
22nd EuroForth Conference

September 15-17, 2006

Cambridge, England

3

Preface

EuroForth is an annual conference on the Forth programming language, stack
machines, and related topics, and has been held since 1985. The 22nd Euro-
Forth finds us in Cambridge for the first time. The two previous EuroForths
were held in Schloss Dagstuhl, Germany (2004) and in Santander, Spain
(2005). Information on earlier conferences can be found at the EuroForth
home page (http://dec.bournemouth.ac.uk/forth/euro/index.html).

Since 1994, EuroForth has a refereed and a non-refereed track.
For the refereed track, six papers were submitted (a new record), and

three were accepted (50% acceptance rate). Each paper was sent to three
program committee members for review. A total of nineteen reviews was
produced for the six papers. This year, none of the program committee
members has submitted a paper. I thank the authors for their papers, and
the reviewers for their often extensive reviews.

Five papers and abstracts were submitted to the non-refereed track in
time to be included in these proceedings. Workshops and social events com-
plement the program.

We are grateful to Janet Nelson for organizing this year’s EuroForth.

Anton Ertl

Program committee

Sergey N. Baranov, Motorola ZAO, Russia (secondary chair)
M. Anton Ertl, TU Wien (chair)
David Gregg, University of Dublin, Trinity College
Ulrich Hoffmann, Heidelberger Druckmaschinen AG
Phil Koopman, Carnegie Mellon University
Jaanus Pöial, Estonian Information Technology College, Tallinn
Bradford Rodriguez, T-Recursive Technology
Reuben Thomas

4

Contents

Refereed Papers

Paul Frenger: Fifteen Years of Forth Publishing with ACM 5
Mark Shannon, Chris Bailey: Register Allocation for Stack Machines . . . 13
Jamel Tayeb, Smail Niar: Adapting the EPIC Register Stack for an Efficient
Execution of Forth . 21

Non-refereed papers

Angel Robert Lynas, Bill Stoddart: Adding Lambda Expressions to Forth 27
Jaanus Pöial: Typing Tools for Typeless Stack Languages 40
M. Anton Ertl: A Portable C Function Call Interface 47
N.J. Nelson: The Nearly Invisible Database or ForthQL 52
K.B.Swiatlowski: Database access for illiterate programmers 58
David Guzeman: A 21st Century Sea Change Taking Place in Embedded
Microprocessors . 64
David Guzeman: Defining Processing Solutions for Mesh Computing Envi-
ronments . 78

5

Fifteen Years of Forth Publishing with ACM

Paul Frenger M.D.

P.O. Box 820506

Houston, TX 77282-0506 USA

pfrenger@alumni.rice.edu

ABSTRACT

The author has written numerous Forth programming language articles for

various publications of the Association for Computing Machinery (ACM). These

principally include the SIGForth Newsletter (1989 Ð 1994) and Sigplan Notices

(1996 Ð 2006). These ACM journals also have included the work of several guest

authors writing about Forth. This paper discusses some of the highlights of this

fifteen-year epoch, which has informed a generation of computer professionals

about the Forth language.

1 SIGForth: a Partnership of Forth Professionals and the ACM

Last year marked an unusual event: fifteen years of professional Forth articles and papers

appearing in publications of the Association for Computing Machinery (ACM). From the

beginning, this pairing was unexpected: after all, the ACM (founded in 1947, with a current

membership near 80,000) is the world's oldest computing society [1]. Forth, on the other hand, is

supposedly an arcane, non-mainstream, seldom-used programming language. Its role has been

described [2]: ÒHardware engineers love Forth. Traditional computer scientists hate itÓ.

Within this relatively unfavorable context, in 1988 George W. Shaw II of California, convinced

ACM to let him and several friends create SIGForth (the special interest group for the Forth

programming language). The following year the new ACM SIGForth generated two significant

milestones: the first SIGForth Workshop and the SIGForth Newsletter.

At the first ACM SIGForth Workshop (Austin, Texas) presentations were given by Forth

authorities such as: Robert Davis, Gary Feierbach, Larry Forsley, Tom Hand, Rick Hoselton,

Howard Leverenz, Greg Lisle, Brian Mikiten, Leonard Morgenstern, Dietrich Neubert, George

Shaw, Virgil Stamps, Rick VanNorman, Jack Woehr and myself [3]. The 1990 Workshop was

held in Dallas and the 1991 meeting in San Antonio. Additional authors at these conferences

included: Warren Bean, Alan Furman, Charles Johnsen, Phil Koopman, John Orr, Frank Sergeant,

Paul Snow, John Wavrik, and others [4]. Chuck Moore spoke at the 1992 Workshop.

The SIGForth Newsletter would become a quarterly publication of about 32 pages, from Vol. 1,

Issue 1, April 1989, to Vol. 4, Issue 4, December 1994). I reported on the first two years of

SIGForth at the 1990 Rochester Forth Conference [5]. Later I described in detail what it was like

to put together a publication like the Newsletter [6].

6

SIGForth was located ÒvirtuallyÓ in Texas, providing the balancing point between the East and

West Coast Forth establishments. It leveraged Forth enthusiasts in the great middle of the US,

such as those in NASA (Houston) and the rapidly-forming ÒSilicon HillsÓ area (Austin).

2 Forth in SIGForth Newsletter: 1989 - 1994

To quote from my 1990 Rochester paper: ÒOne of the goals of the [SIGForth] Newsletter was to

set it apart from Forth Dimensions, an old and honored FIG publication. Many people have

commented on the high quality of that first Newsletter. This may largely be attributed to the

status of its contributors: Chuck Moore, George Shaw, Charles Curley, Alan Furman, C.H. Ting,

Charles Johnsen and Klaus Schleisiek-Kern (in Germany)Ó.

ACM SIGForth Newsletter, Volume 1, Issue 1 (Spring 1989) gave Forth inventor Moore his

ÒFORTHoughtÓ column, chairman Shaw his ÒWords from the ChairmanÓ section, and the

Newsletter editor (first Curley, later myself) a ÒForth EstateÓ column. Founders Furman, Ting,

Schleisiek-Kern and others contributed generously. A variety of issues and practices were

covered: Forth commercialization1, the F-PC compiler2, Forth in Europe3, custom Forth CPU

design4, Forth vendors5, the ACM SIGForth bylaws6, a summary of the first annual SIGForth

Workshop7, and the ANS Forth progress report8. The Newsletter was off to a great start.

I served as editor for the Newsletter after Charles CurleyÕs departure, completing Volume 1,

Issue 2 (Summer 1989), which Charles had begun. That issue contained the usual regular columns;

we also published several excellent articles: for9 and against10 using text files in Forth, explored

the cmForth metacompiler11, saw how to implement high-level exception handlers12, learned

about state space searches13, and derived a string-based Forth CASE statement14. We included a

book review for the Forth-like MINT programming language15.

Newsletter Volume 1, Issue 3 (Fall 1989) contained a Silicon Valley entrepreneurÕs tale16, an

RCA 1802 software simulator17 and notes on multiple-threaded vocabularies18. In Issue 4

 (Winter 1989), the Holon system was reviewed19, the 1989 Rochester Forth Conference

summarized20, Forth stack frames described21, a new ÒdualsÓ data structure concept proposed22,

the Harris RTX-2001 processor reviewed23 and PocketForth for the Macintosh24.

1 Alan Furman, 5-6 2 C. H. Ting, 15-17
3 Klaus Schleisiek-Kern, 18 4 Charles Johnsen, 19-21
5 C. H. Ting and Charles Curley, 21-23 6 Brad Rodriguez and Charles Curley, 25-26
7 George Shaw, 27 8 George Shaw, 28-29
9 Tom Zimmer, 5 10 Brad Rodriguez, 6
11 Jay Melvin, 7-8 12 Brad Rodriguez, 11-13
13 Rick Hoselton, 14-17 14 Paul Frenger, 18-21
15 Paul Frenger, 19-22 16 Russell Fish, 23+27
17 Alberto Pasquale, 24-25 18 Harold M. Martin, 26-27
19 Wolf Wejgaard, 13-16 20 Larry Forsley, 17-18
21 Brad Rodriguez, 19-21 22 Rick Hoselton, 22-28
23 Paul Frenger, 31 24 Paul Frenger, 32

7

Volume 2, Issue 1 (Sept. 1990) dealt with Forth software licensing25, a table-driven AI string

matching system26, the 1990 Rochester Forth Conference27, a philosophy of Forth28, and an

RTX-2000 system review29. Issue 2 (Dec. 1990) explored the online GEnie Forth Roundtable30,

a Forth BNF parser31, and abstracts for the 1990 Rochester Forth Conference32. Issue 3 (March

1991) listed abstracts of the 1990 SIGForth Workshop33, told how a tethered Forth system was

developed34, showed a stack assembler language for a compiler course35, and described an RTX-

2000 arbitrary waveform generator36. Issue 4 (June 1991) included Forth programming tricks37, a

discussion of Forth compilation techniques38, and a novel single-instruction computer design39.

Volume 3, Issue 1 (Summer 1991) presented insights into Postscript40, showed a convenient way

to handle numbers41, discussed recursion and co-routines for B-trees42, further developed the

single-instruction computer43, described a programming system named for the mathematician

Leibniz44, and expounded on toys that can teach hardware and software interfacing45. Issue

2 (Fall 1991) was a special Postscript Issue. It contained a tutorial on Postscript46, described a

Forth system written in PostScript47, and reviewed PostScript Tutor software for the PC48. Issue

3 (Winter 1991) was a special Hardware issue. Significant articles included: a stack-oriented

multi-processor system called FLIP-FLOP49, the BERT robot50, distributing Forth51, random

variables in Forth52, and driving stepper motors from a parallel port53. Issue 4 (Spring 1992) was

a special Review issue. It contained guidance for loading text files from screen-based Forths54,

some humorous Forth proverbs55, a version of FIG-Forth for the Signetics 80C52256, the

obituary for Adm. Grace Murray Hopper57, some robots that teach Forth58, learning real-time

industrial programming59 and free-form number evaluation60. Reviews included: MI-SHELL, a

Forth-like MS/DOS shell61, the Plain English language62, UTIL for palm computers63, M-CODE

direct assembler for x86 CPU64, The Computer Journal magazine65, and a Forth Applications

book for the PC66.

25 Brad Rodriguez, 13-14 26 Paul Frenger, 15-18
27 Larry Forsley, 19-25 28 Jay Melvin, 31
29 Virgil Stamps, 32 30 Alan Furman, 7-8
31 Brad Rodriguez, 13-18 32 Larry Forsley, 19-25
33 Howard Harkness, 9-10 34 Harold M. Martin, 17-19
35 Gerald Wildenberg, 20-22 36 Paul Frenger, 27-31
37 Frank Sergeant, 7-8 38 Greg Lisle, 21-22
39 P. A. Laplante, 23-26 40 Paul Snow, 7-9
41 Paul Frenger, 10 42 Rick Hoselton, 11-16
43 P. A. Laplante, 21-22 44 Andreas Goppold, 23-24
45 Paul Frenger, 25-29 46 Don Lancaster, 15-19
47 Mitch Bradley, 20-24 48 Paul Frenger, 32
49 Peter Grabienski, 5-11 50 Karl Brown, 15-18
51 Frank Sergeant, 19-20 52 Matthew M. Burke, 21-24
53 Paul Frenger, 25-28 54 Brad Rodriguez, 5-6
55 Rick Hoselton, 7 56 Alberto Pasquale, 11-13
57 John Jeter, 13 58 C. Ronald Kube, 14-16
59 C. A. Maynard, 19-22 60 John R. Hayes, 28
61 Rick Hoselton, 7 62 Paul Frenger, 9-10
63 Royal Randall, 23 64 Paul Frenger, 25-26
65 Mike Foley, 27 66 Paul Frenger, 29-30

8

Volume 4, Issue 1 (Summer 1992) was a special Genie Forth Roundtable issue. Interactive

discussions with special guests took place on the Genie dial-up network and the transcripts were

later posted to the Newsletter. An introduction was provided by a Genie SysOp67; guests

included the public relations guru for FIG68, the editor of FIGÕs Forth Dimemsions magazine69,

the new SIGForth chairman70, a noted Forth author and instructor71, a Ford Motor Company

engineer72, and an ANS Forth Standards team member73. Other articles included Chuck MooreÕs

tribute to FIG-Forth74, A review of the 1992 Rochester Forth Conference75, a book review of

Scientific Forth76, and the Forth Successes Project report77. Issue 2 (Fall 1992) was a Forth

Internals issue. Topics discussed included the CREATE .. DOES> pair78, design of threaded

code interpreters79, syntax of user-defined local variables80, the Forth LATHE Engine concept81,

and JSR Forth for Amiga82. A review of the PIC 16C5x microcontroller was presented83. In the

news: the SIGForth executive committee bestowed the 1992 SIGForth STACK Award on

founder George Shaw, and the 1993 STACK Award on Newsletter editor Paul Frenger.

Issue 3 (December 1993) was the 1992 SIGForth Workshop Proceedings issue, part I. These

papers were presented: Forth on the Space Shuttle84, A first Forth course for engineers85,

construction of a Forth CPU86, and a C-to-Forth compiler87. Regular Newsletter articles were

represented by my discussion of desktop publishing88, a review of Yerkes Forth for the Mac89,

and a critical look at the ANS standardization process90. Issue 4 (December 1994) contained part

II of the 1992 SIGForth Workshop Proceedings. These papers were presented: a software-stack

data type91, Forth GUI design and MetaWINDOW92, ForthÕs role in mainstream computer

science courses93, and computer algebra in Forth94.

Reading these articles and papers by the first generation of Forth practitioners is awe-inspiring.

Some of this is preserved in the ACM Digital Library [7], but much material is out of print.

3 Forth in Sigplan Notices: 1996 to Today

The Forth Report appeared in Sigplan Notices on a frequent but irregular basis, in non-conference

issues which allowed columns and articles. I have chronologically summarized these forty-four

67 Gary Smith, 3-4 68 Jan Shepherd, 5-6
69 Marlin Ouverson, 8-10 70 Irving Montanez, 11-12
71 Michael Ham, 17-19 72 Len Zettel, 21-24
73 Ron Braithewaite, 27-30 74 Chuck Moore, 2
75 Irving Montanez, 20 76 Julian V. Noble, 31-32
77 Darrel Johansen, 13-14 78 Paul Thomas, 6-8
79 P. Joseph Hong, 11-16 80 John R. Hayes, 19-20 + 26
81 Paul Frenger, 21-23 82 Mike Haas, 24-26
83 Paul Frenger, 27-28 84 Robert T. Caffrey, et al, P1-P8
85 Frank N. DiMeo, P9-P11 86 Yong M. Lee and Edward Conjura, P12-P16
87 Alexander Sakharov, P17-P18 88 Paul Frenger, 4 + 32
89 Bob Loewenstein, 5-6 90 Michael L. Gassanenko, 27-31
91 Jon W. Osterlund, P19-P22 92 P. D. Lopez, P23-P27
93 Richard E. Haskell, P28-P34 94 Julian V. Noble, P35-P43

9

Forth Report columns and described them in detail [8, 9]; these reviews are available online to

subscribers via the ACM Portal. These articles fall into the following categories: object-oriented

Forths, conference reports, robotics, space applications, game construction, artificial intelligence,

Forth groups and personalities, Forth vendors, Forth techniques, and miscellaneous applications

and topics. They are briefly listed below.

Volume 31, Number 4 (April 1996) inaugurated the Forth Column in Sigplan Notices with two

guest columns 95, 96 on Object Oriented Forths. In Number 8 (August 1996) I reviewed the 1996

Rochester Forth Conference97. In Number 12 (December 1996) I listed a number of useful Forth

resources for Sigplan readers98.

In Volume 32, Number 2 (February 1997) our guest author described his Beetle Forth Virtual

Processor99. In Number 4 (April 1997) I discussed robotics programming languages100; with

Number 6 (June 1997) I focused attention on Forth as a robotics language101. Forth implemented

on single board computers102 was the topic for Number 11 (November 1997).

Volume 33, Number 2 (February 1998) contained my insights at the very popular EuroForthÕ97

Conference, held at Oxford University103. The topic in Number 3 (March 1998) was ÒThe

Growing MachineÓ, an interesting Pre-Forth language created in 1996 by Thomas Ostrand as a

masterÕs degree thesis104. Issue Number 4 (April 1998) describes105 a humorous undergraduate

student project, ÒThe Talking ToasterÓ. Number 6 (June 1998) describes106 NASAÕs use of Forth

in outer space. Number 8 (August 1998) was a tribute to the FIG-Forth language107. Number 9

(September 1998) discussed the use of Forth in online gaming108 with MUFs, MUDs, MUCKs

and MOOs. Number 12 (December 1998) examined the controversial MindForth application by

Arthur T. Murray, as well as my own use of Forth in AI and robotics109.

Volume 34, Number 2 (February 1999) discussed the use of Forth in the OTA (Open Terminal

Architecture) smart card project110. Number 4 (April 1999) spoke of Parallel Forth111. The guest

author112 for Issue 6 (June 1999) described ÒFicl, FORML, and Object ForthÓ. The guest

author113 for Issue 12 (December 1999) described his ÒFirmware FactoryÓ version of IEEE 1275.

I started off Volume 35 (Number 2, February 2000) with a discussion114 of ÒThe Ultimate RISC:

A Zero-Instruction ComputerÓ, which unexpectedly described an analog, not digital, computer.

95 Brad Rodriquez and W.F.S. Poehlman, 39-42 96 Leonard Zettel, 43-44
97 Paul Frenger, 26-27 98 Paul Frenger, 29-32
99 Reuben Thomas, 22-25 100 Paul Frenger, 27-31
101 Paul Frenger, 19-22 102 Paul Frenger, 21-24
103 Paul Frenger, 31-33 104 Paul Frenger, 21-23
105 Paul Frenger, 21-25 106 Paul Frenger, 24-26
107 Paul Frenger, 28-31 108 Paul Frenger, 24-26
109 Paul Frenger, 25-31 110 Paul Frenger, 36-38
111 Paul Frenger, 28-32 112 John Sadler, 32-35
113 Brad Eckert, 30-33 114 Paul Frenger, 17-24

10

Number 3 (March 2000) told how MicroProcessor Engineering, LtdÕs ÒModular ForthÓ could be

used for learning the Forth language115. Number 6 (June 2000) described what I call the ÒGOTO

MachineÓ, a 32-bit Forth CPU which has no program counter116. Issue Number 8 (August 2000)

talked about using Forth to create the FreeBSD Bootloader117. The guest author118 for Issue

Number 12 (December 2000) told of the ongoing success of FIG-UK.

Volume 36, Number 2 (February 2001) told how to use Forth for Extreme Programming119.

Number 4 (April 2001) showed how Forth hardware and software enabled NASAÕs NEAR

satellite to touch-down on an asteroid in deep space120. Issue Number 6 (June 2001) probed the

Forth languageÕs fate after several serious setbacks121. Issue 12 (December 2001) discussed the

use of Forth to control LEGO ÒMindstormsÓ toy robots122.

The guest author for Volume 37, Number 2 (February 2002) gave an illuminating exposition on

Forth Jump Tables and State Machines123. In Number 4 (April 2002) I described use of Forth as

an add-on (Òstrap-onÓ) solution to avoid technological obsolescence124. In Number 6 (June 2002)

the popular ÒDOOMÓ PC game and its Forth equivalent were showcased125. Issue Number 8,

(August 2002) reviewed Quartus Forth for the Palm Pilot platform126. Number 12 (December

2002) described my concept of intelligent simian robots for Mars and space exploration127.

Volume 38 Number 4 (April 2003) reviewed using Forth, IncÕs SwiftForth under Windows128.

Number 8 (August 2003) described the Forth-like JOY functional programming language129.

In Volume 39, Number 2 (February 2004) the Dutch FIG was showcased, along with one of its

most prolific members, Albert van der Horst130. Issue Number 3 (March 2004) described how

Forth-based IEEE 1275 helped make the Apple Macintosh such a great machine131. Number 8

(August 2004) gave examples of embedded programming with Forth132. Number 12 (December

2004) returned to Forth and AI with my human intellect growth and development simulator133.

Volume 40, Number 2 (February 2005) kicked off with my humorous proposal for a minimal

stack-based transistor-sized 3-pin microcontroller134. Number 4 (April 2005) discussed how a 4-

bit Forth-based Atmel microcontroller in your car tires warns you of dangerous underinflation135.

Issue Number 8 (August 2005) described how a small Australian company used Forth to develop

a machine-vision application to sort fruit and vegetables without human intervention136.

115 Paul Frenger, 25-30 116 Paul Frenger, 21-24
117 Paul Frenger, 15-17 118 Chris Jakeman, 19-21
119 Paul Frenger, 20-23 120 Paul Frenger, 21-24
121 Paul Frenger, 23-25 122 Paul Frenger, 16-19
123 Julian V. Noble, 14-19 124 Paul Frenger, 17-20
125 Paul Frenger, 14-17 126 Paul Frenger, 6-8
127 Paul Frenger, 9-13 128 Paul Frenger, 12-15
129 Paul Frenger, 15-17 130 Paul Frenger, 7-10
131 Paul Frenger, 7-11 132 Paul Frenger, 8-11
133 Paul Frenger, 11-16 134 Paul Frenger, 5-10
135 Paul Frenger, 5-8 136 Paul Frenger, 7-10

11

Volume 40, Number 11 (November 2005) and Volume 41, Number 4 (April 2006) are the above-

cited ÒTen Years of Forth in ACM Sigplan NoticesÓ summaries [references 8-9].

4 Postmortem and Conclusion

After a few productive years, George Shaw relinquished SIGForth to Irving Montanez, who

served ably as Chairman. Unfortunately, it became obvious that SIGForth (initially subsidized

by ACM as a new SIG) would not become self-sustaining. SIGForth never had more than 1200

members; it Òran out of gasÓ by 1995. Irving was able to save some bits and pieces of SIGForth.

For example, after 1991 he folded the SIGForth Workshops into subsections of other ACM

meetings for the next two years. He also arranged to incorporate the remnant of the SIGForth

Newsletter as a periodic Forth column in the popular Sigplan Notices monthly publication,

starting with Volume 31, Number 4 (April 1996) as illustrated above.

Why did SIGForth fail? Perhaps the dissonance between the Forth language and ACMÕs clientele

(mentioned earlier) finally caught up with it. Perhaps SIGForth did not deliver what its members

wanted. Or possibly it was just part of the general decline in interest in Forth in the US, as

reflected by the loss of the annual Rochester Forth Conference and the American Forth Interest

Group itself. The reluctance of Forth practitioners to write copy for the Newsletter was also

contributory (possibly because of copyright issues). Still, ACM never seemed to be part of the

problem; it was always a most charming and helpful sponsor for Forth activities over the years.

Why has the Forth Column in Sigplan Notices been more successful? One reason is that Sigplan

is an eclectic publication; the Forth topics contribute to its diversity and arenÕt required to pull

the entire weight of the journal. The Forth topics have been carefully chosen to balance

professional issues, education and entertainment (a bill of fare which might be controversial in a

Forth-only publication). I believe it is permissible to wear the JesterÕs Cap to teach a valuable

lesson to an unsuspecting student ... especially a lesson not taught anywhere else.

Those of us who respect and use Forth should be glad that ACM in general, and Sigplan Notices

in particular, continue to provide us with a prestigious forum for our Forth programming language

theories and applications. With a resurgence of interest in Forth resulting from broad industry

licensing of the Moore Microprocessor Patent (MMP) Portfolio [10] and the new Intellasys

SEAforth-24 multicore processor [11], this association will continue for years to come.

5 Last-Minute Update!

I have recently obtained permission from ACM to place the entire content of my SIGForth

Newsletter and Sigplan Notices articles / columns on a soon-to-be-constructed personal website,

probably linked to the Forth WebRing [12]. The works of guest authors will be included as soon

as their permission can be obtained. This material will be available for download at no cost for

personal, educational and noncommercial use. The additional SIGForth Workshops material is

being negotiated even as this paper is being written. Thank you very much, ACM!

12

6 References

1. http://en.wikipedia.org/wiki/Association_for_Computing_Machinery.

2. Catsoulis, John, ÒForth / Open FirmwareÓ, Chapter 3, Designing Embedded Hardware,

 Second Edition, May, 2005, OÕReilly Media, Inc., Sebastopol CA. pg.49.

3. Proceedings of the First Annual Workshop for the ACM Special Interest Group on Forth,

 1989, ACM Press, New York, ISBN 0-89791316-7.

4. Proceedings of the Second and Third Annual Workshops for the ACM Special Interest

 Group on Forth, 1990 and 1991, ACM Press, New York, ISBN 0-89791-462-7.

5. Frenger, Paul, ÒACM SIGForth: the First Two YearsÓ, Proc Rochester FORTH Conf, 10,

 1990, Rochester NY, pg.68-70.

6. Frenger, Paul, ÒDesktop Publishing: SIGForth StyleÓ, ACM SIGForth Newsletter, 4 (3),

 1993, pg.4.

7. http://portal.acm.org.

8. Frenger, Paul, ÒTen Years of Forth in ACM Sigplan Notices, Part 1Ó, ACM Sigplan Notices,

 Nov. 2005, pg.4-13.

9. Frenger, Paul, ÒTen Years of Forth in ACM Sigplan Notices, Part 2Ó, ACM Sigplan Notices,

 Apr. 2006, pg.3-14.

10. http://www.eet.com/news/latest/showArticle.jhtml?articleID=188701555.

11. http://www.intellasys.net.

12. http://zforth.com.

 AuthorÕs Biography

Paul Frenger is a medical doctor who has been professionally involved with various

kinds of computers since 1976. He has worked as a computer consultant, published

over one hundred thirty articles in the bioengineering and computer literature, edited

the ACM SIGForth Newsletter for four years, contributed to ACM Sigplan Notices for

eleven, and acquired three computer patents along the way. Paul was bitten by the

reverse Polish bug in 1981 and has used Forth ever since. Being both a physician

and a systems developer, Paul believes that the term ÔhackerÕ is doubly appropriate

in his case.

13

Global Stack Allocation –
Register Allocation for Stack Machines

Mark Shannon

University of York

marks@cs.york.ac.uk

Chris Bailey

University of York

chrisb@cs.york.ac.uk

Abstract

Register allocation is a critical part of any compiler, yet
register allocation for stack machines has received rela-
tively little attention in the past. We present a frame-
work for the analysis of register allocation methods for
stack machines which has allowed us to analyse current
methods. We have used this framework to design the
first truly procedure-wide register allocation methods
for stack machines. We have designed two such meth-
ods, both of which outperform current techniques.

This work was funded by the AMADEUS project,
part of the DTI’s Next Wave Technologies and Markets
Program, in collaboration with MPE Ltd.

1 Introduction

To design a compiler for a stack machine most of
the conventional techniques for compiler design can be
reused, with the exception of register allocation and,
to a lesser extent, instruction scheduling. Register al-
location for stack machines is fundamentally different
from that for conventional architectures, due the ar-
rangement of the registers. In this paper we describe a
way of analysing the stack that is suitable for classifying
and designing register allocation methods for stack ma-
chines. Most compilers specifically targetted at stack
machines have been Forth compilers, where register al-
location has to be done explicitly by the programmer.
When developing a C compiler, however, it is impor-
tant that it is the compiler handles register allocation
since this is not the responsibilty of the programmer.

The first work on register allocation for stack ma-
chines was Koopman’s work[4], although he uses the
term ‘stack scheduling’, which was limited to basic
blocks, although he does discuss the possibility of a
global method to further improve this work. This work
was later to shown to be near-optimal, in terms of re-
moving memory acccesses, by Maierhofer and Ertl[6],
and was extended beyond basic block boundaries by
the second author[1]. Although this enhanced method

was able to store values on the stack across edges in the
flow graph, it has limitations and cannot be considered
truly global.

This paper assumes a stack machine for which
stack access is considerably faster than memory access,
whether real or virtual, and that register allocation is
the job of the compiler, not the programmer.

2 The stack

2.1 Views of the stack

It is possible to view the stack from a number of dif-
ferent perspectives. For example, when viewed from a
hardware perpsective the stack consists of a number of
discrete registers, a mechanism for moving values be-
tween these registers, a buffer, and some logic to con-
trol movement of data between the buffer and mem-
ory. This perspective is irrelevant to the programmer,
who sees a first-in first-out stack, of potentially infinite
depth, enhanced with a number of instructions allowing
access to a few values directly below the top of stack.
In oreder to develop register allocation methods a dif-
ferent, more structured view is required.

2.2 Stack regions

To aid analysis of the stack with regard to register al-
location, the perspective chosen divides the stack into
a number of regions. These regions are abstract, hav-
ing no direct relation to the hardware and exist solely
to assist our thinking. The boundaries between these
regions can be moved without any real operation tak-
ing place, but only at well defined points and in well
defined ways. This compiler oriented view of the stack
consists of five regions. Starting from the top, these
are:

• The evaluation region (e-stack)

• The parameter region (p-stack)

• The local region (l-stack)

14

• The transfer region (x-stack)

• The remainder of the stack, included for complete-
ness.

An example of stack region usage is illustrated in
figure 6

2.2.1 The evaluation region

The evaluation region, or e-stack, is the part of the
stack that is used for the evaluation of expressions. It
is defined to be empty except during the evaluation
of expressions when it will hold any intermediate sub-
expressions1. See figure 1 for an example.

Figure 1: Evaluation of expression y = a ∗ b + 4

The e-stack is not modified during register allocation.
Any compiler optimisations which would alter the e-
stack, such as common sub-expression elimination, are
presumed to have occurred before register allocation.

2.2.2 The parameter region

The parameter region, or p-stack, is used to store pa-
rameters for procedure calls. It may have values in it at
any point, both in basic blocks2 and across the bound-
aries between blocks. When a procedure is invoked all
its parameters are removed from the p-stack. The p-
stack is for outgoing parameters only; any value re-
turned by a procedure is left on the e-stack and incom-
ing parameters are placed in the x-stack at the point of
procedure entry. Although parameters are kept on the
p-stack before a procedure call, they are evaluated on

1This is by definition, any ‘expression’ that does not ful-

fil these criteria should be broken down into its constituent

parts, possibly creating temporary variables if needed. The

conditional expression in C is an example of such a com-

pound expression.
2A basic block is a piece of code which has one entry

point, at the beginning, and one exit point, at the end. That

is, it is a sequence of instructions that must be executed, in

order, from start to finish.

the e-stack, like any other expression. Only when eval-
uation of the parameter is completed is it moved to the
p-stack. This is illustrated in figure 2. Note that this
movement may be entirely abstract; no actual opera-
tion need occur. The p-stack is, like the e-stack, fixed
during register allocation.

Figure 2: Evaluation of expression f(x+y)

The e-stack and p-stack are the parts of the stack
that would be used by a compiler that did no stack
allocation. Indeed the stack use of the JVM[5] code
produced by most Java[2] compilers corresponds to the
e-stack and p-stack.

2.2.3 The local region

The local region, or l-stack, is the region directly below
the p-stack. The l-stack is used for register allocation.
It is always empty at the beginning and end of any basic
block, but may contain values between expressions. In
the earlier example, no mention was made of where
either a or b came from or where y is stored. They could
be stored in memory but it is better to keep values in
machine registers whenever possible. So let us assume
that in the earlier example, y = a * b + 4, a and b

are stored in the l-stack, as shown in figure 3. To move
a and b from the l-stack to the e-stack, we can copy
them, thus retaining the value on the l-stack, or move
them to the e-stack from the l-stack. In this example, b
might be stored at the top of the l-stack, with a directly
below it; to move them to the e-stack requires no actual
move instruction, merely moving the logically boundary
between the e-stack and l-stack. Likewise storing the
result, y, into the l-stack is a virtual operation.

2.2.4 The transfer region

The transfer region or x-stack is used to store values
both during basic blocks and on edges in the flow graph.
The x-stack need only be empty at procedure exit. It
holds the incoming parameters at procedure entry. Val-
ues may only be moved between the x-stack and l-stack
at the beginning or end of basic blocks, and they must
moved en bloc and retain their order. Values cannot

15

Figure 3: Using the l-stack when evaluating
y = a ∗ b + 4

be moved directly between the x-stack and the e-stack,
they must go through the l-stack. Since all ‘movement’
between the l-stack and x-stack is virtual it might seem
that they are the same, but the distinction between the
two is useful; the x-stack must be determined globally,
while the l-stack can be determined locally. This sep-
aration allows a clear distinction between the different
phases of allocation and simplifies the analysis.

2.2.5 The rest of the stack

The remainder of the stack or sub-stack, consists of the
e-stack, p-stack, l-stack and x-stack of enclosing proce-
dures. It is out-of-bounds for the current procedure.

2.3 Using the regions to do register

allocation

Register allocation for stack machines is complicated
by the moveable nature of the stack. A value may be
stored in one register, yet be in a different one when it
is retrieved. This complication can be sidestepped by
regarding the boundary between the p- and l-stacks as
the fixed point of the stack. Values stored in the l-stack
do not move relative to this boundary. The ability of
the hardware to reach a point in the l-stack depends
on the height of the combined e- and p-stacks above
it, but that height is fixed during register allocation,
meaning it needs to be calculated only once at the start
of register allocation.

2.3.1 The e-stack

The e-stack is unchanged during optimisations. Op-
timisation changes whether values are moved to the e-
stack by reading from memory or by lifting from a lower
stack region, but the e-stack itself is unchanged.

2.3.2 The p-stack

For a number of register allocation operations, there is
no distinction between the e-stack and p-stack and they

can be treated as one region, although the distinction
can be useful. For certain optimisations, which are lo-
calised and whose scopes do not cross procedure calls,
the p-stack and l-stack can merged increasing the usable
part of the stack. For the register allocations method
discussed later, which are global in scope and can cross
procedure calls, the p-stack is treated essentially the
same as the e-stack.

2.3.3 The l-stack

The l-stack is the most important region for localised
register allocation. All intra-block optimisations oper-
ate on this region. Code is improved by retaining vari-
ables in the l-stack rather than storing them in memory.
Variables must be fetched to the l-stack at the begin-
ning of each basic block and, if they have been altered,
restored before the end of the block, since by definition,
the l-stack must be empty at the beginning and end of
blocks.

2.3.4 The x-stack

The x-stack allows code to be improved across basic
block boundaries. The division between the l-stack and
x-stack is entirely notional; no actual instructions are
inserted to move values from one to the other. Instead
the upper portion, or all, of the x-stack forms the l-
stack at the beginning of a basic block. Conversely, the
l-stack forms the upper portion, or all, of the x-stack at
the end of the basic block. Since the e-stack and l-stack
are both empty between basic blocks, the p-stack and
x-stack represent the complete stack which is legally ac-
cessible to the current procedure at those points. This
makes the x-stack the critical part of the stack with re-
gards to global register allocation. Code improvements
using the x-stack can eliminate local memory accesses
entirely by retaining variables on the stack for their en-
tire lifetime.

2.4 How the logical stack regions re-

late to the real stack

The logical stack regions can be of arbitrary depth re-
gardless of the hardware constraints of the real stack.
However, the usability of the l-stack and x-stack de-
pends on the capabilities of the hardware. Our real
stack-machine, the UFO, has a number of stack manip-
ulation instructions which allow it to access values up
to a fixed depth of four below the top of the stack. How-
ever, as the e-stack and p-stack vary in depth, the pos-
sible reach into the l-stack also varies. Variables that lie
below that depth are unreachable at that point, but, as
they may have been reachable earlier and become reach-
able later, they can still be useful. We assume that the

16

hardware allows uniform access to a fixed number of
registers, so if we can copy from the nthregister we can
also store to it and rotate through it.

2.5 Edge-sets

The second part of the analytical framework relates to
flow-control. In order that programs behave in a sen-
sible way, the stack must be in some predictable and
fixed3 state when program flow moves from one block
to another. This means for all the successor edges of
any given block, the state of the x-stack must be identi-
cal. Likewise, it means that for all the predecessor edges
for any given block, the state of the x-stack must be the
same. The set of edges for which the stack must con-
tain the same variables is called an edge-set. An edge
belongs to exactly one edge-set and if two edges share
either a predecessor or successor node (block) they must
be in the same edge-set. The state of the x-stack is the
same for every edge in an edge-set. Edse-sets are de-
fined as follows:

For any edge e and edge-set S1: if e ∈ S1 then for all
other edge-sets S2 6= S1, e 6∈ S2.

For any two edges, e1 ∈ S1, e2 ∈ S2: if
predecessor(e1) = predecessor(e2) ∨ successor(e1) =
successor(e2) then S1 = S2.

3 An example

In order to illuminate the process of using the stack
regions to perform register allocation we will use an
example. The program code in figure 4 is a simple
iterative procedure which returns n factorial for any
value of n greater than 0, otherwise it returns 1. The
C source code is on the left, along side it is the output
from the compiler without any register allocation.

Before register allocation can be done the edge-sets
are found; see figure 5. The first part of the stack to be
determined is the x-stack. Firstly consider the edge-set
{a, b}; both the variables n and f are live on this edge
set. Presuming that the hardware can manage this, it
makes sense to leave both variables in the x-stack. The
same considerations apply for {c, d}, so again both n

and f are retained in the x-stack. The order of vari-
ables, whether n goes above f, or vice versa, also has to
be decided. In this example we choose to place n above
f, since n is the most used variable, although in this
case it does not make a lot of difference.

Once the x-stack has been determined, the l-stack
should be generated in a way that minimises memory
accesses. This is done by holding those variables which

3A fixed x-stack means that the variables held in it are

the same, regardless of the flow up to that point, the values

those variables hold may vary.

Figure 4: C Factorial Function

C source Assembly

int f a c t (int n)
{

int f = 1 ;
while (n > 0) {

f = f ∗ n ;
n = n − 1 ;

}
return f ;

}

! l o c n
l i t 1
! l o c f
jump L3
L2 :
@loc f
@loc n
mul
! l o c f
@loc n
l i t 1
sub
! l o c n
L3 :
@loc n
l i t 0
brgt L2
@loc f
e x i t

are required by the e-stack in the l-stack, whilst match-
ing the l-stack to the x-stack at the ends of the blocks.
Firstly n, as the most used variable, is placed in the
l-stack. It is required on the l-stack thoughout, except
during the evaluation of n = n+1, when it is removed,
so that the old value of n is not kept. Secondly f is allo-
cated in the l-stack, directly under n. In the final block
the value of n is superfluous and has to be dropped.

The original and final stack profiles are shown in fig-
ure 6. Note the large number of stack manipulations,
such as rrot2 which is equivalent to swap, and rrot1,
which does nothing at all. These virtual stack manip-
ulations serve to mark the ‘movement’ of variables be-
tween the e-stack and l-stack. The final assembly stack
code, with redundant operations removed, is shown in
figure 7 on the right. Not only is the new code shorter
than the original, but the number of memory accesses
has been reduced to zero. Although much of the op-
timisation occurs in the l-stack, the x-stack is vital,
since without it variables would have to be stored to
memory in each block. Register allocation using only
the l-stack can be seen in the centre column of figure
7. This would suggest that the selection of the x-stack
is an important factor in register allocation. Although
this is a very simple example, the underlying principles
can be applied to much larger programs.

17

Figure 5: Determining the edge-sets

The edges a

and b share a
common child,
so form one
edge set. The
edges c and d

share a common
parent and form
another edge
set. So, the two
edge-sets are
{a, b} and {c, d}

4 Analysis of Existing Algo-

rithms

To demonstrate the value of the framework for anal-
ysis we will look at Koopman’s and Bailey’s methods
for ‘stack-scheduling’, and show that the algorithm can
be described more clearly and concisely with reference
to our framework. The improvements to Koopman’s
method by Maierhofer and Ertl are not covered, mainly
for space reasons, as they add relatively little to Koop-
man’s work in terms of performance.

4.1 Koopman’s algorithm

Koopman’s algorithm, as described in his paper, was
implemented as a post processor to the textual output
of gcc[7] after partial optimisation. We have imple-
mented it within lcc[3], where it acts directly on the
intermediate form.

The algorithm is quite straightforward, as follows:

1. Clean up the output using simple peephole optimi-
sation, replacing sequences of stack manipulations
with shorter ones if possible.

2. Locate define–use and use–use pairs of local vari-
ables and list them in order of their proximity.
That is, in ascending order of the number of in-
structions separating the pair.

3. For each pair:

(a) Copy the variable at the point of definition
or first use to the bottom of the stack.

Figure 6: Stack profile
Before optimisation After optimisation

.text

param n n

rot1 n

!loc n

lit 1 1

!loc f

jump L3

L2:

@loc f f

@loc n nf

mul f*n

!loc f

@loc n n

lit 1 1n

sub n−1

!loc n

L3:

@loc n n

lit 0 0n

brgt L2

@loc f f

exit f

e-stack

l-stack

x-stack

.text

param n n

rot1 n

rrot1 n

lit 1 1n

rrot2 nf

jump L3 nf

L2: nf

rot2 fn

copy2 nfn

mul f*nn

rrot2 nf

rot1 nf

lit 1 1nf

sub n−1f

rrot1 nf

L3: nf

copy1 nnf

lit 0 0nnf

brgt L2 nf

rot1 nf

drop f

rot1 f

exit f

(b) Replace the second instruction with an in-
struction to rotate the value to the top of
the stack.

4. Remove any dead stores.

5. Reapply the peephole optimisation.

4.1.1 Koopman’s algorithm in terms of the

framework

In Koopman’s algorithm, when he refers to the bottom
of the stack, he is referring to the portion of the stack
used by the function being optimised. Since no inter-
block allocation is done, thus the x-stack is empty, the
bottom of the stack is clearly the bottom of the l-stack.
Therefore step 3 above become:

(a) Copy the variable at the point of definition
or first use to the bottom of the l-stack.

18

(b) Replace the second instruction with an in-
struction to rotate the value from the bottom
of the l-stack to the top of the stack.

Figure 7: Assembly listings

No register
allocation

Local
register
allocation

Global
register
allocation

! l o c n
l i t 1
! l o c f
jump L3
L2 :
@loc f
@loc n
mul
! l o c f
@loc n
l i t 1
sub
! l o c n
L3 :
@loc n
l i t 0
brgt L2
@loc f
e x i t

! l o c n
l i t 1
! l o c f
jump L3
L2 :
@loc f
@loc n
tuck2
mul
! l o c f
l i t 1
sub
! l o c n
L3 :
@loc n
l i t 0
brgt L2
@loc f
e x i t

l i t 1
swap
jump L3
L2 :
tuck2
mul
swap
l i t 1
sub
L3 :
copy1
l i t 0
brgt L2
drop
e x i t

4.2 Bailey’s ‘inter-boundary’ algo-

rithm

Bailey’s ‘inter-boundary’ algorithm was the first at-
tempt to utilise the stack across basic block boundaries.
This is done by determining edge-sets; although in the
paper the algorithm is defined in terms of blocks rather
than edges. Then the x-stack, termed ‘sub stack in-
heritance context’, is determined for the edge-set. In
outline the algorithm runs as follows:

1. Find co-parents and co-children for a block (deter-
mine the edge-set).

2. Create an empty ‘sub stack inheritance context’.

3. For each variable in a child block, starting with
the first to occur:

• If that variable is present in all co-parents
and co-children, then:

– Test to see if it can be added to the base
of the x-stack. This test is done for each
co-parent and co-child to see whether
the variable would be reachable at the
closest point of use in that block.

Bailey’s algorithm is designed to be used as a comple-
ment to an intra-block optimiser, such as Koopman’s.
It moves variables onto the stack across edges in the
flow graph, by pushing the variables onto the stack im-
mediately before the edge and popping them off the
stack immediately after the edge. Without an intra-
block optimiser this would actually cause a significant
performance drop.

4.2.1 Bailey’s algorithm in terms of the

framework

1. Determine edge-sets

2. For each edge-set:

(a) Create an empty x-stack state for that edge-
set.

(b) Determine the intersection of the sets of live
variables for each edge in the edge-set.

(c) Choose an arbitrary neighbouring block, pre-
sumably the first to occur in the source code.

(d) For each variable in the intersection set, in
increasing order of the distance of usage from
the edge in question:

• Test to see if it can be added to the x-
stack, and if it can be, do so.

Although Bailey’s algorithm is an inter-block algo-
rithm, it is not genuinely global, as it makes fairly lim-
ited use of the x-stack. No values are left in the x-stack
during blocks. No attempt is made to integrate the
allocation within the x-stack to allocation within the
l-stack. In terms of performance, the main failing of
Bailey’s algorithm is that it cannot handle variables
which are live on some but not all edges of an edge-set.

5 A Global register allocator

The next step forward in register allocation for stack
machines, is to try to do it globally, in a procedure
wide fashion. Once full data-flow information, includ-
ing edge-sets, has been found, the next step is to deter-
mine the x-stack on each edge-set. Our first approach
was to modify Bailey’s algorithm to use various combi-
nations of unions and intersections of liveness and uses.

19

However, this revealed some important limitations in
the localised push-on, pop-off approach, which are:

• Excessive spilling

There is no attempt to make the x-stack similar
across blocks, so variables may have to be saved
at the start of a block, and other variables loaded
at the end of a block.

• Excessive reordering

Even when the x-stack state at the start and end
of a block contain similar or the same variables,
the order may be different and thus require extra
instructions.

• No ability to use the x-stack across blocks

The requirement for the entire x-stack to be trans-
fered to the l-stack means that the size of the x-
stack is limited. Variables cannot be stored deeper
in the stack when they are not required.

5.1 A global approach

The problems to be solved are:

5.1.1 Determination of x-stack member

sets

Although none of the modified versions of Bailey’s al-
gorithm produced better code than the original, some
versions did seem to make promising selections of x-
stack members. We decided to determine the x-stack
set by starting with a large set of variables and reducing
it towards an optimum.

5.1.2 Ordering of the variables within the

x-stack

If variables are to be kept on the x-stack during blocks
then the order of the lower parts of the x-stack is im-
portant. Since the ordering of variables on the x-stack
cannot be changed, without moving variables to the l-
stack, the order of the lower parts of the x-stack must

match across blocks. The simple but effective approach
taken was to choose a globally fixed ordering. This also
solves the problem of excessive reordering of variables.

5.1.3 Handling the l-stacks to work with

the x-stack

Since allocation of the l-stack depends on the x-stack
at both beginning and end of the block. It is necessary
to determine the x-stack first. However, in order to
allocate x-stack that do not impede l-stack allocation,
the l-stack, must be at least partially determined before
the x-stack.

5.2 Outline Algorithm

The algorithm chosen runs, in outline, as follows:

1. Determine edge-sets

2. Determine ordering of variables.

3. For each edge-set:

Determine x-stack using heuristic

4. For each basic block:

Do local allocation, ensuring l-stacks match
x-stack.

5.3 Determining x-stack

There are two challenges when determining the x-stack.
One is correctness, that is, the x-stack must allow regis-
ter allocation in the l-stacks to be both consistent with
the x-stack and legal. The other challenge is the qual-
ity of the generated code. For example making all the
x-stack empty is guaranteed to be correct, but not to
give good code. Both the x-stack finding methods work
by first using heuristics to find an x-stack which should
give good code, then correcting the x-stack, if necessary.
The algorithm for ensuring correctness is the same, re-
gardless of heuristic used.

For the x-stack to be correct, two things need to be
ensured:

1. Reachability

Ensure all variables in the x-stack that are defined
or used in successor or predecessor blocks, are ac-
cessible at this point.

2. Cross block matching

Ensure that all unreachable variables in the x-
stack on one edge do not differ from those in the
x-stack on an other edge adjoining the same block.

5.3.1 Ordering of variables.

As stated earlier, a globally fixed ordering of variables is
used. This is done by placing variables with higher ‘es-
timated dynamic reference count’ nearer the top of the
stack. In our implementation, which is part of a port
of lcc[3], the ‘estimated dynamic reference count’ is the
number of static references to a variable, multiplying
those in loops by 10 and dividing those in branches by
the number of branches that could be taken. An al-
ternative ordering could be based around ‘density’ of
use, which would take into account the lifetime of vari-
ables. Profiling would provide the best estimate, but is
impractical.

20

5.3.2 Heuristics

We use two different heuristics to demonstrate the util-
ity of the framework. The first is simple and fast,
whereas the second is more complex, and consequently
slower.

5.3.3 Global 1

The first simpler heuristic is simply to take the union

of live values. Its main flaw is that it selects variables
for the x-stack, that cannot be allocated to the l-stack,
and have to be spilled to memory.

5.3.4 Global 2

This heuristic was developed to improve on ‘Global 1’.
It considers the ideal l-stack for each block and then at-
tempts to match x-stack as closely to that as possible.
Given that the ordering of variables is pre-determined,
the x-stack can be treated as a set. In order to find
this set, we determine a set of variables which would be
counter productive to allocate to the l-stacks. The x-
stack is then chosen as the union of live values less this
set of rejected values. The set of ‘rejects’ is found by do-
ing ‘mock’ allocation to the l-stack, to see which values
can be allocated, then propagating the values to neigh-
bouring blocks in order to reduce local variation in the
x-stack. Overall this algorithm out performs ‘Global 1’,
but can produce worse code for a few programs.

6 Results

The graph in figure 8 shows the simulated performance
of the various register allocation methods, for a simple
processor where memory accesses take three cycles and
other operations take one cycle. The ‘overall’ result is
the geometric mean of the other results. Although the
results are for simple benchmarks on a simulated stack
machine, we believe that the differences between the
previous algorithms and the new ones are large enough
to be significant.

Figure 8: Relative performance

1

1,5

2

2,5

3

bs
or

t

im
ag

e

m
at

m
ul

fib
fa

ct lif
e

qu
ic
k

qu
ee

ns

to
w
er

s

bi
tc
nt

s

dh
ry

st
on

e
w
f1

ya
cc

O
ve

ra
ll

koopman

bailey

global1

global2

7 Conclusion

As can be seen the global register allocation methods
are generally better than the previous methods, but
there is room for improvement. The framework laid out
in this paper, enables us to analyse the two approaches,
to see what those improvements could be, and can be
used to find even better algorithms. Work is currently
underway to find an allocator that performs at least as
well as the two global allocators in all circumstances.

References

[1] C. Bailey. Inter-boundary scheduling of stack
operands: A preliminary study. Procedings of Eu-

roForth 2000, pages 3–11, 2000.

[2] J. Gosling, B. Joy, G. Steele, and G. Bracha. The

Java Language Specification, Second Edition. Addi-
son Wesley, 2000.

[3] D. R. Hanson and C. W. Fraser. A Retargetable

C Compiler: Design and Implementation. Addison
Wesley, 1995.

[4] P. Koopman, Jr. A preliminary exploration of opti-
mized stack code generation. Journal of Forth Ap-

plication and Research, 6(3):241–251, 1994.

[5] T. Lindholm and F. Yellin. The Java Virtual Ma-

chine Specification. Addison-Wesley, 1996.

[6] M. Maierhofer and M. A. Ertl. Local stack alloca-
tion. In CC ’98: Proceedings of the 7th Interna-

tional Conference on Compiler Construction, pages
189–203, London, UK, 1998. Springer-Verlag.

[7] R. M. Stallman. Using and Porting the GNU Com-

piler Collection, For GCC Version 2.95. Free Soft-
ware Foundation, Inc., pub-FSF:adr, 1999.

21

Optimizing Intel EPIC/Itanium2 Architecture for Forth
Jamel Tayeb*, Smail Niar**

*Intel Corporation, Portland, Oregon (USA)

**LAMIH ROI, University of Valenciennes, (France)

Jamel.Tayeb@intel.com, Smail.Niar@univ-valenciennes.fr

Abstract

Forth is a stack machine that represents a good match

for the register stack of the Explicit Parallel Instruction

Computer (EPIC) architecture. In this paper we will

introduce a new calling mechanism using the register stack

to implement a Forth system more efficiently. Based upon

our performance measurements, we will show that the new

calling mechanism is a promising technique to improve the

performance of stack-based interpretative languages such

as Forth. The limitation in EPIC’s Register Stack Engine

makes the need for hardware support to improve

performance and possibly close the efficiency gap with

specialized stack processors. We will define also an

adjustment to Itanium 2 processor’s instruction set to

accommodate the new calling mechanism and present a

conservative architectural implementation over the current

Itanium 2 processor’s pipeline.

1. Introduction

1.1. Background
Virtual machines are an effective ways to take advantage

of the increasing chip and system-level parallelism –

introduced via technologies such as simultaneous multi-

threading [1], multi-core designs [2] and systems-on-a-chip

(networks) [3]. The performance of a virtual machine

depends on its implementation and its interaction with the

underlying processing architecture [4].

Just in Time [5] and Adaptive Dynamic Compilation [6]

techniques were developed to provide performance gain

over pure interpretation. In practice just in time and

adaptive dynamic compilation suffer some limitations. In

particular, it is difficult to explore a large set of

optimizations in a limited period of time. This issue makes

most just in time compilers to narrow down the field and the

scope of their optimizations. They also require additional

memory, which may be impractical in an embedded

environment.

1.2. Project aim
The aim of our work is to close as much as possible the

theoretical efficiency gap that exists between EPIC (Explicit

Parallel Instruction Computer) [7] and stack processor

architectures while running Forth applications [8]. To do so,

we are comparing the Itanium 2 processor’s register stack to

existing stack processors’ architectures using Forth as their

assembly language (in section 6). Forth is used in the scope

of this study because it is a simple stack machine [9]. This

makes it well suited as a proxy for more sophisticated stack

machines such as .NET (The MSIL evaluation stack). In

addition, Forth’s key intrinsic advantages are:

� A low memory footprint;

� A high execution speed;

� The ability to interactively expand its dictionaries while

developing applications.

1.3. Why using EPIC?
Itanium processors are today the only commercial chips

to implement the EPIC architecture. This processor family

is specifically targeting the enterprise server and high-

performance computing cluster segments. With 410 million

transistors required to implement the EPIC architecture in

the Itanium 2 processor (9MB on-chip cache memory), one

can argue that IPF doesn’t seem to be well suited for mid or

low range, or even embedded applications. However, the

EPIC architecture is not reserved to the high-end servers

and offers enough flexibility – I.e. the execution window

width of the machine – to adapt it to specific needs. It is

also interesting to notice that the Itanium 2 processor core

uses less than 30 million transistors to implement the

processor’s logic (where a modern x86, out-of-order

execution engine’s implementation requires 40+ million

transistors). The reminder of the transistors budget is

essentially dedicated to build the huge on-chip cache

memory (Level 3 essentially). It is therefore realistic to

consider the design of a low-end processor based on EPIC

architecture and having a limited amount of on-chip cache

memory (128KB L2 and/or 1MB L3). In consequence of

that:

� EPIC architecture, with its large register file and

its simple and in-order core makes it well suited

to host a stack machine, such as Forth,

� Itanium 2 processor is a good development

vehicle and the best performance proxy available

for our initial study.

1.4. Plan
We first introduce in section 2 a new Stack Indexed

Register (SIR) based on Itanium 2 processor’s register stack

to implement a purely software virtual machine, running

Forth. Based upon our performance projections

(summarized in section 5), we demonstrate that the

proposed mechanism is a promising technique to improve

the performance of stack-based interpretative virtual

machine. But limitation in EPIC’s register stack engine

makes the need for a hardware support to reach optimal

22

performance and close as much as possible the theoretical

efficiency gap with stack processors (detailed in section 6.1

– related projects). In section 3, we define an addition to

Itanium 2 processor’s instruction set to accommodate the

SIR. In section 4, we describe a conservative architectural

implementation of the extended instruction set. We

summarize our experimental results in section 5 and present

our conclusions in section 7.

2. The New Calling Convention
Our reference Forth virtual machine is threaded and uses

in-memory stacks. Parameter passing is done through the

stack, and an optimizing compiler (Microsoft Visual C++

2005 for Itanium) is used to generate the binary of words

defined in the X3.215-1994 ANS standard [10]. Assembly

coding is done using ias, the Intel EPIC assembler.

First, to present the use by compilers of the Itanium 2

processor register stack, let’s examine a function call using

the address interpreter’s principal statement – performing

NEXT: (pf->internals.ip->cfa)(pf);

The translation of this statement by the compiler in EPIC

assembly language is given in Table 1.

Table 1 - Translation in the EPIC assembly
language of (pf->internals.ip->cfa)(pf);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

{ .mii

 alloc r35=2,3,1,0

 mov r34=b0

 adds r31=528, r32

} … { .mmb

 mov r36=gp

 mov r37=r32

 nop.b 0;;

} { .mmi

 ld8 r30=[r31];;

 ld8 r29=[r30]

 nop.i 0;;

} { .mmi

 ld8 r28=[r29], 8;;

 ld8 gp=[r29]

 mov b6=r28

} { .mmb

 nop.m 0

 nop.m 0

 br.call.dptk.many b0=b6;;

}

The function call itself is clear enough – the target

address is stored in the b6 branch register (instruction 12

and 15 for the actual branching). The key operation for the

function call mechanism is the alloc instruction (instruction

1). It allocates a new stack frame to the register stack. By

specifying the number of input, output, local – and rotating

registers – required at the beginning of the procedure to the

register stack engine, the caller sets the arguments for the

callee. Note that the alloc instruction can be used anywhere

in a program and as many times as needed. Any consecutive

instruction to the alloc will immediately see the renamed

registers. Here, the pf pointer is directly and always

available in the general-purpose register r32 and can be used

right away to compute the interpreting pointer (ip) address.

This mechanism is well suited to support object-oriented

languages which tend to be dominated by calls to low

instruction-count functions.

Even if the register stack engine provides an efficient way

to pass arguments back and forth all along the call stack, our

reference Forth implementation still has to manage its in-

memory stacks. In consequence, we introduce our SIR to

allow the compiler to keep the entire – or partial – Forth

stack in the register stack.

Let’s consider the simple + word, summing two numbers

on the stack. The reference code in C is:
void CORE_PLUS(PFORTH pf) {

 int3264 n1, n2;

 POP(n2); POP(n1); PUSH(n1 + n2);

}

In the proposed mechanism, a sub-set of the Itanium 2

processor register file (the stacked registers) is recycled as

an in-register data and floating-point stack. The return stack

can either be mapped into the branch registers of the

processor or in the general purpose register file. The major

technical difficulty consists here in maintaining the stack

size in the Forth interpreter – forcing the Forth compiler to

compute the words’ arity – and using self-modifying code to

adjust the alloc instruction’s arguments accordingly after

each return from the primitives. This coding technique leads

to a functional Forth engine but suffers some limitations.

The alloc instruction cannot allocate a stack frame larger

than 96 registers. Yet, if needed, additional stack elements

are spilled / filled by the register stack engine into the

backing store memory, with a performance overhead. A

secondary limitation of using the stacked registers as in-

register stack is that it may limit the use of the software

pipelining (a key performance technique for Itanium 2

processor [11]) within the Forth words by the compiler.

As soon as the stack size limitation is satisfied, we can

support the Forth virtual machine in a much more efficient

way. It is noticeable that the performance benefit of the SIR

is increasing proportionally with the amount of stack

handling primitives used by the code. The entire execution

of + can now be scheduled for only two processor cycles as

shown in the next listing. Note that this code was hand-

written and differs therefore from the compiler generated

assembler listed in table 1 – not showing the bundles

explicitly.
.global SIR_CORE_PLUS

.type SIR_CORE_PLUS, @function

.proc SIR_CORE_PLUS

pfs = r34

SIR_CORE_PLUS:

;alloc placeholder

alloc pfs = 2, 1, 1, 0 ;default arity

add out0 = in0, in1

mov ar.pfs = pfs

br.ret.sptk.many b0

23

.endp

Table 2 compares the principal characteristics of both

implementations of +. A bundle is a group of three

instructions. A stop bit is introducing a serialization in the

instruction stream.

Table 2 - Characteristics of the two versions of +.

Features
Reference

Implementation

Proposed optimized

implementation

I/FP registers 9/0 2/0

Bundles 14 2

Nops 5 3

Stop bits 10 1

Branches 6 1

Loads 6 0

Stores 1 0

The second advantage of the SIR is that we can still

entirely rely upon the register stack engine to trap and

process stack overflow exceptions in exchange of a

performance penalty. When such condition happens during

the execution of the alloc instruction – I.e. insufficient

registers are available to allocate the desired stack frame –

the processor stalls until enough dirty registers are written to

the backing store area (these stall cycles can be monitored

for optimization purpose through the BE_RSE_BUBBLE-

ALL performance counter [12]).

Alas, EPIC doesn’t provide the same register-passing

mechanism for floating-point arguments. This lack makes

necessary to manage the floating-point register file

explicitly to implement the SIR, making the compiler more

complex and asymmetrical for integer and floating-point

stack handling. But having a large on-chip floating-point

register file (128 registers) and the associated computing

resources (2 floating-point execution units capable of vector

operations – up to 4 FLOP per cycle) still provides a

considerable performance advantage over stack processors

for floating-point intensive codes.

By using Itanium 2 processor’s register files as in-register

stacks, it is possible to eliminate:

� The need for the pop / push primitives, which are

embedded into the EPIC Register Stack Engine – at

least for the integer operations;

� The multiple clock-cycle floating-point load

instructions required for passing the argument via the

in-memory floating-point stack (for reference: 13

cycles for L3 hit, 6 cycles for L2 hit and 1 cycle for L1

hit – integer data only in L1D);

� The energy consumption and power dissipation

associated with the suppressed loads / stores from / to

cache / memory.

With the Itanium 2 processor, up to 96 general purpose

registers can be used to implement the Forth data stack and

96 floating-point registers to implement the optional

floating-point stack. In our implementation, the data is

mapped as follows:

� Data stack: r32-r127,

� floating-point stack: f32-f127,

� And Return stack: b6-b7 (can be mapped into the

integer register file).

Our software implementation of the SIR has an additional

drawback when it is used in conjunction of the standard

calling mechanism. It requires extra code and processor

cycles to ensure the register spilling / filling when switching

between calling conventions. This is currently mitigating

the performance gains on applicative benchmarks
1
 as only a

limited set of Forth primitives are implemented using the

SIR.

3. Enhancing the Itanium 2 processor

instruction set to Support SIR
To overcome the software implementation’s limitation

and to generalize the SIR’s usage between the integer and

floating-point register files, we propose a global hardware

indexed access to the register files. We assume the

following notations: gr[reg] or gr[imm] and fr[reg] or

fr[imm] where:

� gr is the general-purpose register file and fr is the

floating-point register file;

� reg is the register that holds the index into the register

file;

� imm is the index value into the register file.

Here after, we will describe only the integer case as the

floating-point case can be directly derived. Let’s assume the

following convention for the stack index registers to recode

the Forth virtual machine with the modified instruction set:

� Index to Data Stack TOS (gr_tos) = r2;

� Index to Data Stack level 1 (gr_l1) = r3;

� Index to Data Stack level 2 (gr_l2) = r14;

� Index to Forth Data Stack level 3 (gr_l3) = r15.

These registers were selected to simplify the co-existence

of SIR with the standard calling convention as they are

unused and unsaved during standard calls. However, any

register (lower than r32 and fr32 could be used as indexes –

at the exception of the read-only r0, r1, f0 and f1 registers).

In consequence, coding + no longer requires the register

stack engine and the integer data stack is managed in the

same way as the floating-point stack. The required

comparison and the extra additions needed to detect the

stack underflow situation and to maintain the stack pointers

up-to-date are not penalizing because of the underlying

VLIW nature of the EPIC architecture. This allows us to

reuse the otherwise empty (nop) bundle slots to perform the

required operations. It is also interesting to notice that the

predicate registers (p6 and p0) allow expressing the test and

the branch instruction if true in a very compact way. With

our proposed instruction set addition, the code for +,

embedding the stack management can still be scheduled for

two processor cycles and is listed below:
.global SIR_CORE_PLUS

1 This overhead can be removed by coding the entire Forth virtual

machine in assembler using our SIR rather than using also a C++ compiler

– a task which is out of the scope of this study.

24

.type SIR_CORE_PLUS, @function

.proc SIR_CORE_PLUS

SIR_CORE_PLUS:

cmp4.lt.unc p6, p0 = 32, gr_tos

(p6) br.cond.dptk.many

@underflow_exception;;

add gr[gr_l1] = gr[gr_tos],

gr[gr_l1];;

mov gr_tos = gr_l1;;

add gr_l1 = -1, gr_tos

add gr_l2 = -2, gr_tos

add gr_l3 = -3, gr_tos

br.ret.sptk.many b0;;

.endp

4. A Conservative Implementation
By limiting further the number of registers used as our in-

register stacks to 64 we can propose a conservative

architectural implementation of the SIR that would not

require an instruction set modification. The new simplified

logical view of the register files and the in-register stacks is

shown in Figure 1. It is the compiler’s responsibility to

enforce the segregation between the in-register stacks and

the traditional register file.

We first define a new indexed capability for the higher 64

registers identified via the CPUID instruction. An additional

bit in the status register indicates if the functionality is

enabled. If not, the additional Register Alias Table (RAT)

required by our implementation – described later – is

bypassed and no recompilation of existing code is required

to run as-is. A compiler willing to use the SIR has to check

if the functionality is available – on the target system – and

to activate at runtime the in-register stacks by updating the

status register.

Figure 1 - Snapshoot showing the logical view of the

integer register file. In grey the recycled register files
subset as in-register stacks. Arrows represent the

indexing.

When the in-register stacks are active, the EXP (Template

decode, Expand and Disperse) stage of the core pipeline has

to check, per instruction, if the MSB of a source register is

set (noted MSB Detect in Figure 2). If not, then the normal

execution of the instruction takes place. If the MSB is set

for at least one register, then the additional RAT checks if

the target register is to be modified by an instruction

currently executed. To track the status (ready / not ready) of

the target registers, the RAT uses a 64 x 1 bit vector. If the

corresponding ready bit is set, then the RAT feeds into the

REN stage the new register address (using a multiplexer and

a latch - one per indexed register – holding the 6 bits of the

real register address in the register file (noted Index Register

Cache in Figure 2). If the register is marked as not ready in

the RAT, then a serialization must take place, and a pipeline

stall happens. Once the target register is ready, its value if

forwarded into its corresponding latch of the RAT, which

updates the register’s status bit. The stalled instruction’s

execution can therefore be resumed.

Our simplified implementation allows indexed access to

only 64 registers in the integer and floating-point register

files. It also requires 1 bit in the CPUID, 1 bit in the status

register and an MSB bit-set detection during the early stages

of the instruction decoding. It also requires a 64-entry RAT

using 64 x 6-bit latches and multiplexers, plus 64 x 1 status

bit vector; and adds an extra execution cycle to the main

pipeline. In return, it provides the following advantages:

� Implements the required integer and floating-point in-

register stacks, under the compiler’s control (limited to

64-integer and 64 floating-point entries);

� It is possible to implement with the actual Itanium

processor pipeline;

� It is totally compatible with existing software;

� It also allows:

• The suppression of the loads / stores associated

with stack operations (hence ensuring performance

gains over C code);

• The substantial reduction of the chip’s power

consumption when executing stack handling

routines, a dominant in Forth applications and

virtual machines in general.

Figure 2 - the current – simplified – main pipeline
(top) and the modified one (bottom). Additional

structures are marked in grey.

5. Experimental Results
In this section, we present the results of our experimental

software implementation of the SIR. We have benchmarked

11 major stacks handling Forth words along with the integer

and floating-point additions. Each of these words was

recoded using the software implementation of the SIR.

Performance was measured by averaging the number of

processor cycles required to execute a billion occurrences of

each word (measured by using the processor’s interval time

counter application register – ar.itc). Our performance

measurements demonstrate that it is appropriate to consider

the EPIC register files as a set of in-register stacks to run a

25

virtual machine, and particularly a Forth virtual machine.

We measured speed-ups ranging from a low 1.95 to a high

15.6 (Table 3).

Although the simplified architectural implementation

described in section 4 is not realized, our performance data

provides a realistic projection of the performance that could

be reached by using the hardware implementation of the

SIR. Because Forth routines and virtual machines in general

are heavily using stack manipulations, the measurable

performance gains in these synthetic benchmarks are likely

to be directly translatable into application-level performance

gains.

Table 3 – Summary of performance measurements.
Word implementation CPU Cycles Speed-up

core_plus (+) 29.25 -

sir_core_plus (+) 15.00 1.95

core_two_dup 48.00 -

sir_core_two_dup 5.00 9.60

core_two_over 78.00 -

sir_core_two_over 5.00 15.60

core_two_swap 62.00 -

sir_core_two_swap 6.00 10.33

core_dup 28.00 -

sir_core_dup 5.00 5.60

core_over 41.00 -

sir_core_over 6.00 6.83

core_rot 48.00 -

sir_core_rot 5.00 9.60

core_swap 33.00 -

sir_core_swap 5.00 6.60

floating_f_plus (f+) 44.00 -

sir_floating_f_plus (f+) 13.25 3.32

floating_fdup 43.00 -

sir_floating_fdup 8.00 5.38

floating_fover 64.00 -

sir_floating_fover 14.00 4.57

floating_frot 66.00 -

sir_floating_frot 7.00 9.43

floating_fswap 51.00 -

sir_floating_fswap 7.00 7.29

6. Related projects
6.1. Specialized processors

The Forth community has explored the potential of

designing custom microcontrollers to efficiently run the

Forth language. Although each custom design has its own

unique objectives and approach to the problem statement,

three significant common characteristics to the most

successful designs can be noted:

� The integration of at least two distinct memories into

the processor. These memories are used as the Forth

data and return stacks [13,14,15,16]. In principle, the

number of stacks is not limited, and each stack may

have a very specific role, as in the Stack Frame

Computer [13].

� The presence of a few dedicated registers for managing

the stacks. The bare minimum is the Top of the Stack

(TOS) or stack pointer: one for the data and one for the

return stack. To permit quick access to data buried deep

in the stacks, a set of additional registers may be

implemented. By writing a value into these registers, it

is possible to generate the address of any stack level, as

illustrated in the HS-RTX microcontrollers [14].

� The short latency of the instruction execution, which is

often reduced to a single cycle. This allows the

language’s key primitives to be implemented

efficiently. Multiple paths can be taken to reach this

goal: a simple cache of the stack’s top elements can be

created in registers that feed directly into the ALU (e.g.,

Writable Instruction Set Computer [15]) or overlapped

bus cycles can be combined (e.g., Minimum Instruction

Set Computer and the Forth Reduced Instruction Set

Computer [16]). The Forth Reduced Instruction Set

Computer, for example, can read both the TOS and any

of the first four stack elements (from the data and return

stacks) within the same cycle, using dedicated and

independent busses.

The open-source MicroCore project is one of the most

recent implementations of a specialized microcontroller that

uses the Forth language as its assembler. (It can also execute

other languages, such as C) [17]. This microcontroller has

an on-chip data and return stack, can directly implement 25

Forth primitives, and is capable of executing each

instruction in a single clock-cycle.

Still, Forth is not the only stack-oriented language that

encourages specific circuitry designs to achieve maximum

performance. Java processors – such as the Sun Picojava

and Imsys Cjips chips [18,19] – are also good examples of

custom designs implementing a dedicated stack engine (the

dribbler). The IBM zSeries Application Assist Processors

(zAAPs) also provides a dedicated HW assist to

asynchronously execute eligible Java code within the

WebSphere JVM under the central processors’ control [20].

6.2. General purpose processors
A parallel research path studies the use of general purpose

processor’s registers to perform stack caching. The caching

technique can be used to statically and / or dynamically

cache various stack levels [21,22,23]. Promising

performance gains were demonstrated (up to x3.8 speedup –

variable with the underlying processor architecture and

code’s nature) but these techniques also showed limitations

when increasing the number of cached stack elements –

over 3 – as the static and the dynamic caching techniques

require to maintain multiple copies of the code based on the

possible cache states. This last task is the interpreter or the

compiler’s responsibility. Stack caching, used in

conjunction with code caching techniques, was used to limit

code bloat [24].

The Philips TriMedia VLIW processor was used with a

three stage software pipelined interpreter to achieve a peak

26

sustained performance of 6.27 cycles per instruction [25].

Interpretation is used by the authors to compress non-time-

critical code, where time-critical-code is compiled to native

code.

7. Conclusions
We presented an innovative use model for the Itanium 2

processor register files to improve Forth systems’

performance running on EPIC architecture. Synthetic

benchmarking shows an average 7x performance increase

over the code generated by a state-of-the-art C/C++

compiler, using EPIC’s standard calling convention (from

1.95x up to 15.6x).

Based upon our findings and coding experiments, we

introduced an adjustment to the Itanium 2 processor

instruction set offering indexed register file access, to ease

Forth systems’ implementation and increase its efficiency.

We then proposed an architectural implementation of a

limited version of the adjustment – by restricting the size of

the Forth integer and floating-point in-register stacks to 64

entries each –, making it conceivable to implement into the

current Itanium 2 processor’s pipeline. If realized, this

adjustment should lead to a more efficient use of the register

files to host a virtual machine’s data and control stacks. By

mapping the Forth stacks into the register files instead of the

main memory, the load and store operations associated to

the stack handling primitives would be suppressed, allowing

performance gains associated to power savings.

8. Acknowledgment
The authors would like to thank Intel Corporation and

particularly the Microprocessor Technology Labs

(http://www.intel.com/technology/computing/mtl/) for the

support given to this work. We also would like to thank the

referees for their insightful comments that have improved

this paper.

9. References
[1] D. Tullsen, S. Eggers, and H. Levy: “Simultaneous

Multithreading: Maximizing On-Chip Parallelism”, in
Proceedings of the 22nd AISCA conference, June 1995.

[2] P. P. Gelsinger, Intel Corporation, Hillsboro, OR, USA:
“Microprocessors for the New Millennium –Challenges,
Opportunities and New Frontiers”, in IEEE ISSC, 2001.

[3] L. Benini and G. De Micheli: “Networks on Chip: A New
Paradigm for System on Chip Design”, in Proceedings of the
2002 DATE conference 2002.

[4] J. Smith and R. Nair: “Virtual Machines: Versatile Platforms
for Systems and Processes”, Elsevier Science & Technology
Books, May 2005.

[5] T. Shpeisman, G-Y. Lueh and A-R. Adl-Tabatabai, “Just-In-
Time Java Compilation for the Itanium Processor”, 11th
PACT conference, 2002, p. 249.

[6] D. Bruening, T. Garnett and S. Amarasinghe, “An
infrastructure for adaptive dynamic optimization”, Code
Generation and Optimization, 2003, pp. 265-275.

[7] M. S. Schlansker and B. Ramakrishna Rau: “EPIC: Explicitly
Parallel Instruction Computing”, in IEEE Computer Society
Press, Volume 33, Issue 2 (February 2000), pp 37-45.

[8] E. D. Rather, D. R. Colburn and C. H. Moore, “The Evolution
of Forth”, ACM SIGPLAN Notices, Volume 28, No. 3,
March 1993.

[9] P. Koopman, Jr.: “Stack Computers: the new wave”, Ellis
Horwood (1989), republished on the World Wide Web by
Mountain View Press.

[10] American National Standard for Information System,
Technical Committee X3J14, “X3.215-1994: Programming
Languages – Forth”, 1994.

[11] S. Niar and J. Tayeb: « Programmation et Optimisation
d'Applications pour les Processeurs Intel Itanium », Editions
Eyrolles, January 2005.

[12] Intel Corporation, “Intel Itanium 2 Processors Reference
Manual for Software Development and Optimization”,
Volumes 1, 2 and 3.

[13] R. D. Dixon, M. Calle, C. Longway, L. Peterson and R.
Siferd: “The SF1 Real Time Computer” Proceedings of the
IEEE National Aerospace and Electronics Conference,
Dayton, OH, Vol. 1, pp. 60-64, May 1988.

[14] T. Hand: "The Harris RTX 2000 Microcontroller", Journal of
Forth Application and Research, Vol. 6, No. 1, pp. 5-13,
1990; and the Interstil “Radiation Hardened Real Time
Express™ HS-RTX2010RH Microcontroller Data Sheet.

[15] P. Koopman: "Writable Instruction Set Stack Oriented
Computers: The WISC Concept", Journal of Forth
Application and Research (Rochester Forth Conference
Proceedings), vol. 5, no. 1, pp. 49-71, 1987.

[16] J. R. Hayes and S. C. Lee: "The Architecture of FRISC 3: A
Summary", 1988 Rochester Forth Conference Proceedings,
1988, Institute for Applied Forth Reserch Inc.

[17] K. Schelisiek: “MicroCore: an Open-Source, Scalable, Dual-
Stack, Hardware Processor Synthesisable VHDL for FPGAs”,
euroForth 2004.

[18] J. Michael O’Connor and Marc Tremblay, “PicoJava-i: The
Java Virtual Machine in Hardware”, Micro, IEEE, Volume
17, Issue 2, March-April 1997, pp. 45-53.

[19] Imsys Technologies AB, “IM1101C – the Cjip – Technical
Reference Manual”,
www.imsys.se/documentation/manuals/tr-CjipTechref.pdf,
2004.

[20] IBM Redbook on zAAP: SG24-6386
(www.redbooks.ibm.com)

[21] A. Ertl and D. Gregg: “Stack Caching in Forth”, in EuroForth
2005.

[22] A. Ertl:. “Stack Caching for Interpreters”, in SIGPLAN '95
Conference on Programming Language Design and
Implementation, pp. 315-327, 1995.

[23] K. Ogata, H. Komatsu and T. Nakatani: "Bytecode Fetch
Optimization for a Java Interpreter", in ASPLOS 2002, pp.
58-67, 2002.

[24] P. Peng, G. Wu and G. Lueh: "Code Sharing among States for
Stack-Caching Interpreter", in Proceedings of the 2004
workshop on Interpreters, virtual machines and emulators, pp.
15-22, 2004.

[25] J. Hoogerbrugge, L. Augusteijn, J. Trum, R. van de Wiel: “A
Code Compression System Based on Pipelined Interpreters.
Software – Practice and Experience 29(11): 1005-1023, 1999.

27

Adding Lambda Expressions to Forth

Angel Robert Lynas and Bill Stoddart

August 4, 2006

Abstract

We examine the addition of Lambda expressions to Forth. We briefly
review the Lambda calculus and introduce a postfix version of Lambda
notation to guide our approach to a Forth implementation. The resulting
implementation provides the basic facilities of an early binding functional
language, allowing the treatment of functions as first-class objects, ma-
nipulation of anonymous functions, and closures.

1 Introduction

The Lambda Calculus was developed by Alonzo Church during the 1930’s as a
general model of computation [4]. The original motivation was to investigate
the notion of solvability [3], but the Calculus later formed a theoretical ba-
sis for functional programming. Recently there has been an interest in adding
“lambda expressions” to imperative languages. They are proposed for vsn 3.0
of C#, but are not yet part of the ECMA C# Standard[1] which does how-
ever, largely support their functionality through “anonymous methods”. The
Open Standards Working Group for C++ recently produced a discussion paper
”Lambda expressions and closures for C++”[8]. In this paper we discuss their
incorporation within RVM Forth [5].

The functional programming (FP) paradigm arises from the mathematical idea
of a function as a mapping from inputs to outputs; a procedure inside the
function (the “body”) operates on a variable to produce a return value in terms
of that variable. The variable is instantiated by an argument to the function’s
single parameter, and the return can be numeric or some other type, including
another function. In FP, therefore, functions are treated as first-class objects,
that is, having the same status as variables and constants; they can also be
arguments to functions, and manipulated as temporary anonymous objects.

While Forth does have some facilities to work with functions and operations
with the stack, using execution tokens and allowing vectored execution, it does
not provide the full generality required by the functional programming model.

28

Implementing a Lambda facility in Forth presents certain points of interest.
A consistent postfix syntax must be developed, and to guide our design we
have produced a postfix version of Lambda notation. The function objects
produced must be dealt with in a consistent way to maintain compatibility with
the abstract idea of the calculus, and the use of bound and free variables in
Lambda calculus has to be integrated with the use of stack-frame local variables
in RVM-Forth, requiring the provision of “closures” for dynamically-created
functions.

In the rest of the paper, we provide a brief introduction to Lambda Calculus, its
expression in postfix form, and the RVM-Forth implementation. We examine
the roles of local variables and their binding in Lambda calculus, and how this
can be integrated with a local variable system in a procedural language, such
that persistent bindings can be maintained despite them having originated in a
local context. Finally we review the ongoing project of which this work forms a
part. A more detailed view of our implementation techniques is included as an
appendix.

2 Lambda Calculus

2.1 Lambda Calculus

The general form for a lambda expression is:

λ < name > . < body >

In the above, <name> is the parameter or bound variable in the function —
lambda functions have a single parameter only. The process of substituting an
argument for the parameter in an application is known as β-reduction (shown

as
β

−→), which substitutes occurrences of the bound variable in the body with
the argument expression. Once thus instantiated, the variable cannot change
value.

The <body> itself can be anything from a simple operation on the variable to
other nested functions, including embedded function applications.

The simplest example would be the identity function:

λ x .x

which returns its argument; so

(λ x .x) a
β

−→ a

For further examples, we allow the use of arithmetic operations1 So the func-

1Neither these nor numbers are initially present in the basic lambda calculus, which is

concerned with representing them in terms of more primitive substitution patterns.

29

tions:

λ x .x + 1
λ x .x ∗ x

would respectively increment their argument by one, and square it.

(λ x .x ∗ x) 5
β

−→ 5 ∗ 5 = 25 (1)

These examples all have a single bound variable in the body; variables in the
body which are not bound by the immediate lambda declaration are known as
free variables; these make little sense computationally unless they are in turn
bound by an enclosing function. In this example:

λ y .x − y (2)

the variable x is free. It may, however be bound by an enclosing function whose
body is (2):

λ x .(λ y .x − y)

This is the basic way to deal with two or more arguments in Lambda calculus.
The variable x has now become a local variable from an outer scope. We use
an eager evaluation approach which requires it to be instantiated before the
expression containing it is evaluated.

As regards application, parameters from left to right (i.e. outermost first) are
substituted by arguments in the same direction, thus in an application of the
above:

(λ x .(λ y .x − y)) 10 3
β

−→ (λ y .10 − y) 3 (3)

The first reduction, substituting 10 for x , now returns a function which subtracts
its argument from 10; here y would be substituted by 3 in the next reduction.

β

−→ 10 − 3 = 7

An argument may well be another function. The expression:

λ f .(λ y .f y)

is a function that applies any given function f to any given argument y , for
instance given the function λ x .x + 1 for f and the number 7 for y

(λ f .(λ y .f y)) (λ x .x + 1) 7
β

−→ (λ y .(λ x .x + 1) y) 7
β

−→ (λ x .x + 1) 7
β

−→ 7 + 1 = 8

30

2.2 A Postfix Notation for Lambda Calculus

Function application in Lambda notation is usually shown by a bracketed func-
tion followed by an argument. Postfix will require the argument to appear first.
Conventional Lambda notation uses brackets to delimit the scope of a bound
variable, and for that we will use a specific endλ symbol. Finally conventional
Lambda notation uses brackets to control when a function is applied so it can be
taken from the stack, followed by a definition body or a symbol (defined earlier)
standing for it. However, this would not be automatically applied; an additional
symbol is required analogous to Forth’s EXECUTE. The symbol we use for this

is a tick ′ . This usage has a history going back at least as far as Principia
Mathematica, where the application of function f to an argument x is written
as f ′x .

We can now present some examples from the earlier section in an abstract
postfix notation, with the actual RVM-Forth code in the next section. We use
the notation infix ; postfix to show how the infix and postfix forms
correspond. Taking example (1), we have:

(λ x .x ∗ x) 5 ; 5 λ x .x x ∗ endλ ′

The keyword endλ ends the anonymous definition; at this point it could be
assigned to a suitable variable, or applied, or left on the stack. The tick ensures
application. Instantiation of the variable x by 5 (beta reduction) now yields the
postfix expression “5 5 ∗”.

The nested definition example (3), runs thus:

(λ x .(λ y .x − y)) 10 3 ;

3 10 λ x . λ y .x y − endλ endλ ′ ′

Note that the arguments follow a stack order, first at the top. Above that is the
function, however, with outer and inner variables as yet uninstantiated. The
return value of the outer function will be the inner function with its unbound
variables bound.

The first tick will execute the outer definition (λ x), which will instantiate x

(anywhere within scope) to the value 10 from the top of the stack:

β

−→ 3 λ y .10 y − endλ ′

This leaves 3 and the inner function on the stack — now with its x bound to a
constant. The remaining tick executes this, instantiating y to 3, and returning
“10 3 −”.

31

3 RVM-Forth Implementation

3.1 Local Variables and Lambda Parameters

RVM-Forth already has a facility for local variables, with the syntax :

: <opname> ... (: VALUE <varname> ... :) ... nLEAVE ... ;

The value for the local is taken from the stack — it can be an argument to
the operation, or supplied by an expression within it. The keyword nLEAVE
(where n can be 0, 1, 2, or 3) specifies the number of values left on the stack
after the local environment goes out of scope.

As an example we have a program to calculate the greatest common divisor
of two numbers using Euclid’s algorithm, in which the smaller of the pair is
subtracted from the larger to give a new pair. This process is repeated until the
two numbers are equal:

: GCD0 (n1 n2 -- n3, pre n1>0 & n2>0, post n3 = gcd(n1,n2))

(: VALUE X VALUE Y :)

BEGIN

X Y <>

WHILE

X Y >

IF

X Y - to X

ELSE

Y X - to Y

THEN

REPEAT

X

1LEAVE ;

Values X and Y are initialised from the stack, X taking the value of n1 and Y the
value of n2. 1LEAVE specifies that just one item (the current top of stack) will
be returned.

Additional locals may be declared between the :) and the nLEAVE; they will be
initialised from the top of the stack, so suitable values should be found there.

For the lambda implementation this format is used to represent the parameter
for the lambda expression, instantiated from the stack.

As a matter of style, it might be noted that we use the same word VALUE for both
global and local variables, with the latter version being defined in a COMPILER

wordlist which is only searched when in Compile mode.

32

Arrays and pointers to arrays are implemented in RVM-Forth, and they also
have their local analogues. The declarations here for both global and local
are VALUE-ARRAY and VALUE-ARRAY^ (the full syntax is described in the RVM
Manual [5]. We present a brief example below, though not of a kind that one
would ever use. A global array is declared and initialised:

4 VALUE-ARRAY GLOBARR (4-element storage)

HERE 4 , 10 , 20 , 30 , 40 , to GLOBARR

.GLOBARR 10 20 30 40 ok (Demo print defined offstage)

Next an operation is defined to reverse the elements in it. This has a local
pointer to the global array, and an internal local array into which the reversed
values are written, in a loop. Finally, the contents of the local array are copied
to the global one.

: AREV (--)

GLOBARR (: VALUE-ARRAY^ GRR :) (points to GLOBARR)

size of GRR VALUE-ARRAY LRR (empty local array)

size of GRR 1+ VALUE ASIZE (loop size)

ASIZE 1 DO

ASIZE I - of GRR

to << I >> of LRR

LOOP

LRR to GLOBARR (copy to global...)

0LEAVE ;

One would, of course, be more likely to use such a local array as a “safe” copy
of a global, to manipulate temporarily or ensure read-only access.

3.2 Syntax and examples

The Forth uses two keywords for the λ symbol itself. The word :LAMBDA opens
a definition at the outer level, that is, the system enters compile mode The
corresponding endλ to this is ENDLAM;. The basic form is:

:LAMBDA (: VALUE <name> :) <body> 1LEAVE ENDLAM;

So far this is just an alternative syntax for the Forth Standard :NONAME. How-
ever, lambda definitions may also appear within compiled code, where they are
bracketed with the LAMBDA and ENDLAM. They may be nested to any depth.

The simple example (1) from page 3 translates from the abstract postfix notation
as:

5 λ x .x x ∗ endλ ′
;

33

5 :LAMBDA (: VALUE X :) X X * 1LEAVE ENDLAM; EXECUTE

When evaluated this will leave 25 on the stack.

The example where a function forms part of the body, (3) on page 3, provides
an illustration of binding from outside the function itself:

3 10 λ x . λ y .x y − endλ endλ ′ ′
;

3 10

:LAMBDA (: VALUE X :)

LAMBDA (: VALUE Y :)

X Y - 1LEAVE

ENDLAM 1LEAVE

ENDLAM; EXECUTE EXECUTE

The fact that X is free in the inner lambda is unremarkable in a straightforward
execution such as this. However it is possible to name the inner function, using
the keyword OP. This picks up the name from the input stream and assigns it to
the execution token at the top of the stack, creating a global named operation.
Instead of the final line in the above code, we could, for instance, have:

... ENDLAM; EXECUTE OP MINUS

This gives us a named function which seems to refer to a variable X declared in
a now-defunct scope and relating to a stack frame which no longer exists.

What has happened is that the evaluation of the outer :LAMBDA has instantiated
the variable X to 10, so that when the inner lambda, i.e. the code:

... LAMBDA (: VALUE Y :) X Y - 1LEAVE

is evaluated, X already has a value, and this is what is copied in place of X

within the inner lambda definition.

A final example demonstrates embedded function execution within the body of
another function. The standard infix lambda expression:

(λ z .(λ y .y + (λ x .x + y ∗ z) (y + z))) 3 4

contains an embedded function application inside the λ y definition:

(λ x .x + y ∗ z) (y + z)

in which the y and z will have been substituted by arguments by the time this
is evaluated. The expression as a whole converts to postfix lambda notation as:

4 3 λ z . λ y .y y z + λ x .x y z ∗ + endλ ′ + endλ endλ ′ ′

34

The second argument to the final “+” is provided by the result of the inner
function application

In RVM-Forth this becomes:

4 3 :LAMBDA (: VALUE Z :)

LAMBDA (: VALUE Y :)

Y Y Z +

LAMBDA (: VALUE X :)

X Y Z * +

1LEAVE ENDLAM EXECUTE (embedded function application)

+ 1LEAVE ENDLAM

1LEAVE ENDLAM;

EXECUTE EXECUTE

The evaluation can be calculated “by hand” as follows:

“−→ substituting 3 for Z”

4 LAMBDA (: VALUE Y :)

Y Y 3 +

LAMBDA (: VALUE X :)

X Y 3 * +

1LEAVE ENDLAM EXECUTE

+ 1LEAVE ENDLAM

EXECUTE

“−→ substituting 4 for Y”

4 4 3 +

LAMBDA (: VALUE X :)

X 4 3 * +

1LEAVE ENDLAM EXECUTE

+

“−→ substituting 7 for X; definition immediately compiled and executed, which
evaluates 7 4 3 * + as second argument to final +”

4 19 +

Leaving 23.

35

3.3 Stack Frame Locals and Bindings

We see that the compilation procedure for local lambda definitions differs from
normal procedure in the way it treats local variables declared outside the scope of
the definition. Instead of being compiled to access the value from the associated
slot in the current stack frame, a reference to this outer scope local is compiled
initially as a push of some dummy value. The location of the data field for
the push and the frame stack slot are recorded in a “bindings table”. When
execution reaches the local operation, these dummy values are replaced by the
current values of the local variables referenced.

This process is known as “closure”. The original variables cannot be assigned
to from inside the resulting operation. The execution token thus produced must
remain permanently viable. Since the code that produced it could be executed
many times with different instantiations of any outer scope local variables, the
execution token cannot point to the original compiled code for the operation,
but must reference some relocated code2, which embodies the particular closure
that has been formed.

This relocated code could have been kept on the heap, but as heap space tends
to be non-executable in modern configurations, it’s kept instead in a separate
area in the RVM’s code space — and managed as a stack. This simplifies
the management considerably, and also simplifies garbage collection (using the
history stack) on reverse execution.

3.4 Closures and Local Operations

Moving beyond a purely functional approach in which Lambda expressions have
no concept of state, we can use the technique of closures (i.e. instantiating
outer scope locals by their current value) to define words which interface to
data objects such as counters, stacks, or queues. These can use named local
operations to provide persistent access to the data area created by the main
operation.

The defining word OP encountered earlier in section 3.2 has a local analogue,
also called OP, which is defined in the COMPILER wordlist and names operations
local to an enclosing operation. The kind of local operations we now consider,
however, must retain global scope, and are therefore named using the keyword
FORTHOP. This is defined in the COMPILER wordlist, but is otherwise identical to
the global version of OP.

In the stack example which follows, both the stack pointer and stack data
area are declared as instance variables; respectively, as INSTANCE-VALUE and
INSTANCE-VALUE-ARRAY. These are references to reserved space on the heap,
and ensure that each created stack has its own independent pointer and data.

2RVM Forth is a native code Forth which has an option to compile relocatable code, as

required here

36

: BUILD-STACK (n --, n is size of stack, leaves tokens for push,

pop, depth and clear)

(: VALUE STACKSIZE :)

0 INSTANCE-VALUE SP (the stack pointer, 0 for empty stack)

STACKSIZE INSTANCE-VALUE-ARRAY STACK (the stack body)

LAMBDA (x --, push)

SP STACKSIZE = ABORT" Stack full"

SP 1+ to SP

to << SP >> of STACK

ENDLAM FORTHOP

LAMBDA (-- x, pop)

SP 0 = ABORT" Stack underflow"

SP of STACK SP 1- to SP

ENDLAM FORTHOP

LAMBDA (-- n, depth of stack)

SP

ENDLAM FORTHOP

LAMBDA (-- , clear stack)

0 to SP

ENDLAM FORTHOP

0LEAVE ;

This code leaves four execution tokens on the stack; the keyword FORTHOP picks
up the names from the input stream, so they would typically be created and
named in the same line:

4 BUILD-STACK PUSHA POPA DEPTHA CLRA

4 BUILD-STACK PUSHB POPB DEPTHB CLRB

The stacks themselves are anonymous, the named operations being the interface
for each stack (A & B); these remain persistent, and operate on the data relating
to their own stack.

Unlike the outer scope variables referred to earlier, which were declared with
VALUE in their stack frame, the stack instance variables for pointer and data can

be altered by the lambda operations.

Some sample runs and error checks:

10 PUSHA 20 PUSHA 30 PUSHA 40 PUSHA ok

DEPTHA . POPA . DEPTHA . 4 40 3 ok

5 PUSHB 15 PUSHB 25 PUSHB 35 PUSHB ok

45 PUSHB Error: PUSHB

Stack full

reported at BUILD-STACK in file lamstack.r line 6

DEPTHB . 4 ok (error leaves data intact)

POPB . 35 ok

37

CLRA DEPTHA . 0 ok (clear the first stack)

POPA Error: POPA

Stack underflow

reported at BUILD-STACK in file lamstack.r line 11

4 Conclusions and Further work

We have converted the standard Lambda Calculus into a postfix form and im-
plemented it in Forth in order to extend the latter’s Functional Programming
capabilities. Along the way we have seen how the issue of bindings for lambda-
style variables can be reconciled with the use of local variables in a procedural
language, to provide persistence when execution scope passes beyond the orig-
inal local scope. Also we have described an extension to this using instance
variables to enable locally defined lambda operations to function as a global
interface to an anonymous data structure.

The work reported here is part of a more general programmme of research
in which we are seeking to exploit reversible computations to provide a more
expressive implementation level language [6] for the the B Method [2] and similar
formal development methods [7]. RVM Forth is a reversible version of Forth
designed as an implementation platform for such methods. These methods
typically provide a very expressive “specification” language in which to describe
what a program is required to do. This language, which would generally include
Lambda expressions, is not directly executable, and the developer must write
the corresponding “implementation”. This must then be proved correct with
respect to its specification. Integration of the implementation level features
described in this paper will allow Lambda expressions to be incorporated into
the implementation level of a formal development, along with the features we
have reported in previous articles, such as backtracking, general implementation
of sets and automatic garbage collection on reverse computation.

References

[1] ECMA Technical Committee 39. Standard ECMA-334 C# Language Spec-
ification 4th edition, June 2006.

[2] J-R Abrial. The B Book. Cambridge University Press, 1996.

[3] Alonzo Church. An unsolvable problem of elementary number theory. Amer-

ican Journal of Mathematics, 58, 1936.

[4] Alonzo Church. The Calculi of Lambda-Conversion. Princeton University
Press, 1941.

[5] W. J. Stoddart. The Reversible Virtual Machine. User and technical man-
uals, 111 pages, University of Teesside, UK, July 2006. Available from
www.scm.tees.ac.uk/formalmethods.

38

[6] W. J. Stoddart and F. Zeyda. Expression Transformers in B-GSL. In D. Bert,
J. P. Bowen, S. King, and M. Walden, editors, ZB2003: Formal Specification

and Development in Z and B, volume 2651 of Lecture Notes in Computer

Science, pages 197–215. Springer, June 2003.

[7] W. J. Stoddart, F. Zeyda, and A. R. Lynas. A Design-based model of
reversible computation. In UTP’06, First International Symposium on Uni-

fying Theories of Programming, volume 4010 of Lecture Notes in Computer

Science, June 2006.

[8] J. Willcock, J. Jarvi, D. Gregor, B. Stroustrup, and A. Lumsdaine. Lambda
expressions and closures for C++. Technical report, Open Standards Work-
ing Group 22, C++, 2006.

Appendix: A more Detailed View of the Implementation
of Closures

When execution reaches ENDLAM, an execution token for the corresponding op-
eration is left on the stack. A local variable declared before the local operation
and used within it is treated in a special way. It is not possible to assign to it
within the local operation, but it is possible utilise its current value. Instead of
being compiled (as would normally be the case for local variables) to access the
value from the associated slot in the current stack frame, a reference to such an
“outer scope” local is initially compiled as a push of some dummy value, and
the location of the data field for the push and the frame stack slot associated
with the variable are recorded in a “bindings table”. When execution reaches
the local operation these dummy values are replaced by the current values of
the local variables in question; this process is known as “closure”.

The execution token produced in this way must remain permanently viable.
Since the code that produced it could be executed many times with different
instantiations of any outer scope local variables, the execution token cannot
point to the original compiled code for the operation, but must reference some
relocated code which embodies the particular closure that has been formed. An
obvious place to hold such code would be on the heap, but since there is a
growing tendency to configure heap space as non-executable we choose to use a
separate area within the RVM’s code space. It so happens that we can manage
this area as a stack rather than as a heap, and this simplifies this aspect of
our implementation considerably. The dynamic code area is managed by the
ANONCP pointer, code is pushed to this stack by PUSHCODE, which also primes the
history stack so that the memory utilised will be released on reverse execution.

We have now introduced all the elements required for an implementation of clo-
sures, and the next stage is to describe the form of the compiled code generated
from an anonymous operation, let’s say LAMBDA S ENDLAM. The compiled code
is as follows:

| jmp | offset | btp | code for S | push code addr | PLUG | XT |

| |

39

The code begins with a jump which passes control past the code for S to code
which pushes the address of the code for S onto the stack. This branch is followed
by a pointer to the binding table for S and the code for S itself. Immediately
following the push code address, we see two compiled operations, PLUG and XT.

PLUG has signature (xt – xt). It takes the address of the code for S and uses this
to locate the binding table. It then writes in the actual values of any outer scope
locals used in S into the reserved slots in the code, thus forming the closure.
PLUG also leaves the address of the code for S still on the stack. XT has signature
(xt1 – xt2). It relocates the code for S to the dynamic code area and leaves
its new execution address as xt2.

The bindings table used for the evaluation of a local operation S exists on the
heap and records all local references in S that are declared before LAMDA, i.e.
all locals declared in an outer scope. For each such reference we record in the
bindings table:

• the address within s to be instantiated, held as an offset from the start of
the operation,

• the nesting level of the LAMBDA..ENDLAM construct;

• the slot number of the local within its stack frame.

The bindings table entries follow an entry count which is held in the first cell of
the table.

The binding table is built during the compilation of the anonymous operation’s
definition, at which time the address of the binding-table-ptr entry for the func-
tion is held on a dedicated stack. Entries may be pushed to or popped from
this stack with >ANON and ANON>. The use of such a stack is required to support
the compilation of nested LAMBDA .. ENDLAM structures. Space for the table is
requested by LAMBDA and the table is resized by ENDLAM.

When compilation encounters a local variable within a local operation, it must
decide whether the instance is an outer scope local. To allow this to be done
we maintain a process value DLEVEL which holds the current nesting level of
a local operation. When a local variable is declared within a local operation
its nesting level is recorded as an entry within its parameter field. When the
local variable is subsequently encountered, its declaration time nesting level is
compared with the actual nesting level recorded in DLEVEL. If it is less the local
is an outer scope local. DLEVEL also serves to record when compilation is within
a local operation, and this is used to select compilation of relocatable rather
than absolute code.

40

Typing Tools for Typeless Stack Languages

Jaanus Pöial

The Estonian Information Technology College
e-mail: jaanus.poial@itcollege.ee

Abstract. Many low-level runtime engines and virtual machines are
stack based - instructions take parameters from the stack and leave their
results on the stack. Stack language is a common name for several lan-
guages used to program stack based (virtual) machines - like CLR, JVM,
Forth, Postscript, etc. We chose the Forth language as an example to
represent the class of stack languages, partially because this language is
typeless, partially because there exists a big amount of industrial legacy
Forth code that needs to be validated.
Usually applications that take advantage of stack machines are mini-
malistic and designed to run on restricted environments like electronic
devices, smartcards, embedded systems, etc. Sometimes these compo-
nents are used to build safety critical systems where software errors are
inadmissible. Type checking allows to locate possible errors of stack usage
that most often occur in stack language programs. Limited resources give
preference to a static solution - run-time type information is expensive to
manage and quite useless in turnkey applications. Static type checking
is based on a type system that is introduced here for originally typeless
stack languages. This external type system is flexible enough to perform
several tasks. Static program analysis can be used both for finding er-
rors and performing useful transformations on programs (optimization,
parallelization, etc.).
In this paper a type system to perform the so called must-analysis is
described that allows to locate the stack language code where the strong
stack discipline is violated. Experimental implementation of the analysis
framework is written in Java.

Keywords: Type Systems, Stack Languages, Program Analysis

1 Introduction

Program analysis became popular in the world of embedded systems and safety
critical applications where more resources are used to avoid software errors than
in usual office software business. Many run-time properties of a program can be
estimated statically using some kind of abstract interpretation [1]. Good analysis
produces reasonable amount of warnings about suspicious passages in the pro-
gram, so the human programmer can check these lines and make improvements
to the software.

� Supported by Estonian Science Foundation grant no. 6713

41

Unfortunately, analysis can be very resource-consuming, in some cases even
small pieces of software embedded in some device take a lot of computing power
to analyze. Number of program states to explore grows very fast for precise
analysis, to keep it under control some approximation is needed to glue similar
states into a single one. On the other hand, the analysis still has to produce
valuable results.

The so called control flow graph of a program describes all possible execution
paths as a finite structure. The program state is coupled with the node (some-
times with the edge) of the control flow graph. The typical analysis problem is
“What is known about . . . in program point . . . ?”. There are two different kinds
of statements: first, when a property must hold for all possible execution paths,
and second, when a property may hold for some particular execution (there is no
guarantee that it does not hold). Sometimes the must-analysis finds less proper-
ties guaranteed than there actually exist, similarly the may-analysis sometimes
finds more properties than these that actually might hold. It is important to use
safe, conservative approximations, because a precise result in this area is usually
hard or impossible to compute.

Classical data flow analysis concentrates on memory - program state is de-
scribed via set of variables and analysis keeps track on variable usage and vari-
able updates. We can find out uninitialized variables, live variables, available
expressions, reaching definitions, very busy expressions, etc. Good introduction
to program analysis is made in book [2].

In case of stack languages the memory state is a secondary issue, it is more
important to check the usage of stack(s). For example, a common mistake is to
write alternative program branches with different stack effects (it is not easy to
discover this bug if some branch is hardly ever executed).

In this paper we introduce some new ideas on static analysis of stacks, these
ideas are partially implemented as a set of Java classes. Java is used as an
available multi-platform tool, we intend to use the existing Java API to produce
some Forth-targeted tools (like validator and editor that supports the strong
stack discipline).

The formalism is mainly used to give a precise definition to the rules that
Forth programmers know intuitively. On the other hand, it is a short way to
explain these more than thousand lines of code written to implement the basic
operations.

2 Typing rules

Original stack effect calculus is introduced in [3], related work by Bill Stoddart
and Peter Knaggs is published in [6], few other works are referred in [5]. From
the viewpoint of program analysis it is important to mention an attempt to
formalize multiple stack effects for control structures in [4]. This approach did
not lead to implementation of practical analysis tools, mainly because the sets
of stack effects grew fast and were costly to manage. Instead of asking “What
this program might do?” (interesting, but costly and impracticable question) we

42

now prefer to ask ”Why this program does not do what it has to do?” (locating
a suspicious passage).

The following framework is oriented to the must-analysis. There are theoret-
ical considerations to restrict ourselves to this type of analysis: the set of stack
effects as defined originally (polycyclic monoid) is a semilattice (each subset has
a greatest lower bound glb but does not necessarily have a least upper bound).
Only the subset of idempotents is a lattice (e is an idempotent iff e = e · e).

In this paper the derivation rules are used to express the composition and
glb of stack effects. There are two main constructs and one strong assumption:
1) composition (multiplication) of stack effects describes a linear segment of a
program,
2) greatest lower bound of stack effects describes merging of alternative branches
of a program,
3) body of a program loop is described by an idempotent stack effect (the stack
state does not change).

Let us introduce some notation for stack effects.

t, u, ... - possible types of data stack items.

t ≤ u - t is subtype of u (t is more exact) or equal to u

(subtype relation is transitive).

t ⊥ u - t and u are incompatible types.

ti - type symbol with wild-card index
(wild-card index i is unique for elements of ”the same type”).

a, b, c, d, ... - type lists that represent the stack state (top right).

s = (a → b) - stack effect (a - stack state before the operation, b - after).

1 - empty effect (no inputs, no outputs), top of lattice of idempotents.

0 - zero effect (error, type conflict), bottom of lattice of idempotents.

(a → b) · (c → d) - composition of two stack effects (defined later).

x, y, ... - sequences of stack effects.

y, where uj := tk - substitution of uj to tk

(all occurrences of uj in all type lists of sequence y are replaced by tk)
k is unique index over y.

(a → b) � (c → d) - glb of two stack effects (defined later).

r = �∗s - greatest idempotent r smaller or equal to s, zero is allowed
(r · r = r and r � s).

α, β, ... - sequences of operations (linear programs).

s(α) - stack effect of sequence α.

43

Rules for composition

These rules describe evaluation of sequence of stack effects. Whenever a type
clash occurs the result is zero. When two types (coming from different contexts)
for the same stack item are compared the more exact type “wins” and this
information is spread to whole evaluated part of the sequence (denoted by x).

x · 0

0

0 · y

0

x · (a → bt) · (cu → d),where t ⊥ u

0

x · (a → b) · (→ d)

x · (a → bd)

x · (a →) · (c → d)

x · (ca → d)

x · (a → bti) · (cuj → d),where t ≤ u

x · (a → b) · (c → d),where ti := tkand uj := tk

x · (a → bti) · (cuj → d),where u ≤ t

x · (a → b) · (c → d),where ti := ukand uj := uk

Example

Let us have the following toy type system that represents a fragment of the Forth
programming language:

a-addr < c-addr < addr < x

flag < x

char < n < x

Using these types and wild-cards we can introduce hypothetical stack effects:
DUP (x[1] -- x[1] x[1])

DROP (x --)

SWAP (x[2] x[1] -- x[1] x[2])

ROT (x[3] x[2] x[1] -- x[2] x[1] x[3])

OVER (x[2] x[1] -- x[2] x[1] x[2])

PLUS (x[1] x[1] -- x[1])

polymorphic ”plus”, arguments have to have the same type

+ (x x -- x)

@ (a-addr -- x)

! (x a-addr --)

C@ (c-addr -- char)

C! (char c-addr --)

DP (-- a-addr)

0= (n -- flag)

NOT (x -- x)

44

Now let us apply the rules to some example programs

OVER OVER PLUS ROT ROT PLUS !

evaluates to (a-addr[1] a-addr[1] --)

On the other hand, the following program has type conflict in it

OVER OVER PLUS ROT ROT PLUS C!

It is suggested to play with some more examples to understand how the rules
work (author also has an implementation for this set of stack effects).

Rules for greatest lower bound

To join the type information from different alternative branches of a program
we need an operation � of finding the least upper bound of finite set of effects.
As mentioned before, this approach does not work well. Instead, we formulate
a different problem - what are the weakest conditions to make all branches
equal? This problem can be solved using greatest lower bound operation �. We
approximate the branching control structure as a whole by glb of all the branches.

s � 0

0

r � s

s � r

If there exist type lists a1, a2, a3, b1, b2, b3, c1, c2, c3 such that for all elements
of the lists these subtyping relations hold element-wise

a3 = min(a1, a2)

b3 = min(b1, b2)

c3 = min(c1, c2)

then the following rule is applicable, in all other cases the result is zero.

(c1a1 → c2b1) � (a2 → b2)

(c3a3 → c3b3)

If a set of effects has a non-zero glb r then all effects in this set ”do the same
thing”, r is just the most exact description of it (having longest lists and most
exact types). In case it is impossible to force effects to be comparable (in sense
of finding a common predecessor for them) the glb is zero (zero is less or equal
to any stack effect).

We also introduce the following notation that is useful for loops:

�∗s = s � (s · s)

The result of this operation is an idempotent element that most precisely
describes the loop body s.

45

Example

ROT and @ from the previous example have glb

(a-addr[1] a-addr[1] a-addr[1] -- a-addr[1] a-addr[1] a-addr[1])

C@ and @ have glb

(a-addr -- char)

Rules for control structures

In [4] we introduced some rules for may-analysis like the following (we do not
reproduce all the rules here but just two most characteristic examples):

s(IF α ELSE β THEN)

[(true →) · s(α)] � [(false →) · s(β)]

s(BEGIN α WHILE β REPEAT)

�∗[s(α) · (true →) · s(β)] · s(α) · (false →)

These rules describe the semantics of control structures but are hard to use
for practical analysis. Informally, words IF and WHILE consume a Boolean flag
(the top of the data stack) to decide which branch to choose, other control words
are used as structure boundaries.

Let us introduce some new less exact rules in must-analysis style.

s(IF α ELSE β THEN)

(flag →) · [s(α) � s(β)]

s(BEGIN α WHILE β REPEAT)

�∗[s(α) · (flag →)] · �∗s(β)

These rules are quite strict about sequences α and β (violating the strong
stack discipline implies the zero effect).

Rules for other Forth control structures are similar to these above.

Example

A good exercise is to think about the program:

: test IF ROT ELSE @ THEN ;

What is the right analysis for this program? Is this program correct?
Hint: we already know the glb (ROT, @) from the previous example.

46

Another good example from [4] uses a while-cycle:

: test2 BEGIN SWAP OVER WHILE NOT REPEAT ;

test2 may loop forever in ”integer” world, in ”Boolean” world it is nearly
equivalent to

: test3 OR FALSE SWAP ;

3 Conclusion

Stack languages are used in embedded and safety critical system engineering
where the software testing often incorporates tools for program analysis. The
stack based approach induces the need for specific stack analysis methods. Type-
less nature of stack languages allured to create an external type system that
forms a basis for static type checking.

The rules introduced above allow finding such conditions that guarantee cer-
tain behaviour of the program when hold, but probably these conditions force too
strong stack discipline (no instructions with multiple stack effects, no branches
with different stack effects, no loops that grow or shrink the stack). On the other
hand, pointing to the spots where this discipline is violated might help a lot. We
already started a pilot project on implementing this analysis to validate some
industrial Forth legacy code.

References

1. Cousot P., Cousot R., “Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints,” 4th POPL, Los
Angeles, CA , ACM Press, p. 238 – 252, 1977.

2. Nielson F., Nielson H.-R., Hankin C., “Principles of Program Analysis,” Springer-
Verlag, 450 pp., 1999.

3. Pöial J., “Algebraic Specifications of Stack Effects for Forth Programs,” 1990
FORML Conference Proceedings, EuroFORML’90 Conference, Oct 12 – 14, 1990,
Ampfield, Nr Romsey, Hampshire, UK, Forth Interest Group, Inc., San Jose, USA,
p. 282 – 290, 1991.

4. Pöial J. “Multiple Stack-effects of Forth Programs,” 1991 FORML Conference
Proceedings, euroFORML’91 Conference, Oct 11 – 13, 1991, Marianske Lazne,
Czechoslovakia, Forth Interest Group, Inc., Oakland, USA, p. 400 – 406, 1992.

5. Pöial J. “Stack Effect Calculus with Typed Wildcards, Polymorphism and Inheri-
tance,” Proc. 18-th EuroForth Conference, Sept. 6-8, 2002, TU Wien, Vienna, Aus-
tria, p. 38, 2002.

6. Bill Stoddart, Peter J. Knaggs: “Type Inference in Stack Based Languages,” Formal
Aspects of Computing 5(4): 289-298 (1993).

47

A Portable C Function Call Interface

M. Anton Ertl∗

TU Wien

Abstract

Many Forth systems provide means to call C func-
tions, but these interfaces are not designed to be
portable between platforms: A call to a C library
function that works on one platform may fail on
the next platform, because the parameter and re-
turn value types of the C function may be different.
In this paper, we present an interface that avoids
this problem: In particular, the actual calls can be
made platform-independent; a part of the declara-
tions is platform-dependent, but can be generated
automatically from C .h-files.

1 Introduction

Many operating system and library calls have their
interfaces specified as C prototypes and are called
using C calling conventions. As a result, C has be-
come a kind of lingua franca when interfacing with
other languages; other languages generally interface
to C, and “foreign function call” libraries like ffcall
and libffi are actually only designed for interfacing
with C.

This paper discusses the design of a C interface
for Forth. The main goals of this interface are:

Portability of Forth code It should be possible
to write Forth code with calls to C such that
it works unchanged across different platforms.
The portability of the C function declarations
would also be nice, but may only be partially
achievable, as we will see.

Programmer convenience It should be easy to
call the C functions using the existing docu-
mentation for them. The need for declaring C
functions should be eliminated if possible.

Avoid losing bits During conversions between
Forth and C types, bits should only be cut off
in places where the programmer has some con-
trol over what these bits are.

Full domain Allow using all possible values as ar-
guments to functions. This goal conflicts with
the no-bit-loss goal.

∗Correspondence Address: Institut für Computer-
sprachen, Technische Universität Wien, Argentinierstraße 8,
A-1040 Wien, Austria; anton@mips.complang.tuwien.ac.at

Many Forth systems already have a C call inter-
face. However, they all fail the portability goal.
Indeed, many of the interfaces contain artifacts like
the reversal of the arguments that are specific to
the platform and the Forth system involved.

This paper does not deal with access to C
structs, unions or memory accesses to C types.
In addition to some of the problems discussed here,
these issues also pose additional problems, and re-
quire additional effort to solve them.

2 Problems and choices

This section discusses the problems that we en-
counter when we design a C call interface, and out-
lines some of the design decisions. Our actual inter-
face is presented in Section 3. If the present section
appears to be complicated and lengthy, this is due
to the complex subject matter. Feel free to skip to
Section 3, and only read this section to learn about
the reasons for this design.

2.1 Parameter order

For user convenience, the parameter order is the
same as in the C code and (more importantly) the
documentation of the C function. I.e., the right-
most parameter in C is on top of its stack in Forth,
and the leftmost parameter deepest.

Some existing implementations use the reverse or-
der (leftmost parameter on top of stack), because
that is easier to implement for their systems on the
IA-32 architecture (where C passes parameters on
the native stack, with the leftmost parameter on
top).

However, the reverse order is inconvenient for the
users, and error-prone. Typically, neither the nor-
mal nor the reverse order are what a Forth pro-
grammer would have designed for best use in Forth,
so some stack juggling is often necessary; perform-
ing this stack juggling while mentally reversing the
order of parameters given in the documentation is
hard and frequently leads to errors.

Also, all recent calling conventions pass the first
few parameters in registers, including the calling
conventions used for Unix and Windows on the
AMD64 architecture, which will gradually replace

48

Ertl A Portable C Function Call Interface

the IA-32 architecture and its stack-based calling
convention in the next years.

Finally, the implementation benefits of the re-
verse order are not just restricted to an obsoles-
cent architecture, but also to a specific design of
the Forth system: It requires that stack items are
kept in memory, with the data stack pointer be-
ing esp, and that floating-point values are kept on
the data stack. Sophisticated native-code compilers
keep stack items in registers, and less sophisticated
systems like Gforth do not use esp for the data
stack pointer. And nearly all Forth systems use a
separate floating-point stack.

2.2 Types

The main problem with the calling C functions is:
Which Forth types should we pass for various pa-
rameters, and what type should we expect as return
value?

A simple approach would be to let all C integer
and pointer types correspond to Forth cells and all
C floating-point types to Forth floats, for both pa-
rameters and return values. This would satisfy the
portability and convenience goals.

Unfortunately, some C integer types are larger
than a Forth cell on some platforms; e.g., off t may
be 64 bits wide even on 32-bit platforms. Consider
a call to this C function:

off_t lseek(int fd, off_t offset,

int whence);

If we pass a cell for the offset parameter, we are
not able to pass all the possible offsets that lseek

can take, so we miss the full-domain goal. What’s
worse, the result of the function is truncated to fit
into a cell, so we lose bits, contrary to our goal.

So we might actually prefer to call the C function
lseek with the following stack effect:

(n-fd d-offset n-whence -- d)

Bit loss vs. full domain

When we call lseek, the d-offset argument may be
too large (e.g., on a 64-bit system, where d is 128
bits and off t 64 bits; or on a 32-bit system with a
32-bit off t), and may be truncated on passing it to
lseek, losing bits. This is the conflict between the
full-domain goal and the loss-avoiding goal. How-
ever, in this case the problem is not that bad, be-
cause the programmer has some control over the
situation; e.g., he will typically pass an offset that
comes from an earlier call to lseek, or use a small
(constant) offset that is known not to be damaged
by truncation on any platform.1

1It might still be a good idea to have an (optional) run-
time check that the truncation really loses only redundant
bits.

So, in general, for functions we call, we usually
want to have a Forth type for the arguments that
is at least as big as the C type (the full-domain
trumps bit-loss here); for the return value, we want
a Forth type that it at least as big as the C type,
to avoid bit-loss.

For callbacks (Forth words that we pass to C as
C function pointers and that the C code then calls),
we want to have the Forth types for the arguments
at least as big as the C type to avoid bit-loss. For
the return value, we again want to provide a type
at least as big as the C type to be able to return
all values out of the codomain of the function (and
avoiding the bit-loss is again the responsibility of
the programmer).

So, in all cases we want a Forth type that is at
least as big as the C type. A way to ensure that
this is as often the case as possible would be to use
double-cells for integer types in all places. However,
that approach conflicts with the convenience goal.
Actually, most C types fit into a single cell on all
32-bit and larger platforms2, and there are only few,
such as off t, that are larger on some platform. So
actually single cells should be the usual case, and
double cells the exception.

You may wonder where the asymmetry between
Forth and C types comes from. It comes from the
situation for which we are designing: We have a
bunch of independently developed C functions that
are called from a Forth program that is designed to
call these C functions; and for callbacks, the words
that are called back are designed to be called back
from these independently developed C functions. If
we designed an interface for calling independently
developed Forth code from (dependent) C code, we
would use C types that are at least as big as Forth
types.

2.3 Determining the Forth type

Can we determine the Forth type of a parameter
from the C type?

We cannot determine it from the basic C type,
because the basic type of the parameter might be
different on different platforms. E.g., off t is not
a basic C type; it is usually mapped to long or
long long. If we use a single cell for long and
a double cell for long long then we would get dif-
ferent stack effects for lseek on different platforms,
breaking portability. This approach is implemented
in Gforth’s current C interface, and it is broken;
fortunately parameters that may be long long are
rare, so this problem is rare.

Can we determine it from the derived C type,
e.g., off t? In principle this is a good idea. It

2We can restrict our view to such big platforms in many
cases, because the library we want to call (e.g. OpenGL)
does not exist on smaller platforms

49

Ertl A Portable C Function Call Interface

certainly can be used as a guideline when deciding
which Forth types should be used when the pro-
grammer declares the Forth type manually, as in
our interface below.

One might also consider to generate the Forth
type automatically from the C prototype infor-
mation (from the .h-files) and a table of C-to-
Forth type mappings. However, while this strategy
would work in most cases, it would not be entirely
portable, because the prototypes in the .h-files are
not necessarily the same on all platforms. E.g., on
some old Unix versions the .h-files probably contain
long in place of off t, and that would typically be
mapped to a single cell (whereas off t would typi-
cally be mapped to a double cell).

The reason why such differences in .h files are
not a problem for C is that C performs automatic
conversion between different integer types. The rea-
son that they would be problems for Forth is that
Forth requires explicit conversion between some in-
teger types (in particular, between single-cell and
double-cell types).

Floating point

For floating-point parameters, the situation is much
simpler: We only have one Forth on-stack floating-
point type, so we have to convert every C type to
that, and have to convert that to every C floating-
point type. There may be some bit loss involved, so
the programmer should know what he is doing. The
bit loss will usually occur in the form of rounding,
which will be acceptable in many situations, but
may lead to hard-to-find errors in other cases.

C performs automatic type conversion between
integer and floating-point types, so in theory a given
parameter might be an integer type on one plat-
form and a floating-point type on another platform.
However, this does not happen in practice.

Addresses/Pointers

In this paper we assume that C pointers are repre-
sented as simple flat addresses. There may be some
platforms around where this is not the case, but we
feel that such platforms are not worth catering for,
because:

• These platforms are relatively exotic, and it
is not clear that ANS Forth systems exist for
them at all, much less that they would want to
use a portable Forth-to-C interface.

• Catering for them would probably complicate
the interface significantly.

• Many programmers would probably make mis-
takes in using such a more complicated inter-
face without noticing (because the result would

run in a flat-address system), resulting in pro-
grams that don’t port to non-flat machines de-
spite the interface complications.

Moreover, we could not cater for such platforms,
because we do not have enough experience with a
wide-enough range of such platforms to design a
general way of dealing with them.

Pointers necessarily always fit into a cell (since
addresses fit into a cell), so the type problem is
trivial for passing and returning pointers: just use
a cell for every pointer.

However, there is a problem in what can be done
with pointers. We cannot easily fetch the data they
are pointing to or store data there, because we don’t
know how to access it. We leave this memory access
problem to a future paper.

Still, we can do something useful with such point-
ers: we can pass them to other C functions; E.g.,
that is the only use that even C programmers make
of some pointer types, such as FILE *.

Structs/Unions

In C you can pass structs and unions as parameters
to a function, and the function can return a struct
or union. We do not attack this problem in this
paper.

Fortunately, the library functions I have come
across usually do not make use of this feature of the
C language, but prefer to pass pointers to structs
rather than pass structs by value. However, this is
not necessarily the case for all libraries.

Varargs

Some C functions (e.g., printf) can be called at
different places with different numbers and types
of parameters (varargs functions). The Forth sys-
tem does not know how many of the values on the
stacks are intended to be arguments to the C func-
tion, which of the values on the stacks correspond to
which C type, etc. Therefore, the Forth program-
mer has to make the Forth and C types used in the
concrete call explicit.

This can be done by putting that information
near the call (probably right before it).

Another option would be to declare several Forth
words (with different names) for the C function,
each with a different parameter pattern, and then
use the right name for the desired parameter pat-
tern in the call.

2.4 Case sensitivity

Another potential problem is that C names are
matched case sensitively, whereas in Forth names

50

Ertl A Portable C Function Call Interface

that may only differ in case may be treated as be-
ing the same; and most Forth systems are actually
implemented case-insensitively.

Fortunately, C programmers usually do not use
case sensitivity to distinguish functions3.

Moreover, a C function may have the same name
as an existing Forth word (e.g., abs), so one would
shadow the other.

One solution for both problems would be to de-
fine the C functions in a separate, case-sensitive
wordlist. However, while Gforth has such case-
sensitive wordlists (tables), most Forth systems do
not have them. Moreover, dealing with collisions
through wordlists is cumbersome.

Another solution is to provide a different Forth
name for the problematic C name, and use this
Forth name to refer to the C function in Forth code.

3 The C function call interface

The C interface consists of three parts, used in this
order:

Declare Forth types and name This part is
platform independent.

Declare C types and name This part is plat-
form dependent, but can be generated auto-
matically from .h-files.

Call the C function This part is platform inde-
pendent.

3.1 Declaration, Forth part

In the Forth part of the declaration, you declare
the Forth name, which C function it corresponds
to, and what the Forth types of the parameters are.
For our lseek example, the Forth declaration might
look like this:

c-function dlseek lseek n d n -- d

This declares a Forth word dlseek for the C func-
tion lseek with the Forth stack effect n d n -- d.
C-function parses the whole sequence up to the

--, plus the following return value. The allowable
types for the parameters and the return value are:

n w A single cell.

d A double cell.

r A float.

void Used as return type if the function does not
return a value.

3There may be case-insensitive collisions between con-
stants or types and functions, though.

func Used to pass a C function pointer.

The Forth part of the declaration is optional. If
it is not present, the word gets a default name and
default parameter and return types, as follows:

• The default Forth name is the same name as
the C function name.

• The default type for an integer or pointer type
in C is a single cell.

• The default type for a floating-point type in C
is a float.

In most cases, these defaults are the desired
names and types, so only few explicit Forth-part
declarations are necessary.

If you do not use the default types, it is probably
also a good idea to use a non-default name (like
dlseek in our example), to make the programmer
and reader more aware of the non-default types.

3.2 Declaration, C part

The C part of the declaration specifies the basic C
types for the parameter and return values on the
specific platform, like this:

c-types lseek int longlong int -- longlong

Of course, on a different platform one might need
a different declaration, e.g.,

c-types lseek int long int -- long

Again, c-types parses everything up to --,
plus the return type. The possible types are:
schar short int long longlong uchar ushort

uint ulong ulonglong ptr float double

longdouble void func.

Note that this declaration can be created auto-
matically out of the prototype for lseek and the
type declaration of off t:

typedef long long off_t;

off_t lseek(int fd, off_t offset,

int whence);

So, while these declarations are platform-specific,
it is possible to write a parser that processes the
.h-files of the platform at hand, takes the the C
functions that are declared there, and performs C
part declarations for the Forth system.

51

Ertl A Portable C Function Call Interface

3.3 Calling the C function

Once a C function is declared, calling it works just
like with any other Forth word. E.g., for our dlseek
a call might look like this4:

fd @ 0. SEEK_SET dlseek -1. d= if

... \ error handling

then

3.4 Varargs

Functions with variable numbers or types of argu-
ments can be handled by declaring each argument
pattern separately:

c-function sn-printf printf w n -- n

c-types printf ptr long -- int

c-function sr-printf printf w r -- n

c-types printf ptr double -- n

s\" %ld\0" drop 20 sn-printf .

s\" %f\0" drop 2.5e sr-printf .

3.5 Callbacks

Consider the ANSI C function qsort:

void qsort(void *base, size_t nmemb,

size_t size,

int(*compar)(const void *,

const void *));

When you call it, you have to pass a C function
pointer for the last argument. You may want to
let qsort call a Forth word through that function
pointer (a callback); then you have to provide a C
function pointer for the Forth word. An example of
such a word (useful with qsort) would be:

: n-compare (addr1 addr2 -- n)

@ swap @ swap - ;

Ideally we would like to call qsort like this:

: sort-cells (addr u --)

1 cells [’] n-compare qsort ;

However, a Forth execution token is not a C func-
tion pointer, and qsort would not know how to ex-
ecute it, so we have to get a little more involved.
First we define a word compar for the kind of func-
tion pointers that qsort wants, as usual in two
parts:

4Of course, there is still the question of where the
SEEK SET is coming from; this is a constant with a platform-
specific value, and would ideally also be created by our .h-file
processor.

c-function-ptr compar w w -- n

c-function-ptr-types compar ptr ptr -- int

The resulting compar is a defining word for cre-
ating specific function pointers5, like this:

[’] n-compare compar fptr-n-compare

And now you can use that for calling qsort:

: sort-cells (addr u --)

1 cells fptr-n-compare qsort ;

4 Status

This C interface is currently just a paper design, but
its implementation is planned for the near future.

5 Conclusion

Designing a C interface that allows platform-
independent calls to C functions, is convenient to
program, and has some other nice properties poses a
number of subproblems, in particular the mismatch
between the type systems of Forth and the C. In this
paper we discuss these problems and present a solu-
tion: The declartation of parameter types is divided
into: a platform-independent Forth-type part, with
defaults that make most such declarations unnec-
essary; and a platform-dependent C-type part that
can be generated out of C’s .h-files. The main part
of the Forth code, that part that contains the calls
to C, is platform-independent.

Acknowledgments

I thank Sergey N. Baranov for his helpful comments
on a draft version of the paper.

5An alternative would have been to make compar just a
conversion word that would typically be used with constant,
but that might encourage the users to call it several times
with the same execution token, and that might cost memory
every time.

52

���������	�
��
�
������������

��

�������

����������	

���
���

�
���
�������������	������������������
��	���
��	��
�����
��

���������������	����
����	��
�����
���
������	�����	 �	���
��!��������	�����

��	�������	�
���"���	����	���� �
���#�����$
���!�������	��	
�� ����#��

�	��	�

�	�
������	�������	�������
������	�
��	���"������������������������

�

���
��
�����%�����	����&���
���	
�� ����#���������������
��
��
�����

�������'	�#�#����������� ��
����(����	�

����������	�)������*�+	����,�$�+�"�

,�������+���
��	�����
���

-	�
��.&/��0���
�1��
��	�*���
�

2���&�	&1����3��� ���������

324�567�-�8�

"����9..�:4;4�5<;=;=

��>��9..�:4;4�5<;:<?

+������	@	A������������'

53

��������
��

�
���
�������������	���������������
������
�#�������������	������ ���

�>
���
�	���	 ����
��	� ��������
�������"�������
���������������
���������

��
�����
��	�����	��������	��������
���������������	������$
�����	��#�����

 ����
���
��������������	��&�	��$���"3+���	��BC���CC7��$
���	���������

���	���
���
���	����	������
�����������#�������!�����	���$
����	�
���

��	�������
������	�
�����	%�	
��	�����	���� �
���#���������
�����	���	��
�D�

��
��
� �����
����� ��
���#	���	���
���		�
��������������	
���	��>���
������$
�

��	��	��� �	�
��	��	���	@�	�
��	�#�
��������
�����������������	��������	�

���������� ������������
��

���

��'�����
������������	����$��
�	�������	���������'�����
���
��
�����	�
�

�
������
��������	�������
������ �������
������
�	�
�����
�����������	������

� ��������	
�
��	��� ���������������	����
���0�	�����7����������	���

�07����1��������
������,������#����������	��>�����	
�����
�
��	� ���

�
�����
����	������%��������#�
�������������	���&���
��07���	��������������

"��������������07��������
����������������������#������	����	�����	
�

�����

"���������%���������
������ ���		��
�	��
��,����� ���������
�����������

�	�����	��CB)*��#��������������%������������ ��������	
�
��	�

�	����	��	����$	�����
������� ���	������
#��	�
���������
�����	��
��
�

�	����	��	������	�
�%��������
�������	��#����
��� ����������
���		��
��	�
��

,��������	���
����	�������	'���������������

3���������%�������������
������!���������>���������	�����

���������	�
��
��	������������	�
���	
��������	�������������������

���������
���
�������#����������	�����
������	��
���������
���������	���#���

������*��������	�����	��������	������ ������	���	�
�����
������
�����

*��
�������*���������	�
���������	�#������������������
�������
�����	���� �

���
�������"���!��������
�����������
��,����������E���&
����	�
���

�
��	�����
��
��
��
�������������
�� �
���!������
��	��#������� �>�����	�����
�

#����	����
�������	�����������	���
���� ����>������������� �
���

������
����#�������
�'�	� ����
�����	
������ ������������>��"�������	�
�
���

�����	�
��������� ���%�����������!�������	���
�	������
��	����	���	��#�����

��	����������

54

$	�������� ���!���������������������������>������
�������		�	��
��

��	������� ���	���� �����������
��	� �������������	��������	
���E&�
��	�F

"���������������
�����13+2+�������������!��������
���������
����������
�

�������	�
���
��	���@��	�	��� �
#����������
��������	������	��-��	��

��	%�	
��	���
���	�!�����
��������������	���������������
����

�	���������

�� ��
�����	
����
�	���� ����
�����
��
���	������������>
���
���
���

�	 ����
��	� ���������
�
��	�����	(
�
��������#��
�
����	�#�����F�G���	����

����'� ����
���
�������
���

�����������
������	
�� ���������������	��������	������������
���������������

���	�
��������#��	������#�
�����
#��	����
���	�������#�
������

���%���	��
�����
�������������#�������	�����
�����%���	��
���������
����

�	�����������
���
�����1����%���������
����
���H�������$	%�������

$	
�� ���H�

55

���������	�
��
�
����
��������

1��	������	�	��
�����	
�� �����#������
��� ����#�	������I

���"��������������������������	����
�	�����

���"���� ������
����
�������������
�������������	
�

���"�����������������������	����������������

���$
����
�������������
���
���
����
�������

���"������
��
�������#�
��������������������%������

 ��$
��������������������
���������	��	
����
�%������

1�����'����
�
������������
��� ����	����%���������� ����������	
�	��
���

����#��������#�%����
�������	�
�%������� �������� ���
�������������������

#���������	
���������
��������
��	�����	��
�	�
����E&�
��	����	����������

���������������������	���������$	�
�����#����������
��
���������

�� ���	
������#��	�����#��������
���

�����'������	������ ���
����#�
��� �������
��
��������	�������
�����
���

��������������������������1��������
���������
���J����������
����	�
������

 ����	�
��	��������	����������������������	���-8�'��������

1����	���������	�#�
��
�
����>���������%�����'���	����
���

 ������!�"""�#�$����%&��'���(
���)�*����������	�
��
��	������������	�
���	�$���+���%���
����������	�����������
��*�����,�,��*�����*��,-��,�,� ����������$�.��������	
��*�)�/������0�� �����$����%��

1

56

����������
��

���'�	���
�
������%��#������	��#��
�
����	����
����I

���J���&&&E������

�
��
�������������	�
������	����E����
����	�
����
��	���	����	��
�	�
�	��

%����
����	
���
��� ����#�	��J����	������'�
���������'�������������	
��

��������%����3�#�%���� ����

�	�����������%����������	�������������
��	��

�	
��
����
��	��

J���E����&&&E����(��

2����������������������%���	
���
���	�>
�J��

J���K���&&&�L�E�����M	���K&&&��

C	��������
��	�����������
������������ �
���	�#�������
���!������
��	��

�#���������� �>����'	�#	�����
��	���*��������
���
�����	&
�������
�� �
���

����!�����#����� ����#������
������������ �
��� ����#�	��#�����1��	�

�>���
�	����
� ���
���� �����
���!�����
��	���
���%���
��������
����������

������������	����������
��	�
��
��� ����#�	��#����#������������������������

�
�

��
��
��
�����!�����������
����
�'��!��
������	��
����
���>���
���	������

���� ���� ��!��	
����>���
����	���������
��
�������"�����
��	��������
���

���������
��� ����
�����!����������	���>���
��������
�	��������	��� ���	
�

�������� ��	���������
��	������
������
����#��������
�
���� �������

�����&�� ����	��
��������
������������
���� ��� ��������
������
����	
��	�

����
��	��

1����	�������������	�
����#���

J������&&&�L�E����&&&��

��������
��
������%�����
�#�������
��	��	�������
����������� ��� ����	���
�	��

��
�������	���	��
�����
������

�	������ ���
�#���

���&2+�-�"

#����������� ����#����� ����
��
��������
�	�������	
��
������
����	�����

57

��������

��������#����%����
�����HB�����
��H��#�
�������	������
	��������
	����

�	��*��	
��
����

�)�*��������2��	�����
&�	�������������&�3���	�
�������
����(4�
���5�67�*�)�/��)�"���0��
8"""""""""""8"""""""""""8
9�2��	������9�&�	�������9
8"""""""""""8"""""""""""8
9�:&��	�����9���;&��	�<�9
8"""""""""""8"""""""""""8
���
=����	���!�>���	��#

<

"��� ����

�	��� �
����� ���
������
�#������������	���
�����'���������
��
���

,�����*����	����	��*���	
��#�������
��
�������#	��	����
�,�����

�� ���	������'��

�)�*�,������,������&�3���	�
?��0���!@�;��<@
@�

��@
�#�*�)�

*������������������������������
N

�������
��

C	�������	�����
������	�
��
����
��%����
���
������ ���	���	������	
�� ����

#�������� ��������	�
������	�����������
��	���	������
��	����	����
��
����

��	�������

58

59

60

61

62

63

64

IntellaSys Corporation
10080 N. Wolfe Road, Suite SW3-190

Cupertino, CA 95014
voice 408-446-4222

fax 408-446-5444

A 21st Century Sea Change Taking Place in Embedded
Microprocessors

David Guzeman, Chief Marketing Officer,
 IntellaSys Corporation, Cupertino, CA

It has been 30 years since the 8048/8051

microprocessors appeared on the market

and changed the world�s view of what an

embedded microcontroller should look

like. Over the years, each new

microcontroller has tended to follow that

basic architecture, adding improvements

at each step in order to stay in step with

the increasingly demanding applications.

As long-lived and important as that

original architecture has been, it is now

time to embrace a new multicore

architecture, one designed from the

ground up to handle the applications of

the 21
st
 century. In this white paper, we

will discuss the sea changes in

architecture design that are being driven

by demands for higher operating speeds

and lower power dissipation.

20th Century Applications

The typical application from the 20
th

century used an 8-bit microcontroller � a

bit banger � that could read sensors, do a

small amount of data processing, and

then drive some I/O lines, probably

parallel, in order to send characters to a

display or record a data byte onto tape or

some other data logging device.

Additional I/O lines could scan a simple

keyboard or set of switches, and the

whole thing could be driven within time

constraints by an on-chip real time clock

that could provide precise timing

references to sync data transfers, and

perform other time-driven tasks.

These applications used only a small

amount of memory, perhaps 64 to 256

bytes of RAM, and most of that was

integrated on the chip. Although

provisions were made to access external

memory as well, this was initially a

primitive interface consisting of just an

address and data bus and relied on the

processor to read and move data in and

out of external memory under software

control.

Thus the emphasis was on controlling

I/O within tight time constraints with

very little actual data manipulation done

by the processor chip. That�s fortunate

because the processor was extremely

limited in its data processing capability

anyway and was very slow running at

clock rates of a few Megahertz. As

limited as these chips were, they were

sufficient to control countless simple

applications ranging from wall

thermostats to simple home automation

systems. In fact, at this moment I�m

typing this paper on a recently

introduced laptop that uses a derivative

of that original 8048 chip for the sole

purpose of reading keyboard clicks.

Over time, processors were introduced

that were even smaller with less

65

2

capabilities that sold for, presumably

lower prices. At the same time, others

came out that were more advanced, both

16 and 32 bit versions, and with much

faster and more sophisticated external

memory interfaces using DMA

controller circuitry. Still, the basic idea

has remained the same. One or two

processors on a chip, reading data from

input lines and sending data to output

lines, and wiggling I/O control pins as

appropriate� all to the metronome of an

external reference real time clock.

Consumer Electronics is
Driving 21st Century
Applications

But now the nature of the applications

has changed dramatically. In addition to

the traditional real time bit banging, a

new dimension of processing capability

has been added � the processing of

algorithms. Today the high-volume

applications are multimedia consumer

aps that range from tiny MP3 music

players to cell phones with video

capability. Moreover, the long awaited

avalanche of high-definition televisions

has begun, and along with those

televisions, consumers are suddenly

perceiving the need for home networks

that move video and music from room to

room.

Multimedia Capability

All new consumer applications have

digital data at their heart, and that

implies extensive digital signal

processing in any device that displays or

plays that data. The various file formats

for multimedia have been carefully

designed with an eye toward digital

processing by using mathematical

algorithms � Fast Fourier Transforms

(FFTs), discrete cosine transforms

(DCTs), and so forth. The high

bandwidth required to serve multimedia

applications requires that 21
st
 century

processors have dedicated circuitry for

processing those algorithms. But at the

same time, none of the earlier

requirements for general purpose I/O

and real time clocks has gone away.

New chips must handle both!

Bitstream Orientation

Whereas earlier processors viewed

external memory as the source and

destination of applications data, modern

processors must be able to operate with

high-speed bitstreams of data arriving

from the internet, USB and 1394 cables,

as well as cable and satellite television

services. The USB 2.0 interface, now

nearly ubiquitous on consumer products

such as cameras, MP3 players, and even

cell phones, requires up to 480 mbit/sec.

The 1394 interface is commonly used in

video applications and comes in

200/400/800 mbit/sec rates. Even

gigabit Ethernet is beginning to appear

in homes with even higher data rates yet.

Today�s processors have to deal with

these data rates, all of which are

staggeringly fast by 20
th

 century

standards.

To make matters worse, the new High

Definition Audio-Video Network

Alliance (HANA) standard for home

networking assumes up to FOUR 1394

bitstreams that may reach 800 Mbit/sec.

And MP4 formatted data assumes

multiple bitstreams for audio and video

plus optional additional streams for

things like subtitles and still images. In

many cases, the same processor that is

decoding the MP4 bitstream from a

buffer memory must also handle the

incoming bitstream as well, so that as

many as four or five of these high-speed

bitstreams must be handled at once.

66

3

Fast External Memory Interface

With requirements for fast data are

mapped over to the external memory as

well, the days when the processor only

needed to address a few hundred bytes

of data are long over. Today, some

specialized processors aimed at video

applications, for instance, must be able

to handle 128 Mbytes of DDR SRAM

memory. While it is relatively easy to

implement larger address ranges on a

processor chip, the speed of these

memory interfaces is now critically

important. The large address space

translates into many pins on the

processor dedicated to the external

memory interface. The fact that there

are multiple bitstreams required for

many of these applications means that

there must be an easy way to quickly

switch the address bits on the memory

interface. Most modern processors use

full-blown DMA (direct memory access)

controllers for this interface � typically

three of them. Some even go the extra

step of allowing indexed addressing in

the controller. That�s convenient, for

instance, when the device is fetching

multi-byte vectors from memory.

Low Power Dissipation

Many modern consumer devices are

battery operated. The high processing

load, combined with a display, and

sometimes even a disk drive, place a

heavy load on the batteries in these

devices. As a result, power is at a

premium and the processor itself must be

capable of low-power operation to

maximize battery life. Of course, low-

power does not normally go hand-in-

hand with high processing speed, so this

represents a serious design tradeoff.

21st Century Multicore
Processor Architecture

Changes in the nature of applications

clearly require corresponding changes in

the processor chip�s architecture. For

instance, the need for multimedia

capability requires special high-speed

arithmetic circuits. And the need for that

high-speed processing has led chip

designers to add core processors to the

chip so that those tasks that require real

time processing can be run on one core

while the other tasks can be run on a

second core.

Multiple Processor Cores

The approach of trying to segregate the

tasks into two groups � real time and non

real time � fails for the simple fact that

in modern applications MOST of the

tasks have a real time component to

them. Simply put, multimedia

applications are driven by high-speed

computing elements that are racing to

complete their algorithms within a tiny

slice of time before the next batch of

multimedia data arrives. Failure to do so

means there is a gap in the music or a

glitch in the video.

Recent trends have been to incorporate

one or even two DSP cores with high-

speed multiply / accumulator circuitry

Real Time
Core

DSP
Core

A chip with just two cores, one for real

time tasks and the other for algorithm

processing.

67

4

that keep pace with those multimedia

bitstreams. But this approach appears to

be reaching its limit whereas the demand

for additional and higher speed

bitstreams seems to know no bounds. A

much better approach is to integrate

several more core processors onto the

chip, each simpler than the complex

DSP core, but each containing a high

speed multiplier / accumulator. Properly

designed, these core processors can take

on complex algorithms by spreading the

computing load across them and sharing

the task. Of course this requires

rewriting the algorithm in a way that

facilitates this breaking up and sharing

the task but the result can be an

incredible increase in processing

capability.

Spreading the computing task in this

way has a second advantage. Whereas

chips based on DSP cores have little

flexibility, chips based on an array of

core processors can be programmed to

bring the optimum number of cores to

bear on the problem. Need more speed?

Simply assign more cores to the task.

This approach has the benefit of strong

computing power within the cores, so

that unlike the DSP which consists

mainly of high-speed arithmetic circuits,

the core processors add high-speed

conditional branching plus all the other

powers of traditional computing

elements. As a result, the multiple core

approach is extremely flexible and its

ability to solve problems is not limited to

high-speed arithmetic.

The flexibility of multicore chips means

they can be brought to bear on a wide

variety of problems by simply assigning

cores to the different tasks required.

One can be assigned to managing

external memory, perhaps eight more

could be directed to doing the FFTs to

process the multimedia algorithm, and

several more can drive the various I/O

subsystems in the application. This

sharply contrasts to the traditional

single-processor approach for handling

multiple tasks. As everyone knows, that

approach directs the single processor to

work on one task for some period of

time and then switch to another, and so

on and so on, providing the illusion of a

multi-tasking processor. In cases where

some of the tasks are I/O bound and

Video

Audio

I/O
Processing

External Memory Interface

A chip with multiple cores showing how

an application can be spread across them

to maximize processing power.

ROM / RAM

A chip with 8 cores showing the bottle-
neck that occurs when accessing a
common shared memory.

68

5

spend significant time waiting for data to

be received, that illusion holds up pretty

well. But for tasks that are not waiting

for data, the illusion breaks down and no

one is fooled � the processor is simply

sharing its resources among the tasks

and the burden is painfully evident. The

problem is exacerbated by the context

switching time needed by the processor

to save registers and application data as

it moves from task. The larger and more

complex the processor, the greater the

context switching time and the more the

illusion of multitasking breaks down.

The multicore approach turns this on its

head by assigning one or more

processors to each task. The context

switching time is zero for the simple

reason that the individual processors

never switch tasks, and the illusion of a

multitasking chip becomes reality.

Local RAM/ROM Memory

Whenever multiple processors are

incorporated into designs, the issue of

memory access rears its ugly head. Most

multicore chip designs combine several

cores with a common memory structure.

While this simplifies the design since

each core consists of only the processor

itself, the savings is replaced with the

extremely difficult problem of sharing

the common memory among multiple

cores and arbitrating their accesses to it.

This normally involves either some sort

of arbitration network or crosspoint

switch. This approach is workable when

only 3 to 4 cores are contemplated, but

when the chip design calls for dozens, as

it does here, the complexity of sharing

memory becomes daunting. In addition,

as more and more core processors

require memory access, the sharing

becomes less and less efficient and

quickly becomes a killer bottleneck that

negates all of the processing gains that

came with multiple cores.

The solution is to replace the common,

shared memory with local memory that

is local to each core processor. In this

arrangement there is no need for

memory arbitration or crosspoint

switches because the cores are simply

accessing their own, private RAM /

ROM memory stores.

The concept of a common memory store

offers one big advantage, namely the

optimization of chip memory size by

simply allocating to each core processor

the amount of memory that core needed.

When each core has its own local

memory store, the size of that memory

will always be a compromise. If it�s too

small, the cores will be handicapped �

too large and it will be wasted and the

chip will grow larger at the cost of

efficiency.

Fortunately the size of that local memory

is easy to set. By writing code and

experimenting with typical algorithms

A chip with 24 cores, each with its
own local RAM and ROM. With
local memory distributed this way,
there is no memory bottleneck.

CPU RAM ROM

69

6

that must be handled by the chip, it

quickly becomes clear that the

requirements fall into two sizes� 1,000

bytes and less and a much larger size�

megabytes or even hundreds of

megabytes. This second memory size

occurs when large buffers are used for

handling multimedia data, but that only

applies to a few of the cores on the chip.

Clearly, adding megabytes of local

memory to each core would be

extremely wasteful, even if it were

practical. The first memory size, 1,000

bytes, is quite practical with today�s

mainstream semiconductor processes

and is proving more than adequate as a

working size for local core memory.

The final solution obviously is to have a

relatively small local memory store for

each core, on the order of 1,000 bytes,

for code and data storage plus access to a

much larger external memory for

multimedia buffer requirements that is

used by only a handful of cores.

Communications between
Cores

It is readily apparent that the idea of a

multicore chip is not that of a set of core

processor islands, each with its own set

of I/O pins standing independently from

the others. We have already described,

for instance, how compute-intensive

algorithms can be spread and shared

among multiple core processors.

Obviously that implies a level of

communication and cooperation among

the cores.

Communications between core

processors takes two forms: passing

status signals and passing blocks of data.

Conceptually there is no difference

between the two although there is a

significant difference in the

communication speed. For instance, a

status signal might be sent to a

neighboring core indicating that data is

ready for transfer, and then the cores

communicate by passing that block of

data between them. While both of these

communications approaches must be

efficient, the way that efficiency is

achieved may be completely different.

We will return to this in a moment.

As in the case of shared memory,

communications between processors can

be handled in several ways. If there are

only a couple of core processors

involved, it�s practical to provide

circuitry for each to communicate with

the others. But as the number of cores

increases into dozens, the chip area and

complexity of the communications

circuitry becomes prohibitive. Another

way to implement inter-core

communications is to limit the

communications to a smaller set of

cores, typically to just a core processor�s

nearest neighbors. This is far simpler

and very practical.

The implementation of inter-core

communications structures goes right to

Crosspoint Switch

A 16-core chip using a crosspoint
switch for core-to-core
communications. This quickly
becomes a bottleneck with more
than four or five cores.

70

7

the heart of the philosophy of bringing a

sea of processors to bear on a problem.

How are communications channels and

processes created? As computer users,

we are accustomed to letting the

computer make many of the decisions

regarding the applications we run. For

instance, when our word processor

application needs more memory as our

document grows, we rely on the

computer to find a block of memory and

assign that block to our word processor

program, a process that might entail

reassigning blocks and moving some to

disk. That process is completely

invisible to us and is done, as needed, by

the computer.

Less obvious is the fact that the memory

allocation system and even the disk

operating system were designed to make

this process efficient to drive for a

software entity, in this case, the word

processor program. The system was

designed from the very beginning with

the idea that it would be the computer

operating autonomously that would

allocate the block of memory and move

other blocks to the disk drive, as

opposed to a human being.

In the case of the multicore chip, just

how will the cores be assigned to

perform the various tasks that make up

the application? It is not going to be the

application program itself, or even some

operating system �in the sky.� The

process of assigning cores to tasks is

done by the designer / programmer who

maps the application onto the chip, not

by some development system program.

The mapping process is one of the most

basic, fundamental parts of the design

problem. To do it, the designer must ask

which tasks communicate the most data,

and then assigns adjacent cores to those

tasks to optimize the core

communications. If this core assignment

process was going to be done in some

automated fashion by the development

system, then it would be appropriate to

design an inter-core communications

system optimized for that automated

assignment process. But since it is done

by the human designer, it is much better

to use the simplest, most efficient

communications structure that simply

restricts the core communications to

nearest neighbors. Of course, it is

always possible to have cores relay data

and status signals to more remote cores,

but by restricting direct communications

to nearest neighbors, the chip design is

made much simpler and there is no real

cost to the applications designer who

was going to do the assign core tasks

anyway.

This conflict between automatic design

and design by humans targeting specific

applications will arise over and over

again. Whereas our computer functions

one moment as a word processor and the

next as a movie player or a financial

spreadsheet calculator is completely

different from how embedded processors

function. An embedded processor chip

does not switch back and forth between

being a camera and a wall thermostat,

and for that reason we should NOT

compromise chip design by burdening it

with generic do-anything, anywhere,

anytime structures like large crosspoint

switches that allow communication

between any two on-chip core

processors.

Once the decision has been made to limit

communications to nearest neighbor

cores, the communications structures

become much simpler and it is possible

to make them even more efficient.

Communications between cores now

takes place through shared registers and

there is no need for conflict resolution or

priority networks. But what is possible

71

8

is to combine some aspects of status

signals with the communication of data.

Traditionally two processors passing

data through a shared register will poll a

status bit somewhere to determine the

state of the transfer. Processor A sends

data to the register and sets the status bit

HIGH signaling that data is present and

needs to be read. Processor B is polling

that status bit in a software loop waiting

to see it go HIGH indicating that fresh

data is present in the register. After

reading the data, processor B resets the

status bit LOW indicating the data has

been read and the register is ready for

another transfer. There are many

variations on this theme, but the sad fact

is that more time is spent in having the

two processors read the status bit, test it,

and write it, than is spent actually

transferring the data.

The multicore chip offers a much

simpler solution. Write the code for

core-processor A so that it always

assumes the register is empty and

waiting for data. Its loop no longer

contains code for testing and writing the

status bit, but becomes simply SendData

� SendData � SendData, and so on.

Likewise the code for core-processor B

assumes there is always data waiting so

that its loop is now simply ReadData �

ReadData � ReadData, etc. How is this

done in practice? Core-processor A, the

sending core, attempts to send data to the

shared register and if there is still unread

data in the register, core-processor A

simply stops running. It stops until the

data in the register has been read by B,

and at that point A starts back up again

on the very instruction it had started

before, i.e. SendData. Thus, from a code

standpoint, core-processor A always

assumes the register is empty and

waiting for more data� there is no

reason to read and test a status bit. Core-

processor B does something similar. Its

code always assumes the register is full

of unread data. As it begins to execute

the ReadData instruction to get that data

from the register, if it turns out there is

no unread data in the register, it too

simply stops running. When new data

does appear, B finishes executing its

ReadData instruction which then

successfully gets the data from the

register. Again, there is no need for

reading, testing, and setting a status bit.

CPU
Shared
Register

A 6-core array (2x3) using shared
registers for core-to-core
communication removes the
bottleneck issue.

Processor A

Processor B

Two processor chips communicating
a word from A to B using two hand-
shake lines. In these arrangements
more time is spent reading and
writing status bits to the handshake
lines than in transferring the data.

72

9

This technique will be unfamiliar to

most readers because it is not an option

in systems where the processors are on

different chips. The reason it works is

that, when both cores are on the same

silicon chip, there are circuit techniques

for starting and stopping core processors

that can be utilized. The key is that the

start / stop process has to be very fast �

on the order of one instruction execution

time to be really effective. But when

that can be achieved, the speedup in data

transfer between core processors is

dramatic and improves the throughput

by a factor of several times. In effect, it

completely eliminates the software

signaling between cores for many types

of data transactions.

If the core processors are designed to use

memory-mapped I/O, even more

interesting types of communication can

occur between cores. In this system, I/O

registers are treated as memory

addresses which means that the same

instructions that read and write memory

also perform I/O operations. But in the

case of multicore chips, there is a

powerful ramification of this choice for

I/O structure. Not only can the core

processor read and execute instructions

from its local ROM and RAM, it can

also read and execute instructions

presented to it on I/O ports or registers.

Now the concept of tight loops

transferring data without the need for

reading, testing, and writing status bits

becomes incredibly powerful. It allows

instruction streams to be presented to the

cores at I/O ports and executed directly

from them. And since the shared

registers between cores are essentially

the same as I/O ports, that means that

one core can send a code object to an

adjoining core processor which can

execute it directly from the shared

register with no need to actually transfer

the code to the other processors local

memory. Code objects can now be

Processor Core A
(Active)

Processor Core B
(Sleeping)

Core A begins the transfer process
of sending a word to the sleeping
core B.

Processor Core A
(Sleeping)

Processor Core B
(Active)

Core B completes the transfer
process by waking up and accepting
the data word. Meanwhile core A
goes to sleep while B accepts that
word.

Processor Core A
(Active)

Processor Core B
(Sleeping)

The process of B accepting the data
word wakes up core A which begins
the process again, sending the next
word. B has gone back to sleep.
From each processors point-of-view,
the other processor is always ready
to either send or receive. There is
no need for handshake lines.

73

10

passed among the cores, which execute

them at the registers. The code objects

arrive at a very high-speed since each

core is essentially working entirely

within its own local address space with

no apparent time spent transferring code

instructions.

Real Time Clocks

As traditional processors have grown in

processing speed and complexity, they

have moved further and further away

from their ability to handle tasks in real

time, meaning the time to process code

is indeterminate and will vary from cycle

to cycle. This is largely due to the

introduction of increasingly larger

caches used by the processor to reduce

external memory accesses. Thus, on one

loop through the code the instructions

are all fetched externally, but on the next

they are contained within the cache. At

the same time, as processor complexity

has grown, the number of CPU registers

has increased as well. Accordingly, the

amount of time required to save the

contents of those registers during

interrupt handling has increased. All of

this makes modern processors ill-suited

for embedded applications, to say

nothing of the large memory

requirements and sheer chip cost.

Embedded processors have always

stressed the ability to handle real time

applications, to process code in a

guaranteed time slot, to handle events

and displays within a tightly controlled

(and shrinking) time allotment. Single

processor chips use a real time clock,

supplied by an external reference, to

setup and control those tasks. But what

is the ideal arrangement in a multicore

chip?

Thinking about the application as a set

of related tasks and subtasks, with cores

assigned to each, provides an answer.

Modern applications, especially those

that are multimedia intensive, are not

characterized by one or two tasks that

must be accomplished within a time slot.

Today, many if not most of the tasks

have a real time component to them.

Consequentially, one core will need to

have access to the real time clock

reference which it uses to inform the

other cores by sending status signals to

them in the form of messages, or each

core must have the capability of

accessing that reference clock directly.

Of the two, the latter is a much better

solution.

If status signals can be eliminated by

each core having its own access to the

real time clock, that combined with the

lack of need for status signals to transfer

data between cores, goes a long way to

eliminating the status signal form of

communication between cores

altogether. Notice we are not suggesting

that a system clock signal be distributed

across the cores requiring millions of

nodes to be switched synchronously to

the beat of that clock. For the real time

clock to be effective, only a handful of

nodes in each core must be switched,

and the effect on power dissipation is

negligible. A simple counter on each

node is more than sufficient to make

each node self-sufficient in terms of real

time processing.

Low Power by Design

As more and more embedded processor

chips find themselves in mobile

applications, the requirement for low

power dissipation has become critically

important. In traditional designs this is

achieved through excruciating attention

to detail, carefully determining the speed

at which each signal path must operate

and then choosing transistor sizes

appropriate to that speed. Only the

74

11

highest speed paths are implemented

with large power-hungry transistors.

But the multicore chip, with the ability

to start and stop core processors as data

is presented or denied, has a much

simpler power-saving mechanism.

Cores that are not processing data are

not running and therefore are not

dissipating any power. Cores only run

as they are needed and the turning on

and shutting off is completely automatic

and need not be invoked by the program.

The effect on power dissipation is much

larger when complete cores are shut

down than by trying to gauge and size

signal paths. In fact, this approach has a

second benefit. Because of the

automatic synchronization of data

passing between cores, there is

absolutely no reason to make the cores

themselves synchronous. That means,

there is no reason to have a central clock

to which each core must beat. Data

transfers always take place at the highest

possible speed � an external clock adds

nothing but complexity. Now the central

clock is replaced by an individual clock

for each core � a simple ring oscillator �

that runs as fast as the native speed of

the silicon allows. No central clock

means there is no giant clock tree with

millions of transistor nodes dissipating

power at each tick. Instead, the tiny

individual clock oscillators run on each

core, but only if that core is running. If

a core has been stopped because data is

either unavailable at its shared register or

has not yet been read by a neighbor, the

ring oscillator is also stopped. Clock

dissipation only occurs in running cores,

and even then these are fully

asynchronous with regard to each other

so that the power dissipation is spread

over time.

In a chip such as this, with dozens of

core processors, only a fraction of those

cores are running at any given time.

Some of these cores will be off for

significant amounts of time because the

chip is in a mode that does not run tasks

involving those cores. But even the

cores that are running are doing so in

short spurts, first turning on and

executing code as fast as silicon will

allow. Then immediately shutting back

off as they exhaust the data presented to

them or waiting for a neighbor to pick it

up and continue. In this type of

environment, we estimate only a third of

the cores would be running at any given

instant, though a few nanoseconds later,

a different group of cores would be

active, but still only about a third. This

effectively reduces the power dissipation

of the entire chip by a factor of 2/3 while

at the same time ensuring that each core

runs at the maximum possible speed of

the silicon with no compromises.

Instruction Sets

Instruction sets are mostly determined

by the register set associated with the

processor. In the case of the multicore

chip, however, the core processors are

carefully designed to provide maximum

speed with minimum size and

complexity. In other words, they are

RISC processors, that are carefully

optimized to run code using a very

simple reduced instruction set. By far

the best match of processor architecture

and processor language is to have the

processor execute instructions in some

high-level RISC language as native

machine code. This accomplishes two

things: first it packs the maximum

amount of functionality into the smallest

programs and second it maximizes the

speed of execution by eliminating the

need for intermediate translation

between high-level source code and

75

12

machine code. The first is critical in

chips with limited memory sizes and the

second is equally critical when

processing demanding multimedia

application algorithms.

That leaves the question of which high-

level language to implement as the

machine code instruction set on these

core processors, and here, the choices

are few. Most modern high-level

languages are designed to pass large

amounts of data to a set of functions and

subroutines as frames on the return

stack. This process is largely invisible to

the programmer as it is hidden behind

the machinations of the language

compiler. But that approach is wildly

inefficient for core processors of the type

we�re envisioning as the embedded chip

of the future. In this case, the processor

may be RISC but languages like C and

C++ are definitely not RISC.

Fortunately there is a language that is

optimum for these types of cores � so

optimum in fact it appears that it was

designed with multicore chips in mind.

That language is Forth.

Forth is ideal for small processor cores

for several reasons, but the first is simply

that it does not use a large number of

processor registers. The hardware

needed to implement a Forth-based

processor is minimal. And because

Forth programs are written by defining

new words and then using those to

define higher-level words yet, it is easy

to identify a small set of core words �

the kernel � that everything else is built

on, and then building those core words

into the processor as dedicated circuitry.

The result is blinding speed in a very

small core processor.

By implementing as few as 32

instructions in that core set, it is possible

to achieve the ideal RISC compromise

where the minimum instruction set

handles the majority of applications code

directly within that set and at the same

time does not pad out the set with

seldom used instructions that complicate

the circuitry and ultimately slows

execution. Clearly, an instruction set

with only 32 instructions can be

implemented in as little as five bits, but

by recognizing that some instructions

only apply in certain contexts, it�s

possible to pack multiple instructions

into a small instruction word� as many

as four instructions in an 18-bit word.

Instruction packing like this achieves an

automatic caching effect with no need

for setting up L1 and L2 caches.

Instead, each instruction fetch brings

four instructions into the core processor.

Although this built-in cache is certainly

small, it is extremely effective when the

instructions themselves take advantage

of it. For instance, micro for � next

loops can be constructed that are

contained entirely within the bounds of a

single 18-bit instruction word. These

types of constructs are ideal when

combined with the automatic status

signaling built into the I/O registers

because that means large blocks of data

can be transferred with only a single

instruction fetch. And with this sort of

instruction packing, the concept of

executing instructions being presented

on a shared I/O register from a

neighboring processor core takes on new

power because now each word appearing

in that register represents not one, but

four instructions. These types of

software / hardware structures and their

staggering impact on performance in

multicore chips are simply not available

to traditional languages � they are only

possible in an instruction set where

multiple instructions are packed within a

single word and complete loops can be

executed from within that word.

76

13

No Central Operating System

The idea of multiple cores on a single

chip is certainly not new, and in fact

there are at least a dozen already on the

market or about to be introduced. But

virtually all of these are made up of two

or four cores where those cores are large,

complex processors designed to run

desktop applications such as Windows.

There is certainly a place for these �

not in highly compact embedded

applications � but in large servers.

Such multicore processors all rely on a

central operating system to load and

direct the core processors.

This arrangement is usually typified as

SMP � Symmetric MultiProcessing �

where each of the cores is identical. To

be successful it assumes that the

software being run has been written in a

multi-threaded form. The operating

system, probably running on one of the

cores, takes that code and loads it onto

the remaining cores by separating the

code into blocks which set off the

individual threads. It loads the cores in a

way to equalize the processing load

across the cores using the threaded code

blocks as the basic code increment.

Where applications have been written in

this multithreaded format, the multicore

SMP approach works fairly well.

Of course not all software is written that

way, but even when it is not, the central

operating system can load entire

programs onto individual cores, so that

some benefit of the multiple cores can be

seen. But none of this applies in the case

of embedded processors. There are no

disk drives, no loading of cores with

tasks on-the-fly, dynamically controlled

by a central operating system. Simply

put, there is no central operating system

in an embedded processor. In the case

of multicore chips, the role of the central

operating system has been replaced with

the concept of the thoughtful

programmer.

For these kinds of chips, code is written

for specific cores on the chip. It is not

designed to run independently on any

given core, since each core is connected

to the outside world with a different set

of I/O functions. The code only makes

sense in the context of the core for which

it was written. This is not a drawback of

the approach, since the system has

already been determined to be a camera,

for instance, and not a camera one

minute and a breadmaker the next. If the

cores were to have totally different tasks

minute to minute, you could argue for

the presence of a controlling program

like a central operating system. But

since that flies in the face of the entire

concept of the embedded processor,

there is no central operating system.

This presents a slight problem. PCs, for

instance, do not simply have an

operating system, they also have a BIOS

(Basic Input Output System) the

operating system is built on. That BIOS

implements the most basic level of I/O

drivers in the system. And while the

multicore embedded processor needs no

central operating system, it still has the

need for basic input / output drivers.

And if we are going to avoid the idea of

central, shared memory we are going to

have to accept the idea of each core

processor having its own BIOS.

Since each core has its own ROM

memory, it also has the ability to have its

own BIOS. In addition to simple input /

output functions, the core processor

BIOS can have all sorts of helper

routines as well. These BIOS routines

are not simply copies, replicated in each

core�s ROM across the chip. They must

be individualized to handle the

77

14

individual personalities of the cores.

Although the cores themselves are the

same, their location within the chip array

makes them unique. Some connect to

certain types of I/O, while others

connect to other cores. Cores in the

middle of the array probably have no

external I/O at all beyond the shared

registers that are used for inter-core

communications.

Multiple I/O Interfaces

As embedded processors have moved

from the original form of the 8048/8051

to modern processors, the nature of the

I/O has changed as well. This is true

regardless of whether we�re discussing

single processors or multiple core

processors. Whereas originally simple

parallel I/O lines plus a serial interface

was sufficient, chips today must

interface with other predetermined

interfaces like USB, 1394, and SPI

(Serial Protocol Interface).

Today there are hundreds of peripheral

chips utilizing the SPI interface, and a

processor chip that provides a SPI

interface (or multiple SPI interfaces).

This opens up a world of inexpensive,

powerful peripheral functions that can be

easily incorporated into the system.

Scaleable Embedded Arrays

All of this time we�ve been discussing

multicore chips without regard for the

layout, the arrangement of the cores.

But if the cores are identical, outside of

their ROM contents that is, then the

number of cores in the array is largely

arbitrary and is set by the simple

economics of the chip size as related to

the demands of specific applications for

processing power.

Chips laid out by simply replicating

cores makes them scaleable � if there are

not enough cores to do the job, pick one

with more. Additionally, many (but not

all) of the same structures available for

inter-core communications are also

available as cores communicate from

chip to chip. Accordingly, applications

can be scaled by adding multiple chips

to increase the number of cores,

memory, and I/O.

IntellaSys specializes in innovating multicore processor solutions that target embedded
applications requiring low-power operation, fast operating speed and a small footprint. For more
information visit: www.intellasys.net.

78

79

80

81

82

83

84

85

