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Abstract

We examine the addition of Lambda expressions to Forth. We briefly
review the Lambda calculus and introduce a postfix version of Lambda
notation to guide our approach to a Forth implementation. The resulting
implementation provides the basic facilities of an early binding functional
language, allowing the treatment of functions as first-class objects, ma-
nipulation of anonymous functions, and closures.

1 Introduction

The Lambda Calculus was developed by Alonzo Church during the 1930’s as a
general model of computation [4]. The original motivation was to investigate
the notion of solvability [3], but the Calculus later formed a theoretical ba-
sis for functional programming. Recently there has been an interest in adding
“lambda expressions” to imperative languages. They are proposed for vsn 3.0
of C#, but are not yet part of the ECMA C# Standard[1] which does how-
ever, largely support their functionality through “anonymous methods”. The
Open Standards Working Group for C++ recently produced a discussion paper
”Lambda expressions and closures for C++”[8]. In this paper we discuss their
incorporation within RVM Forth [5].

The functional programming (FP) paradigm arises from the mathematical idea
of a function as a mapping from inputs to outputs; a procedure inside the
function (the “body”) operates on a variable to produce a return value in terms
of that variable. The variable is instantiated by an argument to the function’s
single parameter, and the return can be numeric or some other type, including
another function. In FP, therefore, functions are treated as first-class objects,
that is, having the same status as variables and constants; they can also be
arguments to functions, and manipulated as temporary anonymous objects.

While Forth does have some facilities to work with functions and operations
with the stack, using execution tokens and allowing vectored execution, it does
not provide the full generality required by the functional programming model.



Implementing a Lambda facility in Forth presents certain points of interest.
A consistent postfix syntax must be developed, and to guide our design we
have produced a postfix version of Lambda notation. The function objects
produced must be dealt with in a consistent way to maintain compatibility with
the abstract idea of the calculus, and the use of bound and free variables in
Lambda calculus has to be integrated with the use of stack-frame local variables
in RVM-Forth, requiring the provision of “closures” for dynamically-created
functions.

In the rest of the paper, we provide a brief introduction to Lambda Calculus, its
expression in postfix form, and the RVM-Forth implementation. We examine
the roles of local variables and their binding in Lambda calculus, and how this
can be integrated with a local variable system in a procedural language, such
that persistent bindings can be maintained despite them having originated in a
local context. Finally we review the ongoing project of which this work forms a
part. A more detailed view of our implementation techniques is included as an
appendix.

2 Lambda Calculus

2.1 Lambda Calculus

The general form for a lambda expression is:

λ < name > . < body >

In the above, <name> is the parameter or bound variable in the function —
lambda functions have a single parameter only. The process of substituting an
argument for the parameter in an application is known as β-reduction (shown
as β−→ ), which substitutes occurrences of the bound variable in the body with
the argument expression. Once thus instantiated, the variable cannot change
value.

The <body> itself can be anything from a simple operation on the variable to
other nested functions, including embedded function applications.

The simplest example would be the identity function:

λ x .x

which returns its argument; so

(λ x .x ) a β−→ a

For further examples, we allow the use of arithmetic operations1 So the func-
1Neither these nor numbers are initially present in the basic lambda calculus, which is

concerned with representing them in terms of more primitive substitution patterns.



tions:

λ x .x + 1
λ x .x ∗ x

would respectively increment their argument by one, and square it.

(λ x .x ∗ x ) 5 β−→ 5 ∗ 5 = 25 (1)

These examples all have a single bound variable in the body; variables in the
body which are not bound by the immediate lambda declaration are known as
free variables; these make little sense computationally unless they are in turn
bound by an enclosing function. In this example:

λ y .x − y (2)

the variable x is free. It may, however be bound by an enclosing function whose
body is (2):

λ x .(λ y .x − y)

This is the basic way to deal with two or more arguments in Lambda calculus.
The variable x has now become a local variable from an outer scope. We use
an eager evaluation approach which requires it to be instantiated before the
expression containing it is evaluated.

As regards application, parameters from left to right (i.e. outermost first) are
substituted by arguments in the same direction, thus in an application of the
above:

(λ x .(λ y .x − y)) 10 3 β−→ (λ y .10− y) 3 (3)

The first reduction, substituting 10 for x , now returns a function which subtracts
its argument from 10; here y would be substituted by 3 in the next reduction.

β−→ 10− 3 = 7

An argument may well be another function. The expression:

λ f .(λ y .f y)

is a function that applies any given function f to any given argument y , for
instance given the function λ x .x + 1 for f and the number 7 for y

(λ f .(λ y .f y)) (λ x .x + 1) 7
β−→ (λ y .(λ x .x + 1) y) 7
β−→ (λ x .x + 1) 7
β−→ 7 + 1 = 8



2.2 A Postfix Notation for Lambda Calculus

Function application in Lambda notation is usually shown by a bracketed func-
tion followed by an argument. Postfix will require the argument to appear first.
Conventional Lambda notation uses brackets to delimit the scope of a bound
variable, and for that we will use a specific endλ symbol. Finally conventional
Lambda notation uses brackets to control when a function is applied so it can be
taken from the stack, followed by a definition body or a symbol (defined earlier)
standing for it. However, this would not be automatically applied; an additional
symbol is required analogous to Forth’s EXECUTE. The symbol we use for this
is a tick ′ . This usage has a history going back at least as far as Principia
Mathematica, where the application of function f to an argument x is written
as f ′x .

We can now present some examples from the earlier section in an abstract
postfix notation, with the actual RVM-Forth code in the next section. We use
the notation infix ; postfix to show how the infix and postfix forms
correspond. Taking example (1), we have:

(λ x .x ∗ x ) 5 ; 5 λ x .x x ∗ endλ ′

The keyword endλ ends the anonymous definition; at this point it could be
assigned to a suitable variable, or applied, or left on the stack. The tick ensures
application. Instantiation of the variable x by 5 (beta reduction) now yields the
postfix expression “5 5 ∗”.

The nested definition example (3), runs thus:

(λ x .(λ y .x − y)) 10 3 ;

3 10 λ x . λ y .x y − endλ endλ ′ ′

Note that the arguments follow a stack order, first at the top. Above that is the
function, however, with outer and inner variables as yet uninstantiated. The
return value of the outer function will be the inner function with its unbound
variables bound.

The first tick will execute the outer definition (λ x ), which will instantiate x
(anywhere within scope) to the value 10 from the top of the stack:

β−→ 3 λ y .10 y − endλ ′

This leaves 3 and the inner function on the stack — now with its x bound to a
constant. The remaining tick executes this, instantiating y to 3, and returning
“10 3 −”.



3 RVM-Forth Implementation

3.1 Local Variables and Lambda Parameters

RVM-Forth already has a facility for local variables, with the syntax :

: <opname> ... (: VALUE <varname> ... :) ... nLEAVE ... ;

The value for the local is taken from the stack — it can be an argument to
the operation, or supplied by an expression within it. The keyword nLEAVE
(where n can be 0, 1, 2, or 3) specifies the number of values left on the stack
after the local environment goes out of scope.

As an example we have a program to calculate the greatest common divisor
of two numbers using Euclid’s algorithm, in which the smaller of the pair is
subtracted from the larger to give a new pair. This process is repeated until the
two numbers are equal:

: GCD0 ( n1 n2 -- n3, pre n1>0 & n2>0, post n3 = gcd(n1,n2) )
(: VALUE X VALUE Y :)
BEGIN
X Y <>

WHILE
X Y >
IF
X Y - to X

ELSE
Y X - to Y

THEN
REPEAT
X

1LEAVE ;

Values X and Y are initialised from the stack, X taking the value of n1 and Y the
value of n2. 1LEAVE specifies that just one item (the current top of stack) will
be returned.

Additional locals may be declared between the :) and the nLEAVE; they will be
initialised from the top of the stack, so suitable values should be found there.

For the lambda implementation this format is used to represent the parameter
for the lambda expression, instantiated from the stack.

As a matter of style, it might be noted that we use the same word VALUE for both
global and local variables, with the latter version being defined in a COMPILER
wordlist which is only searched when in Compile mode.



Arrays and pointers to arrays are implemented in RVM-Forth, and they also
have their local analogues. The declarations here for both global and local
are VALUE-ARRAY and VALUE-ARRAY^ (the full syntax is described in the RVM
Manual [5]. We present a brief example below, though not of a kind that one
would ever use. A global array is declared and initialised:

4 VALUE-ARRAY GLOBARR ( 4-element storage )
HERE 4 , 10 , 20 , 30 , 40 , to GLOBARR
.GLOBARR 10 20 30 40 ok ( Demo print defined offstage )

Next an operation is defined to reverse the elements in it. This has a local
pointer to the global array, and an internal local array into which the reversed
values are written, in a loop. Finally, the contents of the local array are copied
to the global one.

: AREV ( -- )
GLOBARR (: VALUE-ARRAY^ GRR :) ( points to GLOBARR )
size of GRR VALUE-ARRAY LRR ( empty local array )
size of GRR 1+ VALUE ASIZE ( loop size )
ASIZE 1 DO

ASIZE I - of GRR
to << I >> of LRR

LOOP
LRR to GLOBARR ( copy to global... )
0LEAVE ;

One would, of course, be more likely to use such a local array as a “safe” copy
of a global, to manipulate temporarily or ensure read-only access.

3.2 Syntax and examples

The Forth uses two keywords for the λ symbol itself. The word :LAMBDA opens
a definition at the outer level, that is, the system enters compile mode The
corresponding endλ to this is ENDLAM;. The basic form is:

:LAMBDA (: VALUE <name> :) <body> 1LEAVE ENDLAM;

So far this is just an alternative syntax for the Forth Standard :NONAME. How-
ever, lambda definitions may also appear within compiled code, where they are
bracketed with the LAMBDA and ENDLAM. They may be nested to any depth.

The simple example (1) from page 3 translates from the abstract postfix notation
as:

5 λ x .x x ∗ endλ ′ ;



5 :LAMBDA (: VALUE X :) X X * 1LEAVE ENDLAM; EXECUTE

When evaluated this will leave 25 on the stack.

The example where a function forms part of the body, (3) on page 3, provides
an illustration of binding from outside the function itself:

3 10 λ x . λ y .x y − endλ endλ ′ ′ ;

3 10
:LAMBDA (: VALUE X :)

LAMBDA (: VALUE Y :)
X Y - 1LEAVE

ENDLAM 1LEAVE
ENDLAM; EXECUTE EXECUTE

The fact that X is free in the inner lambda is unremarkable in a straightforward
execution such as this. However it is possible to name the inner function, using
the keyword OP. This picks up the name from the input stream and assigns it to
the execution token at the top of the stack, creating a global named operation.
Instead of the final line in the above code, we could, for instance, have:

... ENDLAM; EXECUTE OP MINUS

This gives us a named function which seems to refer to a variable X declared in
a now-defunct scope and relating to a stack frame which no longer exists.

What has happened is that the evaluation of the outer :LAMBDA has instantiated
the variable X to 10, so that when the inner lambda, i.e. the code:

... LAMBDA (: VALUE Y :) X Y - 1LEAVE

is evaluated, X already has a value, and this is what is copied in place of X
within the inner lambda definition.

A final example demonstrates embedded function execution within the body of
another function. The standard infix lambda expression:

(λ z .(λ y .y + (λ x .x + y ∗ z ) (y + z ))) 3 4

contains an embedded function application inside the λ y definition:

(λ x .x + y ∗ z ) (y + z )

in which the y and z will have been substituted by arguments by the time this
is evaluated. The expression as a whole converts to postfix lambda notation as:

4 3 λ z . λ y .y y z + λ x .x y z ∗+ endλ ′ + endλ endλ ′ ′



The second argument to the final “+” is provided by the result of the inner
function application

In RVM-Forth this becomes:

4 3 :LAMBDA (: VALUE Z :)
LAMBDA (: VALUE Y :)
Y Y Z +
LAMBDA (: VALUE X :)
X Y Z * +

1LEAVE ENDLAM EXECUTE ( embedded function application)
+ 1LEAVE ENDLAM

1LEAVE ENDLAM;
EXECUTE EXECUTE

The evaluation can be calculated “by hand” as follows:

“−→ substituting 3 for Z”

4 LAMBDA (: VALUE Y :)
Y Y 3 +
LAMBDA (: VALUE X :)
X Y 3 * +

1LEAVE ENDLAM EXECUTE
+ 1LEAVE ENDLAM

EXECUTE

“−→ substituting 4 for Y”

4 4 3 +
LAMBDA (: VALUE X :)
X 4 3 * +

1LEAVE ENDLAM EXECUTE
+

“−→ substituting 7 for X; definition immediately compiled and executed, which
evaluates 7 4 3 * + as second argument to final +”

4 19 +

Leaving 23.



3.3 Stack Frame Locals and Bindings

We see that the compilation procedure for local lambda definitions differs from
normal procedure in the way it treats local variables declared outside the scope of
the definition. Instead of being compiled to access the value from the associated
slot in the current stack frame, a reference to this outer scope local is compiled
initially as a push of some dummy value. The location of the data field for
the push and the frame stack slot are recorded in a “bindings table”. When
execution reaches the local operation, these dummy values are replaced by the
current values of the local variables referenced.

This process is known as “closure”. The original variables cannot be assigned
to from inside the resulting operation. The execution token thus produced must
remain permanently viable. Since the code that produced it could be executed
many times with different instantiations of any outer scope local variables, the
execution token cannot point to the original compiled code for the operation,
but must reference some relocated code2, which embodies the particular closure
that has been formed.

This relocated code could have been kept on the heap, but as heap space tends
to be non-executable in modern configurations, it’s kept instead in a separate
area in the RVM’s code space — and managed as a stack. This simplifies
the management considerably, and also simplifies garbage collection (using the
history stack) on reverse execution.

3.4 Closures and Local Operations

Moving beyond a purely functional approach in which Lambda expressions have
no concept of state, we can use the technique of closures (i.e. instantiating
outer scope locals by their current value) to define words which interface to
data objects such as counters, stacks, or queues. These can use named local
operations to provide persistent access to the data area created by the main
operation.

The defining word OP encountered earlier in section 3.2 has a local analogue,
also called OP, which is defined in the COMPILER wordlist and names operations
local to an enclosing operation. The kind of local operations we now consider,
however, must retain global scope, and are therefore named using the keyword
FORTHOP. This is defined in the COMPILER wordlist, but is otherwise identical to
the global version of OP.

In the stack example which follows, both the stack pointer and stack data
area are declared as instance variables; respectively, as INSTANCE-VALUE and
INSTANCE-VALUE-ARRAY. These are references to reserved space on the heap,
and ensure that each created stack has its own independent pointer and data.

2RVM Forth is a native code Forth which has an option to compile relocatable code, as
required here



: BUILD-STACK ( n --, n is size of stack, leaves tokens for push,
pop, depth and clear)

(: VALUE STACKSIZE :)
0 INSTANCE-VALUE SP ( the stack pointer, 0 for empty stack )
STACKSIZE INSTANCE-VALUE-ARRAY STACK ( the stack body )
LAMBDA ( x --, push )
SP STACKSIZE = ABORT" Stack full"
SP 1+ to SP
to << SP >> of STACK

ENDLAM FORTHOP
LAMBDA ( -- x, pop )
SP 0 = ABORT" Stack underflow"
SP of STACK SP 1- to SP

ENDLAM FORTHOP
LAMBDA ( -- n, depth of stack )
SP

ENDLAM FORTHOP
LAMBDA ( -- , clear stack)
0 to SP

ENDLAM FORTHOP
0LEAVE ;

This code leaves four execution tokens on the stack; the keyword FORTHOP picks
up the names from the input stream, so they would typically be created and
named in the same line:

4 BUILD-STACK PUSHA POPA DEPTHA CLRA
4 BUILD-STACK PUSHB POPB DEPTHB CLRB

The stacks themselves are anonymous, the named operations being the interface
for each stack (A & B); these remain persistent, and operate on the data relating
to their own stack.

Unlike the outer scope variables referred to earlier, which were declared with
VALUE in their stack frame, the stack instance variables for pointer and data can
be altered by the lambda operations.

Some sample runs and error checks:

10 PUSHA 20 PUSHA 30 PUSHA 40 PUSHA ok
DEPTHA . POPA . DEPTHA . 4 40 3 ok
5 PUSHB 15 PUSHB 25 PUSHB 35 PUSHB ok
45 PUSHB Error: PUSHB
Stack full
reported at BUILD-STACK in file lamstack.r line 6
DEPTHB . 4 ok ( error leaves data intact )
POPB . 35 ok



CLRA DEPTHA . 0 ok ( clear the first stack )
POPA Error: POPA
Stack underflow
reported at BUILD-STACK in file lamstack.r line 11

4 Conclusions and Further work

We have converted the standard Lambda Calculus into a postfix form and im-
plemented it in Forth in order to extend the latter’s Functional Programming
capabilities. Along the way we have seen how the issue of bindings for lambda-
style variables can be reconciled with the use of local variables in a procedural
language, to provide persistence when execution scope passes beyond the orig-
inal local scope. Also we have described an extension to this using instance
variables to enable locally defined lambda operations to function as a global
interface to an anonymous data structure.

The work reported here is part of a more general programmme of research
in which we are seeking to exploit reversible computations to provide a more
expressive implementation level language [6] for the the B Method [2] and similar
formal development methods [7]. RVM Forth is a reversible version of Forth
designed as an implementation platform for such methods. These methods
typically provide a very expressive “specification” language in which to describe
what a program is required to do. This language, which would generally include
Lambda expressions, is not directly executable, and the developer must write
the corresponding “implementation”. This must then be proved correct with
respect to its specification. Integration of the implementation level features
described in this paper will allow Lambda expressions to be incorporated into
the implementation level of a formal development, along with the features we
have reported in previous articles, such as backtracking, general implementation
of sets and automatic garbage collection on reverse computation.
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Appendix: A more Detailed View of the Implementation
of Closures

When execution reaches ENDLAM, an execution token for the corresponding op-
eration is left on the stack. A local variable declared before the local operation
and used within it is treated in a special way. It is not possible to assign to it
within the local operation, but it is possible utilise its current value. Instead of
being compiled (as would normally be the case for local variables) to access the
value from the associated slot in the current stack frame, a reference to such an
“outer scope” local is initially compiled as a push of some dummy value, and
the location of the data field for the push and the frame stack slot associated
with the variable are recorded in a “bindings table”. When execution reaches
the local operation these dummy values are replaced by the current values of
the local variables in question; this process is known as “closure”.

The execution token produced in this way must remain permanently viable.
Since the code that produced it could be executed many times with different
instantiations of any outer scope local variables, the execution token cannot
point to the original compiled code for the operation, but must reference some
relocated code which embodies the particular closure that has been formed. An
obvious place to hold such code would be on the heap, but since there is a
growing tendency to configure heap space as non-executable we choose to use a
separate area within the RVM’s code space. It so happens that we can manage
this area as a stack rather than as a heap, and this simplifies this aspect of
our implementation considerably. The dynamic code area is managed by the
ANONCP pointer, code is pushed to this stack by PUSHCODE, which also primes the
history stack so that the memory utilised will be released on reverse execution.

We have now introduced all the elements required for an implementation of clo-
sures, and the next stage is to describe the form of the compiled code generated
from an anonymous operation, let’s say LAMBDA S ENDLAM. The compiled code
is as follows:

| jmp | offset | btp | code for S | push code addr | PLUG | XT |
| |
------------------------



The code begins with a jump which passes control past the code for S to code
which pushes the address of the code for S onto the stack. This branch is followed
by a pointer to the binding table for S and the code for S itself. Immediately
following the push code address, we see two compiled operations, PLUG and XT.

PLUG has signature ( xt – xt ). It takes the address of the code for S and uses this
to locate the binding table. It then writes in the actual values of any outer scope
locals used in S into the reserved slots in the code, thus forming the closure.
PLUG also leaves the address of the code for S still on the stack. XT has signature
( xt1 – xt2 ). It relocates the code for S to the dynamic code area and leaves
its new execution address as xt2.

The bindings table used for the evaluation of a local operation S exists on the
heap and records all local references in S that are declared before LAMDA, i.e.
all locals declared in an outer scope. For each such reference we record in the
bindings table:

• the address within s to be instantiated, held as an offset from the start of
the operation,

• the nesting level of the LAMBDA..ENDLAM construct;

• the slot number of the local within its stack frame.

The bindings table entries follow an entry count which is held in the first cell of
the table.

The binding table is built during the compilation of the anonymous operation’s
definition, at which time the address of the binding-table-ptr entry for the func-
tion is held on a dedicated stack. Entries may be pushed to or popped from
this stack with >ANON and ANON>. The use of such a stack is required to support
the compilation of nested LAMBDA .. ENDLAM structures. Space for the table is
requested by LAMBDA and the table is resized by ENDLAM.

When compilation encounters a local variable within a local operation, it must
decide whether the instance is an outer scope local. To allow this to be done
we maintain a process value DLEVEL which holds the current nesting level of
a local operation. When a local variable is declared within a local operation
its nesting level is recorded as an entry within its parameter field. When the
local variable is subsequently encountered, its declaration time nesting level is
compared with the actual nesting level recorded in DLEVEL. If it is less the local
is an outer scope local. DLEVEL also serves to record when compilation is within
a local operation, and this is used to select compilation of relocatable rather
than absolute code.


