the generated C code in front of the wrap-
per function, making the target function known
to the C compiler, which can then generate the
right type conversions for the parameters and re-
turn value.

3http://www.complang.tuwien.ac.at/forth/gforth/

cvs-public/

Ertl libcc

In this example we have two Forth parts, re-
sulting in two words, both calling the C func-
tion lseek(), but with different stack effects:
the Forth word lseek has the stack effect
(n n n -- n), whereas dlseek has the stack ef-
fect (n d n -- d).

4.2 Calls

Calls work exactly as described in our earlier work:
The programmer has to push the arguments left-to-
right on the stack; the argument and return value
types are determined by the Forth part of the decla-
ration and are independent of the concrete C types
used by the function. Example:

fd @ 0. SEEK_SET dlseek -1. d= if

... \ error handling

then

4.3 Variadic Functions

To call C functions that can take a variable number
and variable types of arguments, like printf(), the
programmer can declare several words, each with a
desired parameter set, and then call these words by
name. E.g.:

\c #include <stdio.h>

c-function printf-nr printf a n r -- n

c-function printf-rn printf a r n -- n

s\" n=%d r=%f\n\0" drop -5 -0.5e printf-nr

s\" r=%f n=%d\n\0" drop -0.5e -5 printf-rn

One problem here is that the C compiler does
not know the desired type of the varargs and does
not insert conversions to this type; this can lead to
portability problems. One solution to this problem
is to perform the conversion explictly at the C level.
E.g.:

\c #define printfll(s,ll) \

\c printf(s,(long long)ll)

c-function printfll printfll a n -- n

Here, we define a macro printfll that converts
the second parameter explicitly to the long long

type, and then calls printf(). The Forth word
then calls printf through this macro.

4.4 Variables, Constants

C variables and constants can be converted to Forth
words with this interface, by treating them like
functions:

\c #include <unistd.h>

\c #define seek_set_macro() (SEEK_SET)

c-function SEEK_SET seek_set_macro -- n

However, this method is quite heavyweight, both
in the amount of typing and in memory consump-
tion, so we may introduce a lighter-weight way to
import C constants and variables in the future.

4.5 Calling C function pointers

Programmers can also call C functions for which
they have C function pointers, not the name:

\c typedef int (* fun1)(int);

\c #define call_fun1(par1,fptr) \

\c ((fun1)fptr)(par1)

c-function call-fun1 call_fun1 n func -- n

The Forth word call-fun1 now works similar to
execute, but instead of execution tokens it takes
C function pointers of this particular type. The
programmer has to define one such call word for
each function pointer type he wants to call.

4.6 Callbacks

Conversely, the programmer sometimes wants to
generate C function pointers for Forth words, be-
cause he has to pass them to some C function di-
rectly or through a data structure; this is usually
known as callback (the library calls back into the
application program through this function pointer).

We have not implemented callback support in
libcc yet, and have not fixed the interface yet.

4.7 Future work

The main other missing piece of the C interface
is dealing with structs and unions: accessing their
fields and passing them to or returning them from
functions. Field access is particularly hairy, for the
following reasons:

• Each structure constitutes a separate name
space, and we have to find a practical way to
map C field names to Forth.

• On fetching from or storing into fields we
have to convert between the C type and the
Forth type. In general the C type is platform-
dependent, so if we want to be portable,
we cannot use some general fetching/storing
words, but have to use one that is specific to
the field.

5 Standards

In the long run, it would be nice to be able to port
programs that call C libraries between Forth sys-
tems. In order to do that, we need to standard-
ize the C interface. However, the interface outlined
above is implementation-specific in the C part of

Ertl libcc

the declarations, so standardizing on it completely
is not going to happen. In the following, we explore
various levels of standardization that might be more
successful. Note that this discussion is not tied to
the interface described in the rest of the paper, but
applies to any C interface.

5.1 Calls only

The most important portability issue is the calls of
the foreign functions themselves, because they tend
to be distributed across a large amount of code, and
changing the calls would be a lot of work and error-
prone. So the word name, parameter order, param-
eter Forth types and return value Forth type of the
word for calling a particular C function should be
the same across Forth systems.

However, while the word name and parameter or-
der can be standardized for all calls, the parameter
and return value Forth types are specific to each
particular function-calling word, so standardizing
that means standardizing either the words them-
selves, or having a standard way to specify these
types, i.e., the Forth part of the declaration.

5.2 Specific libraries

For widely-used libraries and APIs, one could stan-
dardize the Forth interfaces of the calls. The
amount of work required for that could be reduced
by just specifying what C type corresponds to what
Forth type. E.g., for the POSIX.1-2001 API one
could specify that all integer types would be sin-
gle cells in Forth, with the exception of a few (e.g.,
off_t) that would be double cells.

In order to be able to use these words portably,
it would also be helpful to specify a way in which
the interface would become available; e.g., what file
needs to be required, and maybe in which wordlist
these words reside afterwards.

One potential problem in that respect is that
some APIs have a lot of optional extensions (simi-
lar to ANS Forth). One would have to find ways to
specify these extensions.

5.3 Forth part of the declaration

While such an approach is probably satisfactory to
programmers using these libraries, each Forth sys-
tem would need its own files with the declarations
of all these C-function words. By standardizing the
Forth part of the declaration, these parts could be
shared between the Forth systems, which should
reduce the effort for all involved parties, and also
reduce the number of bugs encountered by an indi-
vidual user.

5.4 C part of the declaration

As mentioned above, standardizing the C part is
hard, because it depends on the way that the Forth
system implements the C interface (e.g., compare
the way this is done in this paper with that in our
earlier work [Ert06]), and because it can depend on
the platform (e.g., consider the two different C parts
for lseek() in our earlier work).

What might be possible to address the Forth sys-
tem issue is to specify the several syntaxes appro-
priate for different implementation approaches. A
particular Forth system would interpret one of them
and ignore all the others. The C part of an inter-
face definition might then contain several ways to
specify the same thing, and all Forth systems that
implement at least one of these ways could work
with that.

That solution has its problems, but it is probably
hard to find consensus on anything stronger.

6 Related Work

SWIG (Simplified Wrapper and Interface Genera-
tor)4 is a tool for interfacing scripting languages to
C. It works in a way similar to libcc. However, af-
ter a superficial investigation of SWIG we decided
against using SWIG and for implementing libcc di-
rectly in Forth; a still-remembered reason was that
we heard that adapting SWIG for a new language
would require more than 1000 lines of code; cur-
rently libcc has 484 lines.

7 Conclusion

The libcc interface uses actual C code for the C
part of a C function declaration; this makes it pos-
sible to make the C part platform-independent in
most cases, because it can just #include a stan-
dard .h-file that contains the platform-specific C
code; so the whole interface to most C functions
can be completely portable between platforms.

The libcc interface offers a number of other ad-
vantages over the interface proposed earlier [Ert06],
such as more capabilities when dealing with variadic
functions, and the ability to call C function pointers
without needing special support.

The implementation of the libcc interface works
as follows: For every target function it generates
a wrapper function in C, compiles it and dynami-
cally links it into Gforth; the wrapper function is
trivial to call, and performs all the stack accesses
and (implicitly through the C compiler) argument
conversions.

The standardisation of a C interface between
Forth systems can be divided into several parts,

4http://www.swig.org/

Ertl libcc

with the actual calls probably the easiest to find
consensus on, and the declarations being progres-
sively harder.

References

[Ert06] M. Anton Ertl. A portable C function call
interface. In 22nd EuroForth Conference,
pages 47–51, 2006.

