
IntellaSys Corporation
10080 N. Wolfe Road, Suite SW3-190

Cupertino, CA 95014
voice 408-446-4222

fax 408-446-5444

A 21st Century Sea Change Taking Place in Embedded
Microprocessors

David Guzeman, Chief Marketing Officer,
 IntellaSys Corporation, Cupertino, CA

It has been 30 years since the 8048/8051
microprocessors appeared on the market
and changed the world’s view of what an
embedded microcontroller should look
like. Over the years, each new
microcontroller has tended to follow that
basic architecture, adding improvements
at each step in order to stay in step with
the increasingly demanding applications.
As long-lived and important as that
original architecture has been, it is now
time to embrace a new multicore
architecture, one designed from the
ground up to handle the applications of
the 21st century. In this white paper, we
will discuss the sea changes in
architecture design that are being driven
by demands for higher operating speeds
and lower power dissipation.

20th Century Applications
The typical application from the 20th
century used an 8-bit microcontroller – a
bit banger – that could read sensors, do a
small amount of data processing, and
then drive some I/O lines, probably
parallel, in order to send characters to a
display or record a data byte onto tape or
some other data logging device.
Additional I/O lines could scan a simple
keyboard or set of switches, and the
whole thing could be driven within time
constraints by an on-chip real time clock
that could provide precise timing

references to sync data transfers, and
perform other time-driven tasks.

These applications used only a small
amount of memory, perhaps 64 to 256
bytes of RAM, and most of that was
integrated on the chip. Although
provisions were made to access external
memory as well, this was initially a
primitive interface consisting of just an
address and data bus and relied on the
processor to read and move data in and
out of external memory under software
control.

Thus the emphasis was on controlling
I/O within tight time constraints with
very little actual data manipulation done
by the processor chip. That’s fortunate
because the processor was extremely
limited in its data processing capability
anyway and was very slow running at
clock rates of a few Megahertz. As
limited as these chips were, they were
sufficient to control countless simple
applications ranging from wall
thermostats to simple home automation
systems. In fact, at this moment I’m
typing this paper on a recently
introduced laptop that uses a derivative
of that original 8048 chip for the sole
purpose of reading keyboard clicks.
Over time, processors were introduced
that were even smaller with less

2

capabilities that sold for, presumably
lower prices. At the same time, others
came out that were more advanced, both
16 and 32 bit versions, and with much
faster and more sophisticated external
memory interfaces using DMA
controller circuitry. Still, the basic idea
has remained the same. One or two
processors on a chip, reading data from
input lines and sending data to output
lines, and wiggling I/O control pins as
appropriate… all to the metronome of an
external reference real time clock.

Consumer Electronics is
Driving 21st Century
Applications
But now the nature of the applications
has changed dramatically. In addition to
the traditional real time bit banging, a
new dimension of processing capability
has been added – the processing of
algorithms. Today the high-volume
applications are multimedia consumer
aps that range from tiny MP3 music
players to cell phones with video
capability. Moreover, the long awaited
avalanche of high-definition televisions
has begun, and along with those
televisions, consumers are suddenly
perceiving the need for home networks
that move video and music from room to
room.

Multimedia Capability
All new consumer applications have
digital data at their heart, and that
implies extensive digital signal
processing in any device that displays or
plays that data. The various file formats
for multimedia have been carefully
designed with an eye toward digital
processing by using mathematical
algorithms – Fast Fourier Transforms
(FFTs), discrete cosine transforms
(DCTs), and so forth. The high
bandwidth required to serve multimedia

applications requires that 21st century
processors have dedicated circuitry for
processing those algorithms. But at the
same time, none of the earlier
requirements for general purpose I/O
and real time clocks has gone away.
New chips must handle both!

Bitstream Orientation
Whereas earlier processors viewed
external memory as the source and
destination of applications data, modern
processors must be able to operate with
high-speed bitstreams of data arriving
from the internet, USB and 1394 cables,
as well as cable and satellite television
services. The USB 2.0 interface, now
nearly ubiquitous on consumer products
such as cameras, MP3 players, and even
cell phones, requires up to 480 mbit/sec.
The 1394 interface is commonly used in
video applications and comes in
200/400/800 mbit/sec rates. Even
gigabit Ethernet is beginning to appear
in homes with even higher data rates yet.
Today’s processors have to deal with
these data rates, all of which are
staggeringly fast by 20th century
standards.

To make matters worse, the new High
Definition Audio-Video Network
Alliance (HANA) standard for home
networking assumes up to FOUR 1394
bitstreams that may reach 800 Mbit/sec.
And MP4 formatted data assumes
multiple bitstreams for audio and video
plus optional additional streams for
things like subtitles and still images. In
many cases, the same processor that is
decoding the MP4 bitstream from a
buffer memory must also handle the
incoming bitstream as well, so that as
many as four or five of these high-speed
bitstreams must be handled at once.

3

Fast External Memory Interface
With requirements for fast data are
mapped over to the external memory as
well, the days when the processor only
needed to address a few hundred bytes
of data are long over. Today, some
specialized processors aimed at video
applications, for instance, must be able
to handle 128 Mbytes of DDR SRAM
memory. While it is relatively easy to
implement larger address ranges on a
processor chip, the speed of these
memory interfaces is now critically
important. The large address space
translates into many pins on the
processor dedicated to the external
memory interface. The fact that there
are multiple bitstreams required for
many of these applications means that
there must be an easy way to quickly
switch the address bits on the memory
interface. Most modern processors use
full-blown DMA (direct memory access)
controllers for this interface – typically
three of them. Some even go the extra
step of allowing indexed addressing in
the controller. That’s convenient, for
instance, when the device is fetching
multi-byte vectors from memory.

Low Power Dissipation
Many modern consumer devices are
battery operated. The high processing
load, combined with a display, and
sometimes even a disk drive, place a
heavy load on the batteries in these
devices. As a result, power is at a
premium and the processor itself must be
capable of low-power operation to
maximize battery life. Of course, low-
power does not normally go hand-in-
hand with high processing speed, so this
represents a serious design tradeoff.

21st Century Multicore
Processor Architecture
Changes in the nature of applications
clearly require corresponding changes in
the processor chip’s architecture. For
instance, the need for multimedia
capability requires special high-speed
arithmetic circuits. And the need for that
high-speed processing has led chip
designers to add core processors to the
chip so that those tasks that require real
time processing can be run on one core
while the other tasks can be run on a
second core.

Multiple Processor Cores
The approach of trying to segregate the
tasks into two groups – real time and non
real time – fails for the simple fact that
in modern applications MOST of the
tasks have a real time component to
them. Simply put, multimedia
applications are driven by high-speed
computing elements that are racing to
complete their algorithms within a tiny
slice of time before the next batch of
multimedia data arrives. Failure to do so
means there is a gap in the music or a
glitch in the video.

Recent trends have been to incorporate
one or even two DSP cores with high-
speed multiply / accumulator circuitry

Real Time
Core

DSP
Core

A chip with just two cores, one for real
time tasks and the other for algorithm
processing.

4

that keep pace with those multimedia
bitstreams. But this approach appears to
be reaching its limit whereas the demand
for additional and higher speed
bitstreams seems to know no bounds. A
much better approach is to integrate
several more core processors onto the
chip, each simpler than the complex
DSP core, but each containing a high
speed multiplier / accumulator. Properly
designed, these core processors can take
on complex algorithms by spreading the
computing load across them and sharing
the task. Of course this requires
rewriting the algorithm in a way that
facilitates this breaking up and sharing
the task but the result can be an
incredible increase in processing
capability.

Spreading the computing task in this
way has a second advantage. Whereas
chips based on DSP cores have little
flexibility, chips based on an array of
core processors can be programmed to
bring the optimum number of cores to
bear on the problem. Need more speed?

Simply assign more cores to the task.
This approach has the benefit of strong
computing power within the cores, so
that unlike the DSP which consists
mainly of high-speed arithmetic circuits,
the core processors add high-speed
conditional branching plus all the other
powers of traditional computing
elements. As a result, the multiple core
approach is extremely flexible and its
ability to solve problems is not limited to
high-speed arithmetic.

The flexibility of multicore chips means
they can be brought to bear on a wide
variety of problems by simply assigning
cores to the different tasks required.
One can be assigned to managing
external memory, perhaps eight more
could be directed to doing the FFTs to
process the multimedia algorithm, and
several more can drive the various I/O
subsystems in the application. This
sharply contrasts to the traditional
single-processor approach for handling
multiple tasks. As everyone knows, that
approach directs the single processor to
work on one task for some period of
time and then switch to another, and so
on and so on, providing the illusion of a
multi-tasking processor. In cases where
some of the tasks are I/O bound and

Video

Audio

I/O
Processing

External Memory Interface

A chip with multiple cores showing how
an application can be spread across them
to maximize processing power.

ROM / RAM

A chip with 8 cores showing the bottle-
neck that occurs when accessing a
common shared memory.

5

spend significant time waiting for data to
be received, that illusion holds up pretty
well. But for tasks that are not waiting
for data, the illusion breaks down and no
one is fooled – the processor is simply
sharing its resources among the tasks
and the burden is painfully evident. The
problem is exacerbated by the context
switching time needed by the processor
to save registers and application data as
it moves from task. The larger and more
complex the processor, the greater the
context switching time and the more the
illusion of multitasking breaks down.
The multicore approach turns this on its
head by assigning one or more
processors to each task. The context
switching time is zero for the simple
reason that the individual processors
never switch tasks, and the illusion of a
multitasking chip becomes reality.

Local RAM/ROM Memory
Whenever multiple processors are
incorporated into designs, the issue of
memory access rears its ugly head. Most
multicore chip designs combine several
cores with a common memory structure.
While this simplifies the design since
each core consists of only the processor
itself, the savings is replaced with the
extremely difficult problem of sharing
the common memory among multiple
cores and arbitrating their accesses to it.
This normally involves either some sort
of arbitration network or crosspoint
switch. This approach is workable when
only 3 to 4 cores are contemplated, but
when the chip design calls for dozens, as
it does here, the complexity of sharing
memory becomes daunting. In addition,
as more and more core processors
require memory access, the sharing
becomes less and less efficient and
quickly becomes a killer bottleneck that
negates all of the processing gains that
came with multiple cores.

The solution is to replace the common,
shared memory with local memory that
is local to each core processor. In this
arrangement there is no need for
memory arbitration or crosspoint
switches because the cores are simply
accessing their own, private RAM /
ROM memory stores.

The concept of a common memory store
offers one big advantage, namely the
optimization of chip memory size by
simply allocating to each core processor
the amount of memory that core needed.
When each core has its own local
memory store, the size of that memory
will always be a compromise. If it’s too
small, the cores will be handicapped –
too large and it will be wasted and the
chip will grow larger at the cost of
efficiency.

Fortunately the size of that local memory
is easy to set. By writing code and
experimenting with typical algorithms

A chip with 24 cores, each with its
own local RAM and ROM. With
local memory distributed this way,
there is no memory bottleneck.

CPU RAM ROM

6

that must be handled by the chip, it
quickly becomes clear that the
requirements fall into two sizes… 1,000
bytes and less and a much larger size…
megabytes or even hundreds of
megabytes. This second memory size
occurs when large buffers are used for
handling multimedia data, but that only
applies to a few of the cores on the chip.
Clearly, adding megabytes of local
memory to each core would be
extremely wasteful, even if it were
practical. The first memory size, 1,000
bytes, is quite practical with today’s
mainstream semiconductor processes
and is proving more than adequate as a
working size for local core memory.

The final solution obviously is to have a
relatively small local memory store for
each core, on the order of 1,000 bytes,
for code and data storage plus access to a
much larger external memory for
multimedia buffer requirements that is
used by only a handful of cores.

Communications between
Cores
It is readily apparent that the idea of a
multicore chip is not that of a set of core
processor islands, each with its own set
of I/O pins standing independently from
the others. We have already described,
for instance, how compute-intensive
algorithms can be spread and shared
among multiple core processors.
Obviously that implies a level of
communication and cooperation among
the cores.

Communications between core
processors takes two forms: passing
status signals and passing blocks of data.
Conceptually there is no difference
between the two although there is a
significant difference in the
communication speed. For instance, a
status signal might be sent to a

neighboring core indicating that data is
ready for transfer, and then the cores
communicate by passing that block of
data between them. While both of these
communications approaches must be
efficient, the way that efficiency is
achieved may be completely different.
We will return to this in a moment.

As in the case of shared memory,
communications between processors can
be handled in several ways. If there are
only a couple of core processors
involved, it’s practical to provide
circuitry for each to communicate with
the others. But as the number of cores
increases into dozens, the chip area and
complexity of the communications
circuitry becomes prohibitive. Another
way to implement inter-core
communications is to limit the
communications to a smaller set of
cores, typically to just a core processor’s
nearest neighbors. This is far simpler
and very practical.

The implementation of inter-core
communications structures goes right to

Crosspoint Switch

A 16-core chip using a crosspoint
switch for core-to-core
communications. This quickly
becomes a bottleneck with more
than four or five cores.

7

the heart of the philosophy of bringing a
sea of processors to bear on a problem.
How are communications channels and
processes created? As computer users,
we are accustomed to letting the
computer make many of the decisions
regarding the applications we run. For
instance, when our word processor
application needs more memory as our
document grows, we rely on the
computer to find a block of memory and
assign that block to our word processor
program, a process that might entail
reassigning blocks and moving some to
disk. That process is completely
invisible to us and is done, as needed, by
the computer.

Less obvious is the fact that the memory
allocation system and even the disk
operating system were designed to make
this process efficient to drive for a
software entity, in this case, the word
processor program. The system was
designed from the very beginning with
the idea that it would be the computer
operating autonomously that would
allocate the block of memory and move
other blocks to the disk drive, as
opposed to a human being.

In the case of the multicore chip, just
how will the cores be assigned to
perform the various tasks that make up
the application? It is not going to be the
application program itself, or even some
operating system “in the sky.” The
process of assigning cores to tasks is
done by the designer / programmer who
maps the application onto the chip, not
by some development system program.
The mapping process is one of the most
basic, fundamental parts of the design
problem. To do it, the designer must ask
which tasks communicate the most data,
and then assigns adjacent cores to those
tasks to optimize the core
communications. If this core assignment

process was going to be done in some
automated fashion by the development
system, then it would be appropriate to
design an inter-core communications
system optimized for that automated
assignment process. But since it is done
by the human designer, it is much better
to use the simplest, most efficient
communications structure that simply
restricts the core communications to
nearest neighbors. Of course, it is
always possible to have cores relay data
and status signals to more remote cores,
but by restricting direct communications
to nearest neighbors, the chip design is
made much simpler and there is no real
cost to the applications designer who
was going to do the assign core tasks
anyway.

This conflict between automatic design
and design by humans targeting specific
applications will arise over and over
again. Whereas our computer functions
one moment as a word processor and the
next as a movie player or a financial
spreadsheet calculator is completely
different from how embedded processors
function. An embedded processor chip
does not switch back and forth between
being a camera and a wall thermostat,
and for that reason we should NOT
compromise chip design by burdening it
with generic do-anything, anywhere,
anytime structures like large crosspoint
switches that allow communication
between any two on-chip core
processors.

Once the decision has been made to limit
communications to nearest neighbor
cores, the communications structures
become much simpler and it is possible
to make them even more efficient.
Communications between cores now
takes place through shared registers and
there is no need for conflict resolution or
priority networks. But what is possible

8

is to combine some aspects of status
signals with the communication of data.
Traditionally two processors passing
data through a shared register will poll a
status bit somewhere to determine the
state of the transfer. Processor A sends
data to the register and sets the status bit
HIGH signaling that data is present and
needs to be read. Processor B is polling
that status bit in a software loop waiting
to see it go HIGH indicating that fresh

data is present in the register. After
reading the data, processor B resets the
status bit LOW indicating the data has
been read and the register is ready for
another transfer. There are many
variations on this theme, but the sad fact
is that more time is spent in having the
two processors read the status bit, test it,
and write it, than is spent actually
transferring the data.

The multicore chip offers a much
simpler solution. Write the code for
core-processor A so that it always
assumes the register is empty and
waiting for data. Its loop no longer
contains code for testing and writing the
status bit, but becomes simply SendData
– SendData – SendData, and so on.
Likewise the code for core-processor B
assumes there is always data waiting so
that its loop is now simply ReadData –
ReadData – ReadData, etc. How is this
done in practice? Core-processor A, the
sending core, attempts to send data to the
shared register and if there is still unread
data in the register, core-processor A
simply stops running. It stops until the
data in the register has been read by B,
and at that point A starts back up again
on the very instruction it had started
before, i.e. SendData. Thus, from a code
standpoint, core-processor A always
assumes the register is empty and
waiting for more data… there is no
reason to read and test a status bit. Core-
processor B does something similar. Its
code always assumes the register is full
of unread data. As it begins to execute
the ReadData instruction to get that data
from the register, if it turns out there is
no unread data in the register, it too
simply stops running. When new data
does appear, B finishes executing its
ReadData instruction which then
successfully gets the data from the
register. Again, there is no need for
reading, testing, and setting a status bit.

CPU Shared
Register

A 6-core array (2x3) using shared
registers for core-to-core
communication removes the
bottleneck issue.

Processor A

Processor B

Two processor chips communicating
a word from A to B using two hand-
shake lines. In these arrangements
more time is spent reading and
writing status bits to the handshake
lines than in transferring the data.

9

This technique will be unfamiliar to
most readers because it is not an option

in systems where the processors are on
different chips. The reason it works is
that, when both cores are on the same
silicon chip, there are circuit techniques
for starting and stopping core processors
that can be utilized. The key is that the
start / stop process has to be very fast –
on the order of one instruction execution
time to be really effective. But when
that can be achieved, the speedup in data
transfer between core processors is
dramatic and improves the throughput
by a factor of several times. In effect, it
completely eliminates the software
signaling between cores for many types
of data transactions.

If the core processors are designed to use
memory-mapped I/O, even more
interesting types of communication can
occur between cores. In this system, I/O
registers are treated as memory
addresses which means that the same
instructions that read and write memory
also perform I/O operations. But in the
case of multicore chips, there is a
powerful ramification of this choice for
I/O structure. Not only can the core
processor read and execute instructions
from its local ROM and RAM, it can
also read and execute instructions
presented to it on I/O ports or registers.

Now the concept of tight loops
transferring data without the need for
reading, testing, and writing status bits
becomes incredibly powerful. It allows
instruction streams to be presented to the
cores at I/O ports and executed directly
from them. And since the shared
registers between cores are essentially
the same as I/O ports, that means that
one core can send a code object to an
adjoining core processor which can
execute it directly from the shared
register with no need to actually transfer
the code to the other processors local
memory. Code objects can now be

Processor Core A
(Active)

Processor Core B
(Sleeping)

Core A begins the transfer process
of sending a word to the sleeping
core B.

Processor Core A
(Sleeping)

Processor Core B
(Active)

Core B completes the transfer
process by waking up and accepting
the data word. Meanwhile core A
goes to sleep while B accepts that
word.

Processor Core A
(Active)

Processor Core B
(Sleeping)

The process of B accepting the data
word wakes up core A which begins
the process again, sending the next
word. B has gone back to sleep.
From each processors point-of-view,
the other processor is always ready
to either send or receive. There is
no need for handshake lines.

10

passed among the cores, which execute
them at the registers. The code objects
arrive at a very high-speed since each
core is essentially working entirely
within its own local address space with
no apparent time spent transferring code
instructions.

Real Time Clocks
As traditional processors have grown in
processing speed and complexity, they
have moved further and further away
from their ability to handle tasks in real
time, meaning the time to process code
is indeterminate and will vary from cycle
to cycle. This is largely due to the
introduction of increasingly larger
caches used by the processor to reduce
external memory accesses. Thus, on one
loop through the code the instructions
are all fetched externally, but on the next
they are contained within the cache. At
the same time, as processor complexity
has grown, the number of CPU registers
has increased as well. Accordingly, the
amount of time required to save the
contents of those registers during
interrupt handling has increased. All of
this makes modern processors ill-suited
for embedded applications, to say
nothing of the large memory
requirements and sheer chip cost.

Embedded processors have always
stressed the ability to handle real time
applications, to process code in a
guaranteed time slot, to handle events
and displays within a tightly controlled
(and shrinking) time allotment. Single
processor chips use a real time clock,
supplied by an external reference, to
setup and control those tasks. But what
is the ideal arrangement in a multicore
chip?

Thinking about the application as a set
of related tasks and subtasks, with cores
assigned to each, provides an answer.

Modern applications, especially those
that are multimedia intensive, are not
characterized by one or two tasks that
must be accomplished within a time slot.
Today, many if not most of the tasks
have a real time component to them.
Consequentially, one core will need to
have access to the real time clock
reference which it uses to inform the
other cores by sending status signals to
them in the form of messages, or each
core must have the capability of
accessing that reference clock directly.
Of the two, the latter is a much better
solution.

If status signals can be eliminated by
each core having its own access to the
real time clock, that combined with the
lack of need for status signals to transfer
data between cores, goes a long way to
eliminating the status signal form of
communication between cores
altogether. Notice we are not suggesting
that a system clock signal be distributed
across the cores requiring millions of
nodes to be switched synchronously to
the beat of that clock. For the real time
clock to be effective, only a handful of
nodes in each core must be switched,
and the effect on power dissipation is
negligible. A simple counter on each
node is more than sufficient to make
each node self-sufficient in terms of real
time processing.

Low Power by Design
As more and more embedded processor
chips find themselves in mobile
applications, the requirement for low
power dissipation has become critically
important. In traditional designs this is
achieved through excruciating attention
to detail, carefully determining the speed
at which each signal path must operate
and then choosing transistor sizes
appropriate to that speed. Only the

11

highest speed paths are implemented
with large power-hungry transistors.

But the multicore chip, with the ability
to start and stop core processors as data
is presented or denied, has a much
simpler power-saving mechanism.
Cores that are not processing data are
not running and therefore are not
dissipating any power. Cores only run
as they are needed and the turning on
and shutting off is completely automatic
and need not be invoked by the program.

The effect on power dissipation is much
larger when complete cores are shut
down than by trying to gauge and size
signal paths. In fact, this approach has a
second benefit. Because of the
automatic synchronization of data
passing between cores, there is
absolutely no reason to make the cores
themselves synchronous. That means,
there is no reason to have a central clock
to which each core must beat. Data
transfers always take place at the highest
possible speed – an external clock adds
nothing but complexity. Now the central
clock is replaced by an individual clock
for each core – a simple ring oscillator –
that runs as fast as the native speed of
the silicon allows. No central clock
means there is no giant clock tree with
millions of transistor nodes dissipating
power at each tick. Instead, the tiny
individual clock oscillators run on each
core, but only if that core is running. If
a core has been stopped because data is
either unavailable at its shared register or
has not yet been read by a neighbor, the
ring oscillator is also stopped. Clock
dissipation only occurs in running cores,
and even then these are fully
asynchronous with regard to each other
so that the power dissipation is spread
over time.

In a chip such as this, with dozens of
core processors, only a fraction of those
cores are running at any given time.
Some of these cores will be off for
significant amounts of time because the
chip is in a mode that does not run tasks
involving those cores. But even the
cores that are running are doing so in
short spurts, first turning on and
executing code as fast as silicon will
allow. Then immediately shutting back
off as they exhaust the data presented to
them or waiting for a neighbor to pick it
up and continue. In this type of
environment, we estimate only a third of
the cores would be running at any given
instant, though a few nanoseconds later,
a different group of cores would be
active, but still only about a third. This
effectively reduces the power dissipation
of the entire chip by a factor of 2/3 while
at the same time ensuring that each core
runs at the maximum possible speed of
the silicon with no compromises.

Instruction Sets
Instruction sets are mostly determined
by the register set associated with the
processor. In the case of the multicore
chip, however, the core processors are
carefully designed to provide maximum
speed with minimum size and
complexity. In other words, they are
RISC processors, that are carefully
optimized to run code using a very
simple reduced instruction set. By far
the best match of processor architecture
and processor language is to have the
processor execute instructions in some
high-level RISC language as native
machine code. This accomplishes two
things: first it packs the maximum
amount of functionality into the smallest
programs and second it maximizes the
speed of execution by eliminating the
need for intermediate translation
between high-level source code and

12

machine code. The first is critical in
chips with limited memory sizes and the
second is equally critical when
processing demanding multimedia
application algorithms.

That leaves the question of which high-
level language to implement as the
machine code instruction set on these
core processors, and here, the choices
are few. Most modern high-level
languages are designed to pass large
amounts of data to a set of functions and
subroutines as frames on the return
stack. This process is largely invisible to
the programmer as it is hidden behind
the machinations of the language
compiler. But that approach is wildly
inefficient for core processors of the type
we’re envisioning as the embedded chip
of the future. In this case, the processor
may be RISC but languages like C and
C++ are definitely not RISC.
Fortunately there is a language that is
optimum for these types of cores – so
optimum in fact it appears that it was
designed with multicore chips in mind.
That language is Forth.

Forth is ideal for small processor cores
for several reasons, but the first is simply
that it does not use a large number of
processor registers. The hardware
needed to implement a Forth-based
processor is minimal. And because
Forth programs are written by defining
new words and then using those to
define higher-level words yet, it is easy
to identify a small set of core words –
the kernel – that everything else is built
on, and then building those core words
into the processor as dedicated circuitry.
The result is blinding speed in a very
small core processor.

By implementing as few as 32
instructions in that core set, it is possible
to achieve the ideal RISC compromise

where the minimum instruction set
handles the majority of applications code
directly within that set and at the same
time does not pad out the set with
seldom used instructions that complicate
the circuitry and ultimately slows
execution. Clearly, an instruction set
with only 32 instructions can be
implemented in as little as five bits, but
by recognizing that some instructions
only apply in certain contexts, it’s
possible to pack multiple instructions
into a small instruction word… as many
as four instructions in an 18-bit word.

Instruction packing like this achieves an
automatic caching effect with no need
for setting up L1 and L2 caches.
Instead, each instruction fetch brings
four instructions into the core processor.
Although this built-in cache is certainly
small, it is extremely effective when the
instructions themselves take advantage
of it. For instance, micro for – next
loops can be constructed that are
contained entirely within the bounds of a
single 18-bit instruction word. These
types of constructs are ideal when
combined with the automatic status
signaling built into the I/O registers
because that means large blocks of data
can be transferred with only a single
instruction fetch. And with this sort of
instruction packing, the concept of
executing instructions being presented
on a shared I/O register from a
neighboring processor core takes on new
power because now each word appearing
in that register represents not one, but
four instructions. These types of
software / hardware structures and their
staggering impact on performance in
multicore chips are simply not available
to traditional languages – they are only
possible in an instruction set where
multiple instructions are packed within a
single word and complete loops can be
executed from within that word.

13

No Central Operating System
The idea of multiple cores on a single
chip is certainly not new, and in fact
there are at least a dozen already on the
market or about to be introduced. But
virtually all of these are made up of two
or four cores where those cores are large,
complex processors designed to run
desktop applications such as Windows.
There is certainly a place for these —
not in highly compact embedded
applications — but in large servers.
Such multicore processors all rely on a
central operating system to load and
direct the core processors.

This arrangement is usually typified as
SMP – Symmetric MultiProcessing –
where each of the cores is identical. To
be successful it assumes that the
software being run has been written in a
multi-threaded form. The operating
system, probably running on one of the
cores, takes that code and loads it onto
the remaining cores by separating the
code into blocks which set off the
individual threads. It loads the cores in a
way to equalize the processing load
across the cores using the threaded code
blocks as the basic code increment.
Where applications have been written in
this multithreaded format, the multicore
SMP approach works fairly well.

Of course not all software is written that
way, but even when it is not, the central
operating system can load entire
programs onto individual cores, so that
some benefit of the multiple cores can be
seen. But none of this applies in the case
of embedded processors. There are no
disk drives, no loading of cores with
tasks on-the-fly, dynamically controlled
by a central operating system. Simply
put, there is no central operating system
in an embedded processor. In the case
of multicore chips, the role of the central

operating system has been replaced with
the concept of the thoughtful
programmer.

For these kinds of chips, code is written
for specific cores on the chip. It is not
designed to run independently on any
given core, since each core is connected
to the outside world with a different set
of I/O functions. The code only makes
sense in the context of the core for which
it was written. This is not a drawback of
the approach, since the system has
already been determined to be a camera,
for instance, and not a camera one
minute and a breadmaker the next. If the
cores were to have totally different tasks
minute to minute, you could argue for
the presence of a controlling program
like a central operating system. But
since that flies in the face of the entire
concept of the embedded processor,
there is no central operating system.

This presents a slight problem. PCs, for
instance, do not simply have an
operating system, they also have a BIOS
(Basic Input Output System) the
operating system is built on. That BIOS
implements the most basic level of I/O
drivers in the system. And while the
multicore embedded processor needs no
central operating system, it still has the
need for basic input / output drivers.
And if we are going to avoid the idea of
central, shared memory we are going to
have to accept the idea of each core
processor having its own BIOS.

Since each core has its own ROM
memory, it also has the ability to have its
own BIOS. In addition to simple input /
output functions, the core processor
BIOS can have all sorts of helper
routines as well. These BIOS routines
are not simply copies, replicated in each
core’s ROM across the chip. They must
be individualized to handle the

14

individual personalities of the cores.
Although the cores themselves are the
same, their location within the chip array
makes them unique. Some connect to
certain types of I/O, while others
connect to other cores. Cores in the
middle of the array probably have no
external I/O at all beyond the shared
registers that are used for inter-core
communications.

Multiple I/O Interfaces
As embedded processors have moved
from the original form of the 8048/8051
to modern processors, the nature of the
I/O has changed as well. This is true
regardless of whether we’re discussing
single processors or multiple core
processors. Whereas originally simple
parallel I/O lines plus a serial interface
was sufficient, chips today must
interface with other predetermined
interfaces like USB, 1394, and SPI
(Serial Protocol Interface).

Today there are hundreds of peripheral
chips utilizing the SPI interface, and a
processor chip that provides a SPI

interface (or multiple SPI interfaces).
This opens up a world of inexpensive,
powerful peripheral functions that can be
easily incorporated into the system.

Scaleable Embedded Arrays
All of this time we’ve been discussing
multicore chips without regard for the
layout, the arrangement of the cores.
But if the cores are identical, outside of
their ROM contents that is, then the
number of cores in the array is largely
arbitrary and is set by the simple
economics of the chip size as related to
the demands of specific applications for
processing power.

Chips laid out by simply replicating
cores makes them scaleable – if there are
not enough cores to do the job, pick one
with more. Additionally, many (but not
all) of the same structures available for
inter-core communications are also
available as cores communicate from
chip to chip. Accordingly, applications
can be scaled by adding multiple chips
to increase the number of cores,
memory, and I/O.

IntellaSys specializes in innovating multicore processor solutions that target embedded
applications requiring low-power operation, fast operating speed and a small footprint. For more
information visit: www.intellasys.net.

