
Optimizing Intel EPIC/Itanium2 Architecture for Forth
Jamel Tayeb*, Smail Niar**

*Intel Corporation, Portland, Oregon (USA)

**LAMIH ROI, University of Valenciennes, (France)

Jamel.Tayeb@intel.com, Smail.Niar@univ-valenciennes.fr

Abstract

Forth is a stack machine that represents a good match

for the register stack of the Explicit Parallel Instruction

Computer (EPIC) architecture. In this paper we will

introduce a new calling mechanism using the register stack

to implement a Forth system more efficiently. Based upon

our performance measurements, we will show that the new

calling mechanism is a promising technique to improve the

performance of stack-based interpretative languages such

as Forth. The limitation in EPIC’s Register Stack Engine

makes the need for hardware support to improve

performance and possibly close the efficiency gap with

specialized stack processors. We will define also an

adjustment to Itanium 2 processor’s instruction set to

accommodate the new calling mechanism and present a

conservative architectural implementation over the current

Itanium 2 processor’s pipeline.

1. Introduction

1.1. Background
Virtual machines are an effective ways to take advantage

of the increasing chip and system-level parallelism –

introduced via technologies such as simultaneous multi-

threading [1], multi-core designs [2] and systems-on-a-chip

(networks) [3]. The performance of a virtual machine

depends on its implementation and its interaction with the

underlying processing architecture [4].

Just in Time [5] and Adaptive Dynamic Compilation [6]

techniques were developed to provide performance gain

over pure interpretation. In practice just in time and

adaptive dynamic compilation suffer some limitations. In

particular, it is difficult to explore a large set of

optimizations in a limited period of time. This issue makes

most just in time compilers to narrow down the field and the

scope of their optimizations. They also require additional

memory, which may be impractical in an embedded

environment.

1.2. Project aim
The aim of our work is to close as much as possible the

theoretical efficiency gap that exists between EPIC (Explicit

Parallel Instruction Computer) [7] and stack processor

architectures while running Forth applications [8]. To do so,

we are comparing the Itanium 2 processor’s register stack to

existing stack processors’ architectures using Forth as their

assembly language (in section 6). Forth is used in the scope

of this study because it is a simple stack machine [9]. This

makes it well suited as a proxy for more sophisticated stack

machines such as .NET (The MSIL evaluation stack). In

addition, Forth’s key intrinsic advantages are:

� A low memory footprint;

� A high execution speed;

� The ability to interactively expand its dictionaries while

developing applications.

1.3. Why using EPIC?
Itanium processors are today the only commercial chips

to implement the EPIC architecture. This processor family

is specifically targeting the enterprise server and high-

performance computing cluster segments. With 410 million

transistors required to implement the EPIC architecture in

the Itanium 2 processor (9MB on-chip cache memory), one

can argue that IPF doesn’t seem to be well suited for mid or

low range, or even embedded applications. However, the

EPIC architecture is not reserved to the high-end servers

and offers enough flexibility – I.e. the execution window

width of the machine – to adapt it to specific needs. It is

also interesting to notice that the Itanium 2 processor core

uses less than 30 million transistors to implement the

processor’s logic (where a modern x86, out-of-order

execution engine’s implementation requires 40+ million

transistors). The reminder of the transistors budget is

essentially dedicated to build the huge on-chip cache

memory (Level 3 essentially). It is therefore realistic to

consider the design of a low-end processor based on EPIC

architecture and having a limited amount of on-chip cache

memory (128KB L2 and/or 1MB L3). In consequence of

that:

� EPIC architecture, with its large register file and

its simple and in-order core makes it well suited

to host a stack machine, such as Forth,

� Itanium 2 processor is a good development

vehicle and the best performance proxy available

for our initial study.

1.4. Plan
We first introduce in section 2 a new Stack Indexed

Register (SIR) based on Itanium 2 processor’s register stack

to implement a purely software virtual machine, running

Forth. Based upon our performance projections

(summarized in section 5), we demonstrate that the

proposed mechanism is a promising technique to improve

the performance of stack-based interpretative virtual

machine. But limitation in EPIC’s register stack engine

makes the need for a hardware support to reach optimal

performance and close as much as possible the theoretical

efficiency gap with stack processors (detailed in section 6.1

– related projects). In section 3, we define an addition to

Itanium 2 processor’s instruction set to accommodate the

SIR. In section 4, we describe a conservative architectural

implementation of the extended instruction set. We

summarize our experimental results in section 5 and present

our conclusions in section 7.

2. The New Calling Convention
Our reference Forth virtual machine is threaded and uses

in-memory stacks. Parameter passing is done through the

stack, and an optimizing compiler (Microsoft Visual C++

2005 for Itanium) is used to generate the binary of words

defined in the X3.215-1994 ANS standard [10]. Assembly

coding is done using ias, the Intel EPIC assembler.

First, to present the use by compilers of the Itanium 2

processor register stack, let’s examine a function call using

the address interpreter’s principal statement – performing

NEXT: (pf->internals.ip->cfa)(pf);

The translation of this statement by the compiler in EPIC

assembly language is given in Table 1.

Table 1 - Translation in the EPIC assembly
language of (pf->internals.ip->cfa)(pf);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

{ .mii

 alloc r35=2,3,1,0

 mov r34=b0

 adds r31=528, r32

} … { .mmb

 mov r36=gp

 mov r37=r32

 nop.b 0;;

} { .mmi

 ld8 r30=[r31];;

 ld8 r29=[r30]

 nop.i 0;;

} { .mmi

 ld8 r28=[r29], 8;;

 ld8 gp=[r29]

 mov b6=r28

} { .mmb

 nop.m 0

 nop.m 0

 br.call.dptk.many b0=b6;;

}

The function call itself is clear enough – the target

address is stored in the b6 branch register (instruction 12

and 15 for the actual branching). The key operation for the

function call mechanism is the alloc instruction (instruction

1). It allocates a new stack frame to the register stack. By

specifying the number of input, output, local – and rotating

registers – required at the beginning of the procedure to the

register stack engine, the caller sets the arguments for the

callee. Note that the alloc instruction can be used anywhere

in a program and as many times as needed. Any consecutive

instruction to the alloc will immediately see the renamed

registers. Here, the pf pointer is directly and always

available in the general-purpose register r32 and can be used

right away to compute the interpreting pointer (ip) address.

This mechanism is well suited to support object-oriented

languages which tend to be dominated by calls to low

instruction-count functions.

Even if the register stack engine provides an efficient way

to pass arguments back and forth all along the call stack, our

reference Forth implementation still has to manage its in-

memory stacks. In consequence, we introduce our SIR to

allow the compiler to keep the entire – or partial – Forth

stack in the register stack.

Let’s consider the simple + word, summing two numbers

on the stack. The reference code in C is:
void CORE_PLUS(PFORTH pf) {

 int3264 n1, n2;

 POP(n2); POP(n1); PUSH(n1 + n2);

}

In the proposed mechanism, a sub-set of the Itanium 2

processor register file (the stacked registers) is recycled as

an in-register data and floating-point stack. The return stack

can either be mapped into the branch registers of the

processor or in the general purpose register file. The major

technical difficulty consists here in maintaining the stack

size in the Forth interpreter – forcing the Forth compiler to

compute the words’ arity – and using self-modifying code to

adjust the alloc instruction’s arguments accordingly after

each return from the primitives. This coding technique leads

to a functional Forth engine but suffers some limitations.

The alloc instruction cannot allocate a stack frame larger

than 96 registers. Yet, if needed, additional stack elements

are spilled / filled by the register stack engine into the

backing store memory, with a performance overhead. A

secondary limitation of using the stacked registers as in-

register stack is that it may limit the use of the software

pipelining (a key performance technique for Itanium 2

processor [11]) within the Forth words by the compiler.

As soon as the stack size limitation is satisfied, we can

support the Forth virtual machine in a much more efficient

way. It is noticeable that the performance benefit of the SIR

is increasing proportionally with the amount of stack

handling primitives used by the code. The entire execution

of + can now be scheduled for only two processor cycles as

shown in the next listing. Note that this code was hand-

written and differs therefore from the compiler generated

assembler listed in table 1 – not showing the bundles

explicitly.
.global SIR_CORE_PLUS

.type SIR_CORE_PLUS, @function

.proc SIR_CORE_PLUS

pfs = r34

SIR_CORE_PLUS:

;alloc placeholder

alloc pfs = 2, 1, 1, 0 ;default arity

add out0 = in0, in1

mov ar.pfs = pfs

br.ret.sptk.many b0

.endp

Table 2 compares the principal characteristics of both

implementations of +. A bundle is a group of three

instructions. A stop bit is introducing a serialization in the

instruction stream.

Table 2 - Characteristics of the two versions of +.

Features
Reference

Implementation

Proposed optimized

implementation

I/FP registers 9/0 2/0

Bundles 14 2

Nops 5 3

Stop bits 10 1

Branches 6 1

Loads 6 0

Stores 1 0

The second advantage of the SIR is that we can still

entirely rely upon the register stack engine to trap and

process stack overflow exceptions in exchange of a

performance penalty. When such condition happens during

the execution of the alloc instruction – I.e. insufficient

registers are available to allocate the desired stack frame –

the processor stalls until enough dirty registers are written to

the backing store area (these stall cycles can be monitored

for optimization purpose through the BE_RSE_BUBBLE-

ALL performance counter [12]).

Alas, EPIC doesn’t provide the same register-passing

mechanism for floating-point arguments. This lack makes

necessary to manage the floating-point register file

explicitly to implement the SIR, making the compiler more

complex and asymmetrical for integer and floating-point

stack handling. But having a large on-chip floating-point

register file (128 registers) and the associated computing

resources (2 floating-point execution units capable of vector

operations – up to 4 FLOP per cycle) still provides a

considerable performance advantage over stack processors

for floating-point intensive codes.

By using Itanium 2 processor’s register files as in-register

stacks, it is possible to eliminate:

� The need for the pop / push primitives, which are

embedded into the EPIC Register Stack Engine – at

least for the integer operations;

� The multiple clock-cycle floating-point load

instructions required for passing the argument via the

in-memory floating-point stack (for reference: 13

cycles for L3 hit, 6 cycles for L2 hit and 1 cycle for L1

hit – integer data only in L1D);

� The energy consumption and power dissipation

associated with the suppressed loads / stores from / to

cache / memory.

With the Itanium 2 processor, up to 96 general purpose

registers can be used to implement the Forth data stack and

96 floating-point registers to implement the optional

floating-point stack. In our implementation, the data is

mapped as follows:

� Data stack: r32-r127,

� floating-point stack: f32-f127,

� And Return stack: b6-b7 (can be mapped into the

integer register file).

Our software implementation of the SIR has an additional

drawback when it is used in conjunction of the standard

calling mechanism. It requires extra code and processor

cycles to ensure the register spilling / filling when switching

between calling conventions. This is currently mitigating

the performance gains on applicative benchmarks
1
 as only a

limited set of Forth primitives are implemented using the

SIR.

3. Enhancing the Itanium 2 processor

instruction set to Support SIR
To overcome the software implementation’s limitation

and to generalize the SIR’s usage between the integer and

floating-point register files, we propose a global hardware

indexed access to the register files. We assume the

following notations: gr[reg] or gr[imm] and fr[reg] or

fr[imm] where:

� gr is the general-purpose register file and fr is the

floating-point register file;

� reg is the register that holds the index into the register

file;

� imm is the index value into the register file.

Here after, we will describe only the integer case as the

floating-point case can be directly derived. Let’s assume the

following convention for the stack index registers to recode

the Forth virtual machine with the modified instruction set:

� Index to Data Stack TOS (gr_tos) = r2;

� Index to Data Stack level 1 (gr_l1) = r3;

� Index to Data Stack level 2 (gr_l2) = r14;

� Index to Forth Data Stack level 3 (gr_l3) = r15.

These registers were selected to simplify the co-existence

of SIR with the standard calling convention as they are

unused and unsaved during standard calls. However, any

register (lower than r32 and fr32 could be used as indexes –

at the exception of the read-only r0, r1, f0 and f1 registers).

In consequence, coding + no longer requires the register

stack engine and the integer data stack is managed in the

same way as the floating-point stack. The required

comparison and the extra additions needed to detect the

stack underflow situation and to maintain the stack pointers

up-to-date are not penalizing because of the underlying

VLIW nature of the EPIC architecture. This allows us to

reuse the otherwise empty (nop) bundle slots to perform the

required operations. It is also interesting to notice that the

predicate registers (p6 and p0) allow expressing the test and

the branch instruction if true in a very compact way. With

our proposed instruction set addition, the code for +,

embedding the stack management can still be scheduled for

two processor cycles and is listed below:
.global SIR_CORE_PLUS

1 This overhead can be removed by coding the entire Forth virtual

machine in assembler using our SIR rather than using also a C++ compiler

– a task which is out of the scope of this study.

.type SIR_CORE_PLUS, @function

.proc SIR_CORE_PLUS

SIR_CORE_PLUS:

cmp4.lt.unc p6, p0 = 32, gr_tos

(p6) br.cond.dptk.many

@underflow_exception;;

add gr[gr_l1] = gr[gr_tos],

gr[gr_l1];;

mov gr_tos = gr_l1;;

add gr_l1 = -1, gr_tos

add gr_l2 = -2, gr_tos

add gr_l3 = -3, gr_tos

br.ret.sptk.many b0;;

.endp

4. A Conservative Implementation
By limiting further the number of registers used as our in-

register stacks to 64 we can propose a conservative

architectural implementation of the SIR that would not

require an instruction set modification. The new simplified

logical view of the register files and the in-register stacks is

shown in Figure 1. It is the compiler’s responsibility to

enforce the segregation between the in-register stacks and

the traditional register file.

We first define a new indexed capability for the higher 64

registers identified via the CPUID instruction. An additional

bit in the status register indicates if the functionality is

enabled. If not, the additional Register Alias Table (RAT)

required by our implementation – described later – is

bypassed and no recompilation of existing code is required

to run as-is. A compiler willing to use the SIR has to check

if the functionality is available – on the target system – and

to activate at runtime the in-register stacks by updating the

status register.

Figure 1 - Snapshoot showing the logical view of the

integer register file. In grey the recycled register files
subset as in-register stacks. Arrows represent the

indexing.

When the in-register stacks are active, the EXP (Template

decode, Expand and Disperse) stage of the core pipeline has

to check, per instruction, if the MSB of a source register is

set (noted MSB Detect in Figure 2). If not, then the normal

execution of the instruction takes place. If the MSB is set

for at least one register, then the additional RAT checks if

the target register is to be modified by an instruction

currently executed. To track the status (ready / not ready) of

the target registers, the RAT uses a 64 x 1 bit vector. If the

corresponding ready bit is set, then the RAT feeds into the

REN stage the new register address (using a multiplexer and

a latch - one per indexed register – holding the 6 bits of the

real register address in the register file (noted Index Register

Cache in Figure 2). If the register is marked as not ready in

the RAT, then a serialization must take place, and a pipeline

stall happens. Once the target register is ready, its value if

forwarded into its corresponding latch of the RAT, which

updates the register’s status bit. The stalled instruction’s

execution can therefore be resumed.

Our simplified implementation allows indexed access to

only 64 registers in the integer and floating-point register

files. It also requires 1 bit in the CPUID, 1 bit in the status

register and an MSB bit-set detection during the early stages

of the instruction decoding. It also requires a 64-entry RAT

using 64 x 6-bit latches and multiplexers, plus 64 x 1 status

bit vector; and adds an extra execution cycle to the main

pipeline. In return, it provides the following advantages:

� Implements the required integer and floating-point in-

register stacks, under the compiler’s control (limited to

64-integer and 64 floating-point entries);

� It is possible to implement with the actual Itanium

processor pipeline;

� It is totally compatible with existing software;

� It also allows:

• The suppression of the loads / stores associated

with stack operations (hence ensuring performance

gains over C code);

• The substantial reduction of the chip’s power

consumption when executing stack handling

routines, a dominant in Forth applications and

virtual machines in general.

Figure 2 - the current – simplified – main pipeline
(top) and the modified one (bottom). Additional

structures are marked in grey.

5. Experimental Results
In this section, we present the results of our experimental

software implementation of the SIR. We have benchmarked

11 major stacks handling Forth words along with the integer

and floating-point additions. Each of these words was

recoded using the software implementation of the SIR.

Performance was measured by averaging the number of

processor cycles required to execute a billion occurrences of

each word (measured by using the processor’s interval time

counter application register – ar.itc). Our performance

measurements demonstrate that it is appropriate to consider

the EPIC register files as a set of in-register stacks to run a

virtual machine, and particularly a Forth virtual machine.

We measured speed-ups ranging from a low 1.95 to a high

15.6 (Table 3).

Although the simplified architectural implementation

described in section 4 is not realized, our performance data

provides a realistic projection of the performance that could

be reached by using the hardware implementation of the

SIR. Because Forth routines and virtual machines in general

are heavily using stack manipulations, the measurable

performance gains in these synthetic benchmarks are likely

to be directly translatable into application-level performance

gains.

Table 3 – Summary of performance measurements.
Word implementation CPU Cycles Speed-up

core_plus (+) 29.25 -

sir_core_plus (+) 15.00 1.95

core_two_dup 48.00 -

sir_core_two_dup 5.00 9.60

core_two_over 78.00 -

sir_core_two_over 5.00 15.60

core_two_swap 62.00 -

sir_core_two_swap 6.00 10.33

core_dup 28.00 -

sir_core_dup 5.00 5.60

core_over 41.00 -

sir_core_over 6.00 6.83

core_rot 48.00 -

sir_core_rot 5.00 9.60

core_swap 33.00 -

sir_core_swap 5.00 6.60

floating_f_plus (f+) 44.00 -

sir_floating_f_plus (f+) 13.25 3.32

floating_fdup 43.00 -

sir_floating_fdup 8.00 5.38

floating_fover 64.00 -

sir_floating_fover 14.00 4.57

floating_frot 66.00 -

sir_floating_frot 7.00 9.43

floating_fswap 51.00 -

sir_floating_fswap 7.00 7.29

6. Related projects
6.1. Specialized processors

The Forth community has explored the potential of

designing custom microcontrollers to efficiently run the

Forth language. Although each custom design has its own

unique objectives and approach to the problem statement,

three significant common characteristics to the most

successful designs can be noted:

� The integration of at least two distinct memories into

the processor. These memories are used as the Forth

data and return stacks [13,14,15,16]. In principle, the

number of stacks is not limited, and each stack may

have a very specific role, as in the Stack Frame

Computer [13].

� The presence of a few dedicated registers for managing

the stacks. The bare minimum is the Top of the Stack

(TOS) or stack pointer: one for the data and one for the

return stack. To permit quick access to data buried deep

in the stacks, a set of additional registers may be

implemented. By writing a value into these registers, it

is possible to generate the address of any stack level, as

illustrated in the HS-RTX microcontrollers [14].

� The short latency of the instruction execution, which is

often reduced to a single cycle. This allows the

language’s key primitives to be implemented

efficiently. Multiple paths can be taken to reach this

goal: a simple cache of the stack’s top elements can be

created in registers that feed directly into the ALU (e.g.,

Writable Instruction Set Computer [15]) or overlapped

bus cycles can be combined (e.g., Minimum Instruction

Set Computer and the Forth Reduced Instruction Set

Computer [16]). The Forth Reduced Instruction Set

Computer, for example, can read both the TOS and any

of the first four stack elements (from the data and return

stacks) within the same cycle, using dedicated and

independent busses.

The open-source MicroCore project is one of the most

recent implementations of a specialized microcontroller that

uses the Forth language as its assembler. (It can also execute

other languages, such as C) [17]. This microcontroller has

an on-chip data and return stack, can directly implement 25

Forth primitives, and is capable of executing each

instruction in a single clock-cycle.

Still, Forth is not the only stack-oriented language that

encourages specific circuitry designs to achieve maximum

performance. Java processors – such as the Sun Picojava

and Imsys Cjips chips [18,19] – are also good examples of

custom designs implementing a dedicated stack engine (the

dribbler). The IBM zSeries Application Assist Processors

(zAAPs) also provides a dedicated HW assist to

asynchronously execute eligible Java code within the

WebSphere JVM under the central processors’ control [20].

6.2. General purpose processors
A parallel research path studies the use of general purpose

processor’s registers to perform stack caching. The caching

technique can be used to statically and / or dynamically

cache various stack levels [21,22,23]. Promising

performance gains were demonstrated (up to x3.8 speedup –

variable with the underlying processor architecture and

code’s nature) but these techniques also showed limitations

when increasing the number of cached stack elements –

over 3 – as the static and the dynamic caching techniques

require to maintain multiple copies of the code based on the

possible cache states. This last task is the interpreter or the

compiler’s responsibility. Stack caching, used in

conjunction with code caching techniques, was used to limit

code bloat [24].

The Philips TriMedia VLIW processor was used with a

three stage software pipelined interpreter to achieve a peak

sustained performance of 6.27 cycles per instruction [25].

Interpretation is used by the authors to compress non-time-

critical code, where time-critical-code is compiled to native

code.

7. Conclusions
We presented an innovative use model for the Itanium 2

processor register files to improve Forth systems’

performance running on EPIC architecture. Synthetic

benchmarking shows an average 7x performance increase

over the code generated by a state-of-the-art C/C++

compiler, using EPIC’s standard calling convention (from

1.95x up to 15.6x).

Based upon our findings and coding experiments, we

introduced an adjustment to the Itanium 2 processor

instruction set offering indexed register file access, to ease

Forth systems’ implementation and increase its efficiency.

We then proposed an architectural implementation of a

limited version of the adjustment – by restricting the size of

the Forth integer and floating-point in-register stacks to 64

entries each –, making it conceivable to implement into the

current Itanium 2 processor’s pipeline. If realized, this

adjustment should lead to a more efficient use of the register

files to host a virtual machine’s data and control stacks. By

mapping the Forth stacks into the register files instead of the

main memory, the load and store operations associated to

the stack handling primitives would be suppressed, allowing

performance gains associated to power savings.

8. Acknowledgment
The authors would like to thank Intel Corporation and

particularly the Microprocessor Technology Labs

(http://www.intel.com/technology/computing/mtl/) for the

support given to this work. We also would like to thank the

referees for their insightful comments that have improved

this paper.

9. References
[1] D. Tullsen, S. Eggers, and H. Levy: “Simultaneous

Multithreading: Maximizing On-Chip Parallelism”, in
Proceedings of the 22nd AISCA conference, June 1995.

[2] P. P. Gelsinger, Intel Corporation, Hillsboro, OR, USA:
“Microprocessors for the New Millennium –Challenges,
Opportunities and New Frontiers”, in IEEE ISSC, 2001.

[3] L. Benini and G. De Micheli: “Networks on Chip: A New
Paradigm for System on Chip Design”, in Proceedings of the
2002 DATE conference 2002.

[4] J. Smith and R. Nair: “Virtual Machines: Versatile Platforms
for Systems and Processes”, Elsevier Science & Technology
Books, May 2005.

[5] T. Shpeisman, G-Y. Lueh and A-R. Adl-Tabatabai, “Just-In-
Time Java Compilation for the Itanium Processor”, 11th
PACT conference, 2002, p. 249.

[6] D. Bruening, T. Garnett and S. Amarasinghe, “An
infrastructure for adaptive dynamic optimization”, Code
Generation and Optimization, 2003, pp. 265-275.

[7] M. S. Schlansker and B. Ramakrishna Rau: “EPIC: Explicitly
Parallel Instruction Computing”, in IEEE Computer Society
Press, Volume 33, Issue 2 (February 2000), pp 37-45.

[8] E. D. Rather, D. R. Colburn and C. H. Moore, “The Evolution
of Forth”, ACM SIGPLAN Notices, Volume 28, No. 3,
March 1993.

[9] P. Koopman, Jr.: “Stack Computers: the new wave”, Ellis
Horwood (1989), republished on the World Wide Web by
Mountain View Press.

[10] American National Standard for Information System,
Technical Committee X3J14, “X3.215-1994: Programming
Languages – Forth”, 1994.

[11] S. Niar and J. Tayeb: « Programmation et Optimisation
d'Applications pour les Processeurs Intel Itanium », Editions
Eyrolles, January 2005.

[12] Intel Corporation, “Intel Itanium 2 Processors Reference
Manual for Software Development and Optimization”,
Volumes 1, 2 and 3.

[13] R. D. Dixon, M. Calle, C. Longway, L. Peterson and R.
Siferd: “The SF1 Real Time Computer” Proceedings of the
IEEE National Aerospace and Electronics Conference,
Dayton, OH, Vol. 1, pp. 60-64, May 1988.

[14] T. Hand: "The Harris RTX 2000 Microcontroller", Journal of
Forth Application and Research, Vol. 6, No. 1, pp. 5-13,
1990; and the Interstil “Radiation Hardened Real Time
Express™ HS-RTX2010RH Microcontroller Data Sheet.

[15] P. Koopman: "Writable Instruction Set Stack Oriented
Computers: The WISC Concept", Journal of Forth
Application and Research (Rochester Forth Conference
Proceedings), vol. 5, no. 1, pp. 49-71, 1987.

[16] J. R. Hayes and S. C. Lee: "The Architecture of FRISC 3: A
Summary", 1988 Rochester Forth Conference Proceedings,
1988, Institute for Applied Forth Reserch Inc.

[17] K. Schelisiek: “MicroCore: an Open-Source, Scalable, Dual-
Stack, Hardware Processor Synthesisable VHDL for FPGAs”,
euroForth 2004.

[18] J. Michael O’Connor and Marc Tremblay, “PicoJava-i: The
Java Virtual Machine in Hardware”, Micro, IEEE, Volume
17, Issue 2, March-April 1997, pp. 45-53.

[19] Imsys Technologies AB, “IM1101C – the Cjip – Technical
Reference Manual”,
www.imsys.se/documentation/manuals/tr-CjipTechref.pdf,
2004.

[20] IBM Redbook on zAAP: SG24-6386
(www.redbooks.ibm.com)

[21] A. Ertl and D. Gregg: “Stack Caching in Forth”, in EuroForth
2005.

[22] A. Ertl:. “Stack Caching for Interpreters”, in SIGPLAN '95
Conference on Programming Language Design and
Implementation, pp. 315-327, 1995.

[23] K. Ogata, H. Komatsu and T. Nakatani: "Bytecode Fetch
Optimization for a Java Interpreter", in ASPLOS 2002, pp.
58-67, 2002.

[24] P. Peng, G. Wu and G. Lueh: "Code Sharing among States for
Stack-Caching Interpreter", in Proceedings of the 2004
workshop on Interpreters, virtual machines and emulators, pp.
15-22, 2004.

[25] J. Hoogerbrugge, L. Augusteijn, J. Trum, R. van de Wiel: “A
Code Compression System Based on Pipelined Interpreters.
Software – Practice and Experience 29(11): 1005-1023, 1999.

