
Typing Tools for Typeless Stack Languages

Jaanus Pöial

The Estonian Information Technology College
e-mail: jaanus.poial@itcollege.ee

Abstract. Many low-level runtime engines and virtual machines are
stack based - instructions take parameters from the stack and leave their
results on the stack. Stack language is a common name for several lan-
guages used to program stack based (virtual) machines - like CLR, JVM,
Forth, Postscript, etc. We chose the Forth language as an example to
represent the class of stack languages, partially because this language is
typeless, partially because there exists a big amount of industrial legacy
Forth code that needs to be validated.
Usually applications that take advantage of stack machines are mini-
malistic and designed to run on restricted environments like electronic
devices, smartcards, embedded systems, etc. Sometimes these compo-
nents are used to build safety critical systems where software errors are
inadmissible. Type checking allows to locate possible errors of stack usage
that most often occur in stack language programs. Limited resources give
preference to a static solution - run-time type information is expensive to
manage and quite useless in turnkey applications. Static type checking
is based on a type system that is introduced here for originally typeless
stack languages. This external type system is flexible enough to perform
several tasks. Static program analysis can be used both for finding er-
rors and performing useful transformations on programs (optimization,
parallelization, etc.).
In this paper a type system to perform the so called must-analysis is
described that allows to locate the stack language code where the strong
stack discipline is violated. Experimental implementation of the analysis
framework is written in Java.

Keywords: Type Systems, Stack Languages, Program Analysis

1 Introduction

Program analysis became popular in the world of embedded systems and safety
critical applications where more resources are used to avoid software errors than
in usual office software business. Many run-time properties of a program can be
estimated statically using some kind of abstract interpretation [1]. Good analysis
produces reasonable amount of warnings about suspicious passages in the pro-
gram, so the human programmer can check these lines and make improvements
to the software.

� Supported by Estonian Science Foundation grant no. 6713

Unfortunately, analysis can be very resource-consuming, in some cases even
small pieces of software embedded in some device take a lot of computing power
to analyze. Number of program states to explore grows very fast for precise
analysis, to keep it under control some approximation is needed to glue similar
states into a single one. On the other hand, the analysis still has to produce
valuable results.

The so called control flow graph of a program describes all possible execution
paths as a finite structure. The program state is coupled with the node (some-
times with the edge) of the control flow graph. The typical analysis problem is
“What is known about . . . in program point . . . ?”. There are two different kinds
of statements: first, when a property must hold for all possible execution paths,
and second, when a property may hold for some particular execution (there is no
guarantee that it does not hold). Sometimes the must-analysis finds less proper-
ties guaranteed than there actually exist, similarly the may-analysis sometimes
finds more properties than these that actually might hold. It is important to use
safe, conservative approximations, because a precise result in this area is usually
hard or impossible to compute.

Classical data flow analysis concentrates on memory - program state is de-
scribed via set of variables and analysis keeps track on variable usage and vari-
able updates. We can find out uninitialized variables, live variables, available
expressions, reaching definitions, very busy expressions, etc. Good introduction
to program analysis is made in book [2].

In case of stack languages the memory state is a secondary issue, it is more
important to check the usage of stack(s). For example, a common mistake is to
write alternative program branches with different stack effects (it is not easy to
discover this bug if some branch is hardly ever executed).

In this paper we introduce some new ideas on static analysis of stacks, these
ideas are partially implemented as a set of Java classes. Java is used as an
available multi-platform tool, we intend to use the existing Java API to produce
some Forth-targeted tools (like validator and editor that supports the strong
stack discipline).

The formalism is mainly used to give a precise definition to the rules that
Forth programmers know intuitively. On the other hand, it is a short way to
explain these more than thousand lines of code written to implement the basic
operations.

2 Typing rules

Original stack effect calculus is introduced in [3], related work by Bill Stoddart
and Peter Knaggs is published in [6], few other works are referred in [5]. From
the viewpoint of program analysis it is important to mention an attempt to
formalize multiple stack effects for control structures in [4]. This approach did
not lead to implementation of practical analysis tools, mainly because the sets
of stack effects grew fast and were costly to manage. Instead of asking “What
this program might do?” (interesting, but costly and impracticable question) we

now prefer to ask ”Why this program does not do what it has to do?” (locating
a suspicious passage).

The following framework is oriented to the must-analysis. There are theoret-
ical considerations to restrict ourselves to this type of analysis: the set of stack
effects as defined originally (polycyclic monoid) is a semilattice (each subset has
a greatest lower bound glb but does not necessarily have a least upper bound).
Only the subset of idempotents is a lattice (e is an idempotent iff e = e · e).

In this paper the derivation rules are used to express the composition and
glb of stack effects. There are two main constructs and one strong assumption:
1) composition (multiplication) of stack effects describes a linear segment of a
program,
2) greatest lower bound of stack effects describes merging of alternative branches
of a program,
3) body of a program loop is described by an idempotent stack effect (the stack
state does not change).

Let us introduce some notation for stack effects.

t, u, ... - possible types of data stack items.

t ≤ u - t is subtype of u (t is more exact) or equal to u

(subtype relation is transitive).

t ⊥ u - t and u are incompatible types.

ti - type symbol with wild-card index
(wild-card index i is unique for elements of ”the same type”).

a, b, c, d, ... - type lists that represent the stack state (top right).

s = (a → b) - stack effect (a - stack state before the operation, b - after).

1 - empty effect (no inputs, no outputs), top of lattice of idempotents.

0 - zero effect (error, type conflict), bottom of lattice of idempotents.

(a → b) · (c → d) - composition of two stack effects (defined later).

x, y, ... - sequences of stack effects.

y, where uj := tk - substitution of uj to tk

(all occurrences of uj in all type lists of sequence y are replaced by tk)
k is unique index over y.

(a → b) � (c → d) - glb of two stack effects (defined later).

r = �∗s - greatest idempotent r smaller or equal to s, zero is allowed
(r · r = r and r � s).

α, β, ... - sequences of operations (linear programs).

s(α) - stack effect of sequence α.

Rules for composition

These rules describe evaluation of sequence of stack effects. Whenever a type
clash occurs the result is zero. When two types (coming from different contexts)
for the same stack item are compared the more exact type “wins” and this
information is spread to whole evaluated part of the sequence (denoted by x).

x · 0

0

0 · y

0

x · (a → bt) · (cu → d),where t ⊥ u

0

x · (a → b) · (→ d)

x · (a → bd)

x · (a →) · (c → d)

x · (ca → d)

x · (a → bti) · (cuj → d),where t ≤ u

x · (a → b) · (c → d),where ti := tkand uj := tk

x · (a → bti) · (cuj → d),where u ≤ t

x · (a → b) · (c → d),where ti := ukand uj := uk

Example

Let us have the following toy type system that represents a fragment of the Forth
programming language:

a-addr < c-addr < addr < x

flag < x

char < n < x

Using these types and wild-cards we can introduce hypothetical stack effects:
DUP (x[1] -- x[1] x[1])

DROP (x --)

SWAP (x[2] x[1] -- x[1] x[2])

ROT (x[3] x[2] x[1] -- x[2] x[1] x[3])

OVER (x[2] x[1] -- x[2] x[1] x[2])

PLUS (x[1] x[1] -- x[1])

polymorphic ”plus”, arguments have to have the same type

+ (x x -- x)

@ (a-addr -- x)

! (x a-addr --)

C@ (c-addr -- char)

C! (char c-addr --)

DP (-- a-addr)

0= (n -- flag)

NOT (x -- x)

Now let us apply the rules to some example programs

OVER OVER PLUS ROT ROT PLUS !

evaluates to (a-addr[1] a-addr[1] --)

On the other hand, the following program has type conflict in it

OVER OVER PLUS ROT ROT PLUS C!

It is suggested to play with some more examples to understand how the rules
work (author also has an implementation for this set of stack effects).

Rules for greatest lower bound

To join the type information from different alternative branches of a program
we need an operation � of finding the least upper bound of finite set of effects.
As mentioned before, this approach does not work well. Instead, we formulate
a different problem - what are the weakest conditions to make all branches
equal? This problem can be solved using greatest lower bound operation �. We
approximate the branching control structure as a whole by glb of all the branches.

s � 0

0

r � s

s � r

If there exist type lists a1, a2, a3, b1, b2, b3, c1, c2, c3 such that for all elements
of the lists these subtyping relations hold element-wise

a3 = min(a1, a2)

b3 = min(b1, b2)

c3 = min(c1, c2)

then the following rule is applicable, in all other cases the result is zero.

(c1a1 → c2b1) � (a2 → b2)

(c3a3 → c3b3)

If a set of effects has a non-zero glb r then all effects in this set ”do the same
thing”, r is just the most exact description of it (having longest lists and most
exact types). In case it is impossible to force effects to be comparable (in sense
of finding a common predecessor for them) the glb is zero (zero is less or equal
to any stack effect).

We also introduce the following notation that is useful for loops:

�∗s = s � (s · s)

The result of this operation is an idempotent element that most precisely
describes the loop body s.

Example

ROT and @ from the previous example have glb

(a-addr[1] a-addr[1] a-addr[1] -- a-addr[1] a-addr[1] a-addr[1])

C@ and @ have glb

(a-addr -- char)

Rules for control structures

In [4] we introduced some rules for may-analysis like the following (we do not
reproduce all the rules here but just two most characteristic examples):

s(IF α ELSE β THEN)

[(true →) · s(α)] � [(false →) · s(β)]

s(BEGIN α WHILE β REPEAT)

�∗[s(α) · (true →) · s(β)] · s(α) · (false →)

These rules describe the semantics of control structures but are hard to use
for practical analysis. Informally, words IF and WHILE consume a Boolean flag
(the top of the data stack) to decide which branch to choose, other control words
are used as structure boundaries.

Let us introduce some new less exact rules in must-analysis style.

s(IF α ELSE β THEN)

(flag →) · [s(α) � s(β)]

s(BEGIN α WHILE β REPEAT)

�∗[s(α) · (flag →)] · �∗s(β)

These rules are quite strict about sequences α and β (violating the strong
stack discipline implies the zero effect).

Rules for other Forth control structures are similar to these above.

Example

A good exercise is to think about the program:

: test IF ROT ELSE @ THEN ;

What is the right analysis for this program? Is this program correct?
Hint: we already know the glb (ROT, @) from the previous example.

Another good example from [4] uses a while-cycle:

: test2 BEGIN SWAP OVER WHILE NOT REPEAT ;

test2 may loop forever in ”integer” world, in ”Boolean” world it is nearly
equivalent to

: test3 OR FALSE SWAP ;

3 Conclusion

Stack languages are used in embedded and safety critical system engineering
where the software testing often incorporates tools for program analysis. The
stack based approach induces the need for specific stack analysis methods. Type-
less nature of stack languages allured to create an external type system that
forms a basis for static type checking.

The rules introduced above allow finding such conditions that guarantee cer-
tain behaviour of the program when hold, but probably these conditions force too
strong stack discipline (no instructions with multiple stack effects, no branches
with different stack effects, no loops that grow or shrink the stack). On the other
hand, pointing to the spots where this discipline is violated might help a lot. We
already started a pilot project on implementing this analysis to validate some
industrial Forth legacy code.

References

1. Cousot P., Cousot R., “Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints,” 4th POPL, Los
Angeles, CA , ACM Press, p. 238 – 252, 1977.

2. Nielson F., Nielson H.-R., Hankin C., “Principles of Program Analysis,” Springer-
Verlag, 450 pp., 1999.

3. Pöial J., “Algebraic Specifications of Stack Effects for Forth Programs,” 1990
FORML Conference Proceedings, EuroFORML’90 Conference, Oct 12 – 14, 1990,
Ampfield, Nr Romsey, Hampshire, UK, Forth Interest Group, Inc., San Jose, USA,
p. 282 – 290, 1991.

4. Pöial J. “Multiple Stack-effects of Forth Programs,” 1991 FORML Conference
Proceedings, euroFORML’91 Conference, Oct 11 – 13, 1991, Marianske Lazne,
Czechoslovakia, Forth Interest Group, Inc., Oakland, USA, p. 400 – 406, 1992.

5. Pöial J. “Stack Effect Calculus with Typed Wildcards, Polymorphism and Inheri-
tance,” Proc. 18-th EuroForth Conference, Sept. 6-8, 2002, TU Wien, Vienna, Aus-
tria, p. 38, 2002.

6. Bill Stoddart, Peter J. Knaggs: “Type Inference in Stack Based Languages,” Formal
Aspects of Computing 5(4): 289-298 (1993).

