
IntellaSys Corporation
10080 N. Wolfe Road, Suite SW3-190

Cupertino, CA 95014
voice 408-446-4222

fax 408-446-5444

Defining Processing Solutions
 for Mesh Computing Environments

David Guzeman, Chief Marketing Officer,
 IntellaSys Corporation, Cupertino, CA

Over the years the concept of mesh
computing networks – the so-called sea
of processors – has held a fascination for
computer scientists and silicon jockeys
alike. Everywhere you look, there are
potential applications that lend
themselves well to a computing
environment that consists of anywhere
from a handful to thousands (or even
millions) of small processing elements.
In this paper, we will consider a few of
these applications and the implications
they have on the computing elements
that drive them.

Sample Applications
When considering mesh computing
networks, it is important to recognize
that there is a tremendous scale of
applications being served, both in terms
of the complexity of processing that
must be done at each node, and in the
total number of nodes involved.
Following are a select number of
applications that together provide insight
into creating the ideal processing
solution for mesh computing
environments.

Wireless Home Theater
Systems
A mesh computing environment need
not be large to deliver significant
benefits. One of the smallest examples

of mesh computing is one that would not
normally even be thought of as a mesh
network, namely the home theater
system utilizing wireless speakers.
Wireless speakers are just beginning to
appear on the market but are currently
limited to the “rear” effects speakers
where cables tend to be the most
burdensome to route and install.
However, there is no reason why all of
the speakers cannot be handled
wirelessly wherein the number of remote
nodes is at least six and may be more. In
the case under consideration, audio
information is transmitted digitally over
a wireless link from the Audio/Video
(A/V) receiver to the six speakers which
decode the audio signal and drives the
powered speakers.

Properly designed, the same computer
chip can be used both at the A/V
receiver to encode the audio into 5.1
surround sound format and to digitize it
and transmit wirelessly AND at each of
the speakers to receive, convert to
digital, decode it, and convert it back to
analog to drive the powered speaker.
Moreover, all the nodes can be made bi-
directional, meaning the speakers can
also transmit back to the A/V receiver.
This would allow all sorts of auto-
calibration to take place as well as other,
complex signal processing. In this case

2

then, the mesh network would consist of
seven nodes, one at the A/V receiver and
six at the speakers. All would be
symmetric in the sense that they share
most or all of the same hardware.
Likewise the speaker nodes would be
identical in that they all share exactly the
same computer code. While all speakers
would receive the entire bit stream, each
speaker would simply extract the audio
information for that specific speaker.

Here we see one of the common
elements to this class of mesh network,
i.e., many of the nodes are totally
identical and differ only in physical
placement or geographical location.
Others function as “servers” in that they
provide data to the mesh and extract
information back out of it. The
placement of the nodes on the mesh is
somewhat arbitrary. There is no logical
difference, for instance, between the left
and right speakers, other than they have

identified themselves as
left and right and are
extracting the audio stream
for the left and right
respectively. The operator
could push a button on the
A/V receiver and switch
left and right without
moving or reconnecting
any cables.

At the same time, this
system differs in one way
from what we would
normally think of as a
mesh – the highly defined
routes that all emanate
from one node and connect
the others. It wouldn’t
make much sense, for
instance, for the A/V
receiver to send all of the
data to just the subwoofer
and have it then pass on
data to the others. We

have included the home theater system
as an intriguing example of the
unexpected places these networks can
turn up when you’re given inexpensive
and very flexible node computing
elements.

Sensor Driven Networks
There are many applications consisting
of various types of sensors connected to
local computing elements that are then
interconnected in a mesh that serves to
monitor and collect data from the
sensors. On a small scale, a home
security network fits this description.
On a larger scale there are many
scientific studies monitoring wildlife,
ecological conditions, weather, or even
earthquake fault zones. Today solid
state sensors come in a wide variety that
can monitor many types of phenomena,
from the presence of specific gases to

Wireless A/V Distribution System

Digital Bit
Streams

TVA/V Receiver

Intelasys
ADM

DVD Player

Smart
Spkr

Smart
Spkr

Smart
Spkr Smart Spkr

Smart
Spkr

Smart Spkr Digital Bit
Streams

3

accelerometers measuring and detecting
motion, as well as the obvious ones for
tracking temperature, light, humidity,
etc.

Once again the placement of the nodes
on the mesh may be very arbitrary. In
the case of the home security system
there is no need to know the mesh route
to any particular sensor as long as that
sensor provides an ID as it sends along
data. In the case of the earthquake
sensors, of course one arrangement
would have the sensors placed in
predetermined spots on the mesh, while
another solution would be to let the
nodes acquire and transmit their GPS
coordinates along with their data. This
second configuration is extremely
flexible and has the advantage that it is
much easier to set up and maintain. It is
almost always critical that the mesh
know the location of the nodes so that as
data is acquired by those nodes it can be
organized and acted on. That location
can initially be determined by either
setting it into the node (as in the case of
a thumbwheel switch) or having the
node identify itself in some way.

One of the other characteristics of this
class of mesh networks is that nodes

should be able to be added or removed
casually without having to reconfigure
or reprogram the system. Whereas in the
home theater environment, new speakers
are added very infrequently, in a mesh of
scientific sensors or even in the home
security network, adding new nodes
should be trivial and easily done by
untrained personnel.

Traffic Light Controllers
Who has not cursed the absurdity of the
American traffic light system extant in
most cities where each light operates
independently of all others, oblivious to
the traffic conditions at neighboring
intersections to say nothing of the
obvious traffic conditions at the prior
intersection? To state the obvious:
“Why am I stopped at a red light when
there is absolutely no traffic coming the
other way?”

Most people, when contemplating this
system, picture the incredible
improvement that could be brought to
bear by a central computer located
somewhere “downtown,” monitoring the
conditions at all of the intersections and
by some clever algorithm controlling the
traffic lights to maximize traffic flow
and minimize our blood pressure. But
as delicious as this fantasy is, consider
that nothing as complex as a system
“downtown” is needed.

What is actually needed is a modicum of
intelligence at the traffic signals
themselves. First of all, being aware of
the conditions at the intersection would
make a staggering improvement for most
of us fighting our way through city
traffic. But extending this to include
knowledge of what’s going on at
neighboring intersections greatly
improves the ability to handle traffic
even more. Indeed, what is needed is
not central intelligence, but a little bit of

4

distributed intelligence. Sounds like a
job for mesh computing.

Traffic light control is actually a
compelling example of a mesh network.
Hundreds of nodes, each doing some
local processing while talking to the
nodes at neighboring intersections. And
the computing element does not need a
magical algorithm to create the perfect
traffic flow, whatever that is anyway. It
only needs to improve it a bit to make a
big perceived difference. If the node
knew when its neighbor was changing
the signal and sending traffic its way,
and what speed limit and distance was, it
automatically knows when it will be
getting a new batch of cars to process.
Even simpler, at the time the system is
installed someone could simply get in a
car and drive the distance to that
neighboring intersection and plug that
parameter in.

Notice that we’re making no attempt to
understand the traffic conditions across
the entire city, just the conditions at the
neighboring intersections, a much
simpler task. That also means there’s no
need to string cables across the city
either. Each node only has to be
connected to the neighboring nodes, and
for that, wireless is fine. If you’re
concerned that interference on the
wireless link might cause serious
problems, even accidents, remember that
all we need is to be sure the link data is
valid. If not, we can always resort to
just analyzing the conditions at our
intersection and that alone would be a
giant improvement over what we have
now.

And since this is about improving the
system, let’s see what else we can do to
smooth traffic in our cities. First, there
is a new fad in our major cities of adding
video cameras to catch people running

red lights. This effort has been driven
by accidents in the intersections with
people running the light as it changes,
and the resolution has to be sufficient to
read license plate numbers. Why not
control the camera with the node
computer to eliminate the need to save
video of empty intersections. The
computer could certainly analyze
whether a car is actually in the
intersection during the transition period,
and if not, discard the video. What if
there IS a car there? Then video could
be sent to the adjoining node to see if the
same car speeds through the next
intersection as well. In this way you get
a record of the bad offenders and
hopefully you do something about it.

Of course with a camera operating at the
intersections you get all sorts of data.
You know how many cars are passing at
what times, how many are in which
lanes, how many turn, etc. – a complete
profile of the traffic at that intersection
every day. And each night the data is
rippled across the city, from signal to
signal, until it arrives at some central
collection point – perhaps the uber
lighten in front of city hall.

To Catch a Terrorist
Imagine a computing node on the mesh
consisting of a powerful computing
element, an accelerometer sensor for
detecting motion (footsteps), a GPS
geoposition chipset to determine the
exact position, and perhaps even audio
and video sensor/cameras. Now let them
communicate wirelessly in a mesh
network. Could you build them for
$1,000 each? In a heartbeat! More like
$100 or less. But stick with the $1,000
figure a minute. Make a million of
them! Now fly over Torra Borra and
dump them from an aircraft, much the
same way the US Navy dropped

5

sonobuoys from a P3 Orion to detect
submarines. Imagine a million nodes on
a mesh network that knows, through the
GPS, where the nodes are, and can
organize itself, that can talk from node to
node, and pass data, images, and audio
across the mesh, back to a control point.
Total cost = $1 billion. A lot of money
but it would tell you about every living
thing that crosses the area, man or
animal, and send images back of the
transient. One thing that is common to
all mesh networks is the way the nodes
talk among themselves. Here’s an
imaginary conversation:

“Tell the humans the battery on node
54321 is running low and really should
be replaced”

“I hear something. Sounds human”

“Good gosh, it’s a tall dude in a white
robe… here’s some images of him…
pass the word along. Node 1583 – he’s
moving your way, pick it up”

Fanciful? Sure, but practical? Yes!

Mesh Node Characteristics

Low Node Cost
As the number of nodes in the mesh
increases, it is generally important that
the cost per node is relatively low.
Obviously users want the per node cost
to be as low as possible, but in mesh
networks the practicality of the mesh
solution is frequently dictated by the
node cost. This implies very small,
inexpensive chips that are highly
integrated and require little in the way of
supporting silicon chips to complete the
node.

Node Independence
A second mesh node characteristic is the
high degree of independence each

individual node has. Many mesh
networks have intermittent and
infrequent data transmissions from node
to node, so that for the majority of the
time they are working on their own.
Additionally, reliability of the entire
system dictates that the nodes continue
to operate even in the absence of
communication with the other nodes.
Thus if the network route breaks down,
the show goes on! There are two
corollaries of this node independence:

1. Absence of Central Operating
System

If the nodes are to be truly independent,
it means there cannot be a traditional
central operating system. Nodes might
be directed to enter a specific mode or
go to a particular state in a state
machine, but once that’s done they
should continue to operate in that mode
or state until directed otherwise.

The absence of a tightly-coupled
operating system also means that you
cannot count on all of the nodes being in
the same state at the same time – some
will simply get the word later than
others, hopefully in a well designed
mesh, close to the same time but not
instantaneously.

2. High Computing Power at each
Node

With node independence, each node
needs to handle its own computing needs
locally. In the case of sensor driven
networks, the nodes frequently need to
process and filter a continuing stream of
data from the sensor without passing on
every data bit to the network.

In some applications, the system is only
practical IF the nodes are staggeringly
fast computers. In something as simple

6

as wireless home theater speakers, the
node at the A/V receiver has to do a full
5.1 surround sound encode and deliver
that as a bit-stream to the speakers over
wireless links, which it is actually
implementing at the same time. And the
computing elements at the speaker nodes
have to be able to monitor that bit-
stream and extract the appropriate data
for their specific speaker. Ideally, these
node computers would also perform the
A/D and D/A conversions digitally as
part of their programmed tasks.

Consider the case of a node that must
monitor and process the output of an
accelerometer to determine, for instance,
if the vibrations it’s picking up are
caused by human presence. At the same
time it’s processing data from the
accelerometer, it may be required to
service a CCD camera encoding the
image into a JPEG format, at the same
time it is recording sound and
compressing that data into an MP3
format, at the same time it is monitoring
data on the mesh network, and in this
case, sending its own data stream of
vibrations, MP3 and JPEG multimedia,
out onto the mesh. Such tasks are
beyond the ability of conventional
microprocessors, which is why it makes
sense to pack dozens of high-speed core
processors onto a single chip, each core
executing one high-level instruction
every nanosecond.

Real Time Requirements
As the example we just discussed
demonstrates, the nodes must be able to
handle multiple tasks simultaneously.
Especially in the case of audio, listeners
are extremely critical to delays and gaps
in audio streams. In many real-world
applications, it is not enough to handle
multiple tasks simultaneously, but they

must be handled within tightly defined
time slots as well.

Microprocessors have traditionally
managed this through a combination of
interrupts to inject the real-time element,
and a system of round-robin processing
of tasks wherein each task is processed
for a certain period before the processor
moves onto the next. As long as the
processor is fast enough and the data
input stream is slow enough, this
approach gives the appearance of
simultaneous task handling.

Over time, this has become more and
more difficult, partly due to the ever
increasing complexity of the tasks
themselves and the growing tendency for
these tasks to be multimedia in nature –
i.e., sound and images.

Another issue, however, has been the
direction of microprocessor design itself.
Market pressures have moved those
designs more and more in the direction
of PC and server CPUs. And one of the
basic weapons in the arsenal of the CPU
designer has been that of cache memory.
Much of the increased speed of today’s
microprocessors has been gained by
larger and more efficient instruction and
data caches designed to minimize the
accesses to external memory or in the
worst case, to slow-running disk drives.
But caches are the enemy of real-time
processing because they make the
processor non-deterministic. Indeed,
you cannot guarantee processing time of
any given code segment because of the
interference of the cache. Code executes
at one speed when it’s in cache, but the
first time it is encountered it must be
fetched from external memory, which
adds significantly to the execution time.
A similar issue occurs through the way
modern processors try to predict the
outcome of jumps and forks because

7

they add to the non-deterministic nature
of the execution time.

Some processors attempt to solve the
non-deterministic issue by incorporating
two processors on the same chip with the
idea that one would be dedicated to real-
time processing while the other would
handle operating system issues that are
at the heart of cache problems. But this
is frequently not enough, since as we’ve
seen the computing node may be
handling many tasks at once and you
still have the issue of only having one
processor to round-robin those tasks.

These issues can be resolved by simply
putting dozens of core processors on
each chip so that each of those tasks gets
its own dedicated processor, or in some
cases a half-dozen or more. Since each
task is being handled by a dedicated
processor(s) there is no longer the
illusion of simultaneous processing –
you have true simultaneous processing.
This also solves the issue of interrupt
latency. At the heart of all of these
multi-tasking processor solutions is an
interrupt clicking off time slots. As each
interrupt occurs, the processor has to
save the state of its registers and any
task-related data in the process of being
changed. The same thing happens in
reverse when the task represented by the
interrupt is completed, since the registers
and data must be restored. The time to
do that round trip is called interrupt
latency, and it sets the minimum
granularity of the real-time process…
the minimum time that can be allotted to
each task, even if there is no cache or
predictive issue involved. A much
simpler solution would be to have each
task be handled by its own dedicated
processor, thereby eliminating the need
for interrupts and hence eliminating
interrupt latency.

Local Memory Requirements
In simple, single-processor applications,
we rarely think much about the memory
other than to be sure there’s enough.
But as multiple processors are brought
onto a single chip, the question of how
to access memory comes into play.
Generally, chips with several processor
cores share some memory, either on-chip
or external. Sometimes they even share
a cache memory as well, which of course
resurrects all of the non-deterministic
issues associated with cache hits and
misses. But even without the cache, if
the only memory for the core processors
is a common store on the chip, then there
has to be some mechanism for
arbitrating access to it as the processors
fight to get data and instructions. That
arbitration can be complex at best, and at
worst can make the chip, once again,
non-deterministic as well as creating a
tremendous performance bottleneck.

This problem can be solved with the
simple expedient of giving each core
processor its own memory, both ROM
and RAM, in sufficient quantity to
enable most tasks to be executed totally
from local core memory. No shared
memory means no memory arbitration,
full deterministic execution, and no
performance bottleneck.

Low Power Requirements
Power requirements for mesh nodes vary
greatly depending on the nature of the
mesh and the application. Certainly in
our example of the wireless home theater
system, there’s plenty of power available
to run the node computer chip. But
many of these mesh applications place
the nodes remotely and require battery or
even solar power to run them. That’s
certainly true of sensor driven mesh
networks collecting data in the field, for
instance. In some cases, the cost of the

8

power may exceed the cost of the node
computer, so that anything to reduce the
power consumption of the chip translates
directly into cost savings.

Unfortunately high computing power is
normally associated with high power
dissipation. Simply put, the faster chips
run the more power they dissipate during
the charging and discharging of
hundreds of thousands (or millions) of
various parasitic capacitors associated
with the transistors, the metalization, etc.
This situation is at its worst when chips
are designed with large, central clock
trees where a majority of the nodes are
driven synchronously.

This problem can be addressed in two
ways. First, all of the core processors
are totally asynchronous relative to each
other – there is no central clock tree, or
for that matter, no chip clock.
Processors run as fast as native silicon
allows, and they are naturally out-of-
phase reducing the number of nodes
being charged/discharged at any given

instant. Second, the processors only run
while they are doing work. That is,
whenever they’re waiting for data, either
sending or receiving, they come to a
total stop. There are literally no nodes in
a waiting core processor that are being
exercised, and since at any given instant,
most of the core processors are in this
waiting state, power is automatically
reduced to the bare minimum, essentially
just leakage current.

The Ideal Multicore Solution
By now we’ve already described many
of the key points of the ideal multicore
processor solution. Pack dozens of core
processors on a single chip, each core
with plenty of local RAM and ROM, and
let them run asynchronously to increase
speed and reduce power. Use these
cores to address specific tasks so there is
no interrupt latency or problem with
trying to force a single processor to
multitask. Make them very low cost,
and the result is ideal for mesh networks
in a wide variety of applications.

IntellaSys specializes in innovating multicore processor solutions that target embedded
applications requiring low-power operation, fast operating speed and a small footprint. For more
information visit: www.intellasys.net.

