
A FRAMEWORK
FOR DATA STRUCTURES

IN A TYPED FORTH

Federico de Ceballos

Universidad de Cantabria
federico.ceballos@unican.es

September, 2007

Strong Forth as a typed Forth

In Strong Forth the interpreter knows the types associated with the elements in the
stack. The compiler takes care that a word's behavior is consistent with its declared
specification. This has to be unique.

SWAP (SINGLE SINGLE -- 2ND 1ST)

Because every word has a declared input diagram, overloading is possible.

SWAP (DOUBLE DOUBLE -- 2ND 1ST)

If you do need complete control, you can use a cast.

CHAR 0 . \ prints 0
CHAR 0 CAST SINGLE . \ prints 48

Strong Forth's type hierarchy

The language comes with several families of types:

SINGLE INTEGER UNSIGNED
SIGNED
CHARACTER

LOGICAL FLAG
TOKEN
MEMORY-SPACE
FILE

DOUBLE INTEGER-DOUBLE UNSIGNED-DOUBLE
SIGNED-DOUBLE

CONTROL-FLOW
DATA-TYPE STACK-DIAGRAM
DEFINITION COLON-DEFINITION

FLOAT

Strong Forth's type hierarchy (2)
SINGLE ADDRESS DATA

CONST
PORT
CODE
CADDRESS CDATA

CCONST
CPORT
CCODE

SFADDRESS SFDATA
SFCONST
SFCODE

DFADDRESS DFDATA
DFCONST
DFCODE

DOUBLE FAR-ADDRESS CFAR-ADDRESS
SFFAR-ADDRESS
DFFAR-ADDRESS

Forth's advantages

Usability.

Interactive development.

Efficiency (both in terms of development time and generated code).

Possibility of accessing low-level resources.

Little constraints.

Intimate knowledge of your development environment.

Typeless. (A language feature, not a bug.) ;-)

Variations from the Strong Forth model

Strong Forth is aimed to embedded systems with multiple address spaces, we are
targeting a PC with a single address space.

Strong Forth tries to keep the Forth flavour as much as possible, we plan to take
advantage of the new possibilities offered.

The idea of having different base pointers in order to navigate through different data
sizes is abandoned.

Data definitions in Forth
VARIABLE FIRST
2VARIABLE SECOND
FVARIABLE THIRD
SFVARIABLE FOURTH
DFVARIABLE FIFTH
CREATE SIXTH 3 CELLS ALLOT
23 VALUE THIS

CLASS POINT
 VARIABLE X
 VARIABLE Y
END-CLASS
POINT BUILDS MY-POINT

Data definitions in Forth
23 FIRST !
SECOND 2@
1.23E THIRD F!
1.23E FOURTH SF!
1.23E FIFTH DF!
1 2 3 SIXTH TUCK ! CELL+ TUCK ! CELL+ !

45 TO THIS

12 MY-POINT X !
14 MY-POINT Y !
14 12 MY-POINT TUCK X ! Y ! \ An error !!!

Basic data types

The Strong Forth system provides the following basic data types from which the rest are
derived:

SINGLE A single-cell data type, used to hold a number or an
address.

DOUBLE A double-cell data type, used to hold a double number or
else a couple of single-cell items working together.

FLOAT A data type wide enough to hold a floating point number.
In a 16-bit system with 64-bit reals, a FLOAT would
occupy four cells.

In addition, we are using the following basic type:

TRIPLE A data type three cells wide, used to hold three single-
cells items working together.

User data types
CHAR 1 BYTE
INT 1 CELL
UINT 1 CELL (UNSIGNED)
LONG 2 CELLS
ULONG 2 CELLS (UNSIGNED)
REAL 1 FLOAT
COMPLEX 2 FLOATS
VECTOR 3 FLOATS
QUATERNION 4 FLOATS

User data types
C& An address to a read-only element.
D& An address to an element (derived from the type above).
C[] An address to an array of read-only elements, together

with the number of elements.
D[] An address to an array of elements, together with the

number of elements (derived from the type above).
C[,] An address to a two dimensional array of read-only

elements, together with the number of rows and columns.
D[,] An address to a two dimensional array of elements,

together with the number of rows and columns (derived
from the type above).

C& points to an element that can be read. D& points to an element that can also be
modified. D& is derived from C&, as you can do with a normal pointer everything you
would do with a pointer to constant plus a few new things.

Categories

All categories allocate enough memory to hold a value of the given type.

VAR No action associated with the word. When it is executed,
its address is returned.

AUTO When the word is executed, its address is returned and
the @ word is applied to it. After the definition, the !
word is applied to its address.

CONST When the word is executed, its constant address is
returned and the @ word is applied to it. After the
definition, the ! word is applied to its address as if
it were not constant.

CONST words cannot be used inside a struct. AUTO words are not initialised inside a
struct.

Manipulators
A manipulator is a state smart word that fetches the next word in the input stream (that
has to be an instance of one of the categories given above) and

SIZEOF Returns the size of the object measured in address
units.

ADDR Returns the starting address of the object.
TO Applies the word ! to the object.

Examples:

+10 CONST INT 5*2
VAR INT FIRST
-5 AUTO INT SECOND
SIZEOF FIRST \ returns 4 in a 32-bit system
+10 FIRST ! FIRST @ \ returns +10
+10 TO SECOND SECOND \ returns +10
+10 ADDR SECOND ! SECOND \ returns +10

One dimensional arrays
A vector is a collection composed of a fixed number of elements of the same base type.
Each of the elements can be used to hold a piece of data and the vector can be
manipulated as a whole.

10 [] INT DISTANCES \ defines the vector
SIZEOF DISTANCES \ returns 40 in a 32-bit machine
DISTANCES . \ prints the value of all elements

The following words should be provided for an array of any of the basic types:

SIZE (d[] -> type -- uint)
Returns the number of elements in the array.

@ (d[] -> type uint -- 2nd)
Fetches one of the elements in the array. An exception is thrown is
the index is equal or greater than the number of elements in the
array.

! (type d[] -> 1st uint)
Sets one of the elements in the array. An exception is thrown is the
index is equal or greater than the number of elements in the array.

One dimensional arrays
HEAD (c[] -> type uint -- 1st)

Returns an array with some of the first entries in the original
array. If the number is greater than the entries in the array, the
whole array is returned.

TAIL (c[] -> type uint -- 1st)
Returns an array with some of the last entries in the original array.
If the number is greater than the entries in the array, the whole
array is returned.

-HEAD(c[] -> type uint -- 1st)
Returns an array in which some of the first entries in the original
array have been removed. If the number is greater than the entries in
the array, an empty array is returned.

-TAIL(c[] -> type uint -- 1st)
Returns an array in which some of the last entries in the original
array have been removed. If the number is greater than the entries in
the array, an empty array is returned.

CLONE(c[] -> type -- d[] -> 2nd)
Returns a new array with the same data as the given one.

Two dimensional arrays
The following words are modelled after their one dimensional counterparts:

SIZE (d[,] -> type -- uint uint)
@ (d[,] -> type uint uint -- 2nd)
! (type d[,] -> 1st uint uint)
HEAD (d[,] -> type uint -- 1st)
TAIL (d[,] -> type uint -- 1st)
-HEAD(d[,] -> type uint -- 1st)
-TAIL(d[,] -> type uint -- 1st)
CLONE(d[,] -> type -- 1st)

In addition, we have the following word:

ROW (d[,] -> type uint -- d[] -> 2nd1)
Returns an array with one row of the original array.

Strings

A string can be defined as a one dimensional array of characters as in:

50 [] CHAR ADDRESS

However, as the Forth language allows for direct use of strings, some convenience can
be provided.
The keyword STRING defines a constant array of chars with the length of its initialiser:

" This is some text" STRING MY-TEXT

Structures
STRUCT POINT-2D

VAR INT X
VAR INT Y

END
POINT-2D A basic type with an associated size of 8 bytes (in a 32

bit machine).
X (C& -> POINT-2D -- 1ST -> INT)

The returned address is the same as the parameter.
Y (C& -> POINT-2D -- 1ST -> INT)

The returned address is the parameter incremented in 4
bytes.

Using structures
STRUCT DATE
 VAR UINT DAY
 VAR UINT MONTH
 VAR UINT YEAR
END
: ! (UINT UINT UINT D& -> DATE) >R
 R@ YEAR ! R@ MONTH ! R> DAY ! ;
: @ (C& -> DATE -- UINT UINT UINT) >R
 R@ DAY @ R@ MONTH @ R> YEAR @ ;
: 00 (UINT) <# # # #> TYPE ;
: . (C& -> DATE) @ ROT 00 '/' EMIT SWAP 00 '/' EMIT . ;
15 9 2007 CONST DATE TODAY
TODAY MONTH . \ prints 9

Derived structures

A new structure can be a subtype of another type. In this case, the newer one has the
size of the old one (augmented with the size of new components) and can use any word
that apply to the old one (unless a new overloaded one is defined).

STRUCT POINT-2D
VAR INT X
VAR INT Y

END
DERIVED POINT-2D POINT-3D

VAR INT Z
END
: . (C& -> POINT-2D) DUP X . Y . ;
: . (C& -> POINT-3D) DUP . Z . ;

Privacy matters

In an OOP language, the following concepts may be available:

PRIVATE A method that can be used only inside the class.
PROTECTED A method than can be used inside the class and also

inside derived classes.
PUBLIC A method without privacy constraints.
FRIEND An external method that can access all method in the

class.

In Forth, the use of word lists or packages caters for all these possibilities and then
some more.

Future lines of work

The distinction between normal manipulators (that increment the data pointer) and
manipulators inside a structure (that increment the structure size) can be complemented
with USER manipulators (the increment the offset into the user data space).

USER VAR INT UNO
USER AUTO LONG DOS

If it were possible to derive structures from a TAGGED one, the tab could be used at
runtime to choose the exact function that should be called. This modification is not trivial.

TAGGED FIRST
VAR INT X

END
DERIVED FIRST SECOND

VAR INT Y
END

