
IntellaSys Corporation 
10080 N. Wolfe Road, Suite SW3-190 

Cupertino, CA 95014 
voice 408-446-4222 

fax 408-446-5444 

 

A 21st Century Sea Change Taking Place in Embedded 
Microprocessors 

David Guzeman, Chief Marketing Officer, 
 IntellaSys Corporation, Cupertino, CA

It has been 30 years since the 8048/8051 
microprocessors appeared on the market 
and changed the world’s view of what an 
embedded microcontroller should look 
like.  Over the years, each new 
microcontroller has tended to follow that 
basic architecture, adding improvements 
at each step in order to stay in step with 
the increasingly demanding applications.   
As long-lived and important as that 
original architecture has been, it is now 
time to embrace a new multicore 
architecture, one designed from the 
ground up to handle the applications of 
the 21st century.  In this white paper, we 
will discuss the sea changes in 
architecture design that are being driven 
by demands for higher operating speeds 
and lower power dissipation. 

20th Century Applications 
The typical application from the 20th 
century used an 8-bit microcontroller – a 
bit banger – that could read sensors, do a 
small amount of data processing, and 
then drive some I/O lines, probably 
parallel, in order to send characters to a 
display or record a data byte onto tape or 
some other  data logging device.   
Additional I/O lines could scan a simple 
keyboard or set of switches, and the 
whole thing could be driven within time 
constraints by an on-chip real time clock 
that could provide precise timing 

references to sync data transfers, and 
perform other time-driven tasks. 

These applications used only a small 
amount of memory, perhaps 64 to 256 
bytes of RAM, and most of that was 
integrated on the chip.  Although 
provisions were made to access external 
memory as well, this was initially a 
primitive interface consisting of just an 
address and data bus and relied on the 
processor to read and move data in and 
out of external memory under software 
control. 

Thus the emphasis was on controlling 
I/O within tight time constraints with 
very little actual data manipulation done 
by the processor chip.  That’s fortunate 
because the processor was extremely 
limited in its data processing capability 
anyway and was very slow running at 
clock rates of a few Megahertz.  As 
limited as these chips were, they were 
sufficient to control countless simple 
applications ranging from wall 
thermostats to simple home automation 
systems.  In fact, at this moment I’m 
typing this paper on a recently 
introduced laptop that uses a derivative 
of that original 8048 chip for the sole 
purpose of reading keyboard clicks.  
Over time, processors were introduced 
that were even smaller with less 
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capabilities that sold for, presumably 
lower prices.  At the same time, others 
came out that were more advanced, both 
16 and 32 bit versions, and with much 
faster and more sophisticated external 
memory interfaces using DMA 
controller circuitry.  Still, the basic idea 
has remained the same.  One or two 
processors on a chip, reading data from 
input lines and sending data to output 
lines, and wiggling I/O control pins as 
appropriate… all to the metronome of an 
external reference real time clock. 

Consumer Electronics is 
Driving 21st Century 
Applications 
But now the nature of the applications 
has changed dramatically.  In addition to 
the traditional real time bit banging, a 
new dimension of processing capability 
has been added – the processing of 
algorithms.  Today the high-volume 
applications are multimedia consumer 
aps that range from tiny MP3 music 
players to cell phones with video 
capability.  Moreover, the long awaited 
avalanche of high-definition televisions 
has begun, and along with those 
televisions, consumers are suddenly 
perceiving the need for home networks 
that move video and music from room to 
room. 

Multimedia Capability 
All new consumer applications have 
digital data at their heart, and that 
implies extensive digital signal 
processing in any device that displays or 
plays that data.  The various file formats 
for multimedia have been carefully 
designed with an eye toward digital 
processing by using mathematical 
algorithms – Fast Fourier Transforms 
(FFTs), discrete cosine transforms 
(DCTs), and so forth.  The high 
bandwidth required to serve multimedia 

applications requires that 21st century 
processors have dedicated circuitry for 
processing those algorithms.  But at the 
same time, none of the earlier 
requirements for general purpose I/O 
and real time clocks has gone away.  
New chips must handle both! 

Bitstream Orientation 
Whereas earlier processors viewed 
external memory as the source and 
destination of applications data, modern 
processors must be able to operate with 
high-speed bitstreams of data arriving 
from the internet, USB and 1394 cables,  
as well as cable and satellite television 
services.  The USB 2.0 interface, now 
nearly ubiquitous on consumer products 
such as cameras, MP3 players, and even 
cell phones, requires up to 480 mbit/sec.  
The 1394 interface is commonly used in 
video applications and comes in 
200/400/800 mbit/sec rates.  Even 
gigabit Ethernet is beginning to appear 
in homes with even higher data rates yet.  
Today’s processors have to deal with 
these data rates, all of which are 
staggeringly fast by 20th century 
standards. 

To make matters worse, the new High 
Definition Audio-Video Network 
Alliance (HANA) standard for home 
networking assumes up to FOUR 1394 
bitstreams that may reach 800 Mbit/sec.  
And MP4 formatted data assumes 
multiple bitstreams for audio and video 
plus optional additional streams for 
things like subtitles and still images.  In 
many cases, the same processor that is 
decoding the MP4 bitstream from a 
buffer memory must also handle the 
incoming bitstream as well, so that as 
many as four or five of these high-speed 
bitstreams must be handled at once. 
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Fast External Memory Interface 
With requirements for fast data are 
mapped over to the external memory as 
well, the days when the processor only 
needed to address a few hundred bytes 
of data are long over.  Today, some 
specialized processors aimed at video 
applications, for instance, must be able 
to handle 128 Mbytes of DDR SRAM 
memory.  While it is relatively easy to 
implement larger address ranges on a 
processor chip, the speed of these 
memory interfaces is now critically 
important.  The large address space 
translates into many pins on the 
processor dedicated to the external 
memory interface.  The fact that there 
are multiple bitstreams required for 
many of these applications means that 
there must be an easy way to quickly 
switch the address bits on the memory 
interface.  Most modern processors use 
full-blown DMA (direct memory access) 
controllers for this interface – typically 
three of them.  Some even go the extra 
step of allowing indexed addressing in 
the controller.  That’s convenient, for 
instance, when the device is fetching 
multi-byte vectors from memory. 

Low Power Dissipation 
Many modern consumer devices are 
battery operated.  The high processing 
load, combined with a display, and 
sometimes even a disk drive, place a 
heavy load on the batteries in these 
devices.  As a result, power is at a 
premium and the processor itself must be 
capable of low-power operation to 
maximize battery life.  Of course, low-
power does not normally go hand-in-
hand with high processing speed, so this 
represents a serious design tradeoff. 

 

21st Century Multicore 
Processor Architecture 
Changes in the nature of applications 
clearly require corresponding changes in 
the processor chip’s architecture.  For 
instance, the need for multimedia 
capability requires special high-speed 
arithmetic circuits.  And the need for that 
high-speed processing has led chip 
designers to add core processors to the 
chip so that those tasks that require real 
time processing can be run on one core 
while the other tasks can be run on a 
second core. 

Multiple Processor Cores 
The approach of trying to segregate the 
tasks into two groups – real time and non 
real time – fails for the simple fact that 
in modern applications MOST of the 
tasks have a real time component to 
them.  Simply put, multimedia 
applications are driven by high-speed 
computing elements that are racing to 
complete their algorithms within a tiny 
slice of time before the next batch of 
multimedia data arrives.  Failure to do so 
means there is a gap in the music or a 
glitch in the video. 

Recent trends have been to incorporate 
one or even two DSP cores with high-
speed multiply / accumulator circuitry 

Real Time 
Core 

DSP 
Core 

A chip with just two cores, one for real 
time tasks and the other for algorithm 
processing. 
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that keep pace with those multimedia 
bitstreams.  But this approach appears to 
be reaching its limit whereas the demand 
for additional and higher speed 
bitstreams seems to know no bounds.  A 
much better approach is to integrate 
several more core processors onto the 
chip, each simpler than the complex 
DSP core, but each containing a high 
speed multiplier / accumulator.  Properly 
designed, these core processors can take 
on complex algorithms by spreading the 
computing load across them and sharing 
the task.  Of course this requires 
rewriting the algorithm in a way that 
facilitates this breaking up and sharing 
the task but the result can be an 
incredible increase in processing 
capability.   

Spreading the computing task in this 
way has a second advantage.  Whereas 
chips based on DSP cores have little 
flexibility, chips based on an array of 
core processors can be programmed to 
bring the optimum number of cores to 
bear on the problem.  Need more speed?  

Simply assign more cores to the task.  
This approach has the benefit of strong 
computing power within the cores, so 
that unlike the DSP which consists 
mainly of high-speed arithmetic circuits, 
the core processors add high-speed 
conditional branching plus all the other 
powers of traditional computing 
elements.  As a result, the multiple core 
approach is extremely flexible and its 
ability to solve problems is not limited to 
high-speed arithmetic. 

The flexibility of multicore chips means 
they can be brought to bear on a wide 
variety of problems by simply assigning 
cores to the different tasks required.  
One can be assigned to managing 
external memory, perhaps eight more 
could be directed to doing the FFTs to 
process the multimedia algorithm, and 
several more can drive the various I/O 
subsystems in the application.  This 
sharply contrasts to the traditional 
single-processor approach for handling 
multiple tasks.  As everyone knows, that 
approach directs the single processor to 
work on one task for some period of 
time and then switch to another, and so 
on and so on, providing the illusion of a 
multi-tasking processor.  In cases where 
some of the tasks are I/O bound and 

Video 

Audio 

I/O 
Processing

External Memory Interface 

A chip with multiple cores showing how 
an application can be spread across them 
to maximize processing power. 

ROM / RAM 

A chip with 8 cores showing the bottle-
neck that occurs when accessing a 
common shared memory. 
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spend significant time waiting for data to 
be received, that illusion holds up pretty 
well.  But for tasks that are not waiting 
for data, the illusion breaks down and no 
one is fooled – the processor is simply 
sharing its resources among the tasks 
and the burden is painfully evident.  The 
problem is exacerbated by the context 
switching time needed by the processor 
to save registers and application data as 
it moves from task.  The larger and more 
complex the processor, the greater the 
context switching time and the more the 
illusion of multitasking breaks down.   
The multicore approach turns this on its 
head by assigning one or more 
processors to each task.  The context 
switching time is zero for the simple 
reason that the individual processors 
never switch tasks, and the illusion of a 
multitasking chip becomes reality. 

Local RAM/ROM Memory 
Whenever multiple processors are 
incorporated into designs, the issue of 
memory access rears its ugly head.  Most 
multicore chip designs combine several 
cores with a common memory structure.  
While this simplifies the design since 
each core consists of only the processor 
itself, the savings is replaced with the 
extremely difficult problem of sharing 
the common memory among multiple 
cores and arbitrating their accesses to it.  
This normally involves either some sort 
of arbitration network or crosspoint 
switch.  This approach is workable when 
only 3 to 4 cores are contemplated, but 
when the chip design calls for dozens, as 
it does here, the complexity of sharing 
memory becomes daunting.  In addition, 
as more and more core processors 
require memory access, the sharing 
becomes less and less efficient and 
quickly becomes a killer bottleneck that 
negates all of the processing gains that 
came with multiple cores. 

The solution is to replace the common, 
shared memory with local memory that 
is local to each core processor.  In this 
arrangement there is no need for 
memory arbitration or crosspoint 
switches because the cores are simply 
accessing their own, private RAM / 
ROM memory stores. 

The concept of a common memory store 
offers one big advantage, namely the 
optimization of chip memory size by 
simply allocating to each core processor 
the amount of memory that core needed.  
When each core has its own local 
memory store, the size of that memory 
will always be a compromise.  If it’s too 
small, the cores will be handicapped – 
too large and it will be wasted and the 
chip will grow larger at the cost of 
efficiency. 

Fortunately the size of that local memory 
is easy to set.  By writing code and 
experimenting with typical algorithms 

A chip with 24 cores, each with its 
own local RAM and ROM.  With 
local memory distributed this way, 
there is no memory bottleneck. 

CPU RAM ROM 
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that must be handled by the chip, it 
quickly becomes clear that the 
requirements fall into two sizes… 1,000 
bytes and less and a much larger size… 
megabytes or even hundreds of 
megabytes.  This second memory size 
occurs when large buffers are used for 
handling multimedia data, but that only 
applies to a few of the cores on the chip.  
Clearly, adding megabytes of local 
memory to each core would be 
extremely wasteful, even if it were 
practical.  The first memory size, 1,000 
bytes, is quite practical with today’s 
mainstream semiconductor processes 
and is proving more than adequate as a 
working size for local core memory.  

The final solution obviously is to have a 
relatively small local memory store for 
each core, on the order of 1,000 bytes, 
for code and data storage plus access to a 
much larger external memory for 
multimedia buffer requirements that is 
used by only a handful of cores. 

Communications between 
Cores 
It is readily apparent that the idea of a 
multicore chip is not that of a set of core 
processor islands, each with its own set 
of I/O pins standing independently from 
the others.  We have already described, 
for instance, how compute-intensive 
algorithms can be spread and shared 
among multiple core processors.  
Obviously that implies a level of 
communication and cooperation among 
the cores. 

Communications between core 
processors takes two forms:  passing 
status signals and passing blocks of data.  
Conceptually there is no difference 
between the two although there is a 
significant difference in the 
communication speed.  For instance, a 
status signal might be sent to a 

neighboring core indicating that data is 
ready for transfer, and then the cores 
communicate by passing that block of 
data between them.  While both of these 
communications approaches must be 
efficient, the way that efficiency is 
achieved may be completely different.  
We will return to this in a moment. 

As in the case of shared memory, 
communications between processors can 
be handled in several ways.  If there are 
only a couple of core processors 
involved, it’s practical to provide 
circuitry for each to communicate with 
the others.  But as the number of cores 
increases into dozens, the chip area and 
complexity of the communications 
circuitry becomes prohibitive.  Another 
way to implement inter-core 
communications is to limit the 
communications to a smaller set of 
cores, typically to just a core processor’s 
nearest neighbors.  This is far simpler 
and very practical. 

The implementation of inter-core 
communications structures goes right to 

Crosspoint Switch 

A 16-core chip using a crosspoint 
switch for core-to-core 
communications.  This quickly 
becomes a bottleneck with more 
than four or five cores. 
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the heart of the philosophy of bringing a 
sea of processors to bear on a problem.  
How are communications channels and 
processes created?  As computer users, 
we are accustomed to letting the 
computer make many of the decisions 
regarding the applications we run.  For 
instance, when our word processor 
application needs more memory as our 
document grows, we rely on the 
computer to find a block of memory and 
assign that block to our word processor 
program, a process that might entail 
reassigning blocks and moving some to 
disk.  That process is completely 
invisible to us and is done, as needed, by 
the computer. 

Less obvious is the fact that the memory 
allocation system and even the disk 
operating system were designed to make 
this process efficient to drive for a 
software entity, in this case, the word 
processor program.  The system was 
designed from the very beginning with 
the idea that it would be the computer 
operating autonomously that would 
allocate the block of memory and move 
other blocks to the disk drive, as 
opposed to a human being. 

In the case of the multicore chip, just 
how will the cores be assigned to 
perform the various tasks that make up 
the application?  It is not going to be the 
application program itself, or even some 
operating system “in the sky.”  The 
process of assigning cores to tasks is 
done by the designer / programmer who 
maps the application onto the chip, not 
by some development system program.  
The mapping process is one of the most 
basic, fundamental parts of the design 
problem.  To do it, the designer must ask 
which tasks communicate the most data, 
and then assigns adjacent cores to those 
tasks to optimize the core 
communications.  If this core assignment 

process was going to be done in some 
automated fashion by the development 
system, then it would be appropriate to 
design an inter-core communications 
system optimized for that automated 
assignment process.  But since it is done 
by the human designer, it is much better 
to use the simplest, most efficient 
communications structure that simply 
restricts the core communications to 
nearest neighbors.  Of course, it is 
always possible to have cores relay data 
and status signals to more remote cores, 
but by restricting direct communications 
to nearest neighbors,  the chip design is 
made much simpler and there is no real 
cost to the applications designer who 
was going to do the assign core tasks 
anyway.  

This conflict between automatic design 
and design by humans targeting specific 
applications will arise over and over 
again.  Whereas our computer functions 
one moment as a word processor and the 
next as a movie player or a financial 
spreadsheet calculator is completely 
different from how embedded processors 
function.  An embedded processor chip 
does not switch back and forth between 
being a camera and a wall thermostat, 
and for that reason we should NOT 
compromise chip design by burdening it 
with generic do-anything, anywhere, 
anytime structures like large crosspoint 
switches that allow communication 
between any two on-chip core 
processors. 

Once the decision has been made to limit 
communications to nearest neighbor 
cores, the communications structures 
become much simpler and it is possible 
to make them even more efficient.  
Communications between cores now 
takes place through shared registers and 
there is no need for conflict resolution or 
priority networks.  But what is possible 
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is to combine some aspects of status 
signals with the communication of data.  
Traditionally two processors passing 
data through a shared register will poll a 
status bit somewhere to determine the 
state of the transfer.  Processor A sends 
data to the register and sets the status bit 
HIGH signaling that data is present and 
needs to be read.  Processor B is polling 
that status bit in a software loop waiting 
to see it go HIGH indicating that fresh 

data is present in the register.  After 
reading the data, processor B resets the 
status bit LOW indicating the data has 
been read and the register is ready for 
another transfer.  There are many 
variations on this theme, but the sad fact 
is that more time is spent in having the 
two processors read the status bit, test it, 
and write it, than is spent actually 
transferring the data. 

The multicore chip offers a much 
simpler solution.  Write the code for 
core-processor A so that it always 
assumes the register is empty and 
waiting for data.  Its loop no longer 
contains code for testing and writing the 
status bit, but becomes simply SendData 
– SendData – SendData, and so on.  
Likewise the code for core-processor B 
assumes there is always data waiting so 
that its loop is now simply ReadData – 
ReadData – ReadData, etc.  How is this 
done in practice?  Core-processor A, the 
sending core, attempts to send data to the 
shared register and if there is still unread 
data in the register, core-processor A 
simply stops running.  It stops until the 
data in the register has been read by B, 
and at that point A starts back up again 
on the very instruction it had started 
before, i.e. SendData.  Thus, from a code 
standpoint, core-processor A always 
assumes the register is empty and 
waiting for more data… there is no 
reason to read and test a status bit.  Core-
processor B does something similar.  Its 
code always assumes the register is full 
of unread data.  As it begins to execute 
the ReadData instruction to get that data 
from the register, if it turns out there is 
no unread data in the register, it too 
simply stops running.  When new data 
does appear, B finishes executing its 
ReadData instruction which then 
successfully gets the data from the 
register.  Again, there is no need for 
reading, testing, and setting a status bit. 

CPU Shared 
Register

A 6-core array (2x3) using shared 
registers for core-to-core 
communication removes the 
bottleneck issue. 

Processor A 

Processor B 

Two processor chips communicating 
a word from A to B using two hand-
shake lines.  In these arrangements 
more time is spent reading and 
writing status bits to the handshake 
lines than in transferring the data. 
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This technique will be unfamiliar to 
most readers because it is not an option 

in systems where the processors are on 
different chips.  The reason it works is 
that, when both cores are on the same 
silicon chip, there are circuit techniques 
for starting and stopping core processors 
that can be utilized.  The key is that the 
start / stop process has to be very fast – 
on the order of one instruction execution 
time to be really effective.  But when 
that can be achieved, the speedup in data 
transfer between core processors is 
dramatic and improves the throughput 
by a factor of several times.  In effect, it 
completely eliminates the software 
signaling between cores for many types 
of data transactions. 

If the core processors are designed to use 
memory-mapped I/O, even more 
interesting types of communication can 
occur between cores.  In this system, I/O 
registers are treated as memory 
addresses which means that the same 
instructions that read and write memory 
also perform I/O operations.  But in the 
case of multicore chips, there is a 
powerful ramification of this choice for 
I/O structure.  Not only can the core 
processor read and execute instructions 
from its local ROM and RAM, it can 
also read and execute instructions 
presented to it on I/O ports or registers. 

Now the concept of tight loops 
transferring data without the need for 
reading, testing, and writing status bits 
becomes incredibly powerful.  It allows 
instruction streams to be presented to the 
cores at I/O ports and executed directly 
from them.  And since the shared 
registers between cores are essentially 
the same as I/O ports, that means that 
one core can send a code object to an 
adjoining core processor which can 
execute it directly from the shared 
register with no need to actually transfer 
the code to the other processors local 
memory.  Code objects can now be 

Processor Core A 
(Active) 

Processor Core B 
(Sleeping) 

Core A begins the transfer process 
of sending a word to the sleeping 
core B. 

Processor Core A 
(Sleeping) 

Processor Core B 
(Active) 

Core B completes the transfer 
process by waking up and accepting 
the data word.  Meanwhile core A 
goes to sleep while B accepts that 
word. 

Processor Core A 
(Active) 

Processor Core B 
(Sleeping) 

The process of B accepting the data 
word wakes up core A which begins 
the process again, sending the next 
word.  B has gone back to sleep.  
From each processors point-of-view, 
the other processor is always ready 
to either send or receive.  There is 
no need for handshake lines. 
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passed among the cores, which execute 
them at the registers.  The code objects 
arrive at a very high-speed since each 
core is essentially working entirely 
within its own local address space with 
no apparent time spent transferring code 
instructions. 

Real Time Clocks 
As traditional processors have grown in 
processing speed and complexity, they 
have moved further and further away 
from their ability to handle tasks in real 
time, meaning the time to process code 
is indeterminate and will vary from cycle 
to cycle.  This is largely due to the 
introduction of increasingly larger 
caches used by the processor to reduce 
external memory accesses. Thus, on one 
loop through the code the instructions 
are all fetched externally, but on the next 
they are contained within the cache.  At 
the same time, as processor complexity 
has grown, the number of CPU registers 
has increased as well.  Accordingly, the 
amount of time required to save the 
contents of those registers during 
interrupt handling has increased.  All of 
this makes modern processors ill-suited 
for embedded applications, to say 
nothing of the large memory 
requirements and sheer chip cost.   

Embedded processors have always 
stressed the ability to handle real time 
applications, to process code in a 
guaranteed time slot, to handle events 
and displays within a tightly controlled 
(and shrinking) time allotment.  Single 
processor chips use a real time clock, 
supplied by an external reference, to 
setup and control those tasks.  But what 
is the ideal arrangement in a multicore 
chip? 

Thinking about the application as a set 
of related tasks and subtasks, with cores 
assigned to each, provides an answer.  

Modern applications, especially those 
that are multimedia intensive, are not 
characterized by one or two tasks that 
must be accomplished within a time slot.  
Today, many if not most of the tasks 
have a real time component to them.  
Consequentially, one core will need to 
have access to the real time clock 
reference which it uses to inform the 
other cores by sending status signals to 
them in the form of messages, or each 
core must have the capability of 
accessing that reference clock directly.  
Of the two, the latter is a much better 
solution. 

If status signals can be eliminated by 
each core having its own access to the 
real time clock, that combined with the 
lack of need for status signals to transfer 
data between cores, goes a long way to 
eliminating the status signal form of 
communication between cores 
altogether.  Notice we are not suggesting 
that a system clock signal be distributed 
across the cores requiring millions of 
nodes to be switched synchronously to 
the beat of that clock.  For the real time 
clock to be effective, only a handful of 
nodes in each core must be switched, 
and the effect on power dissipation is 
negligible.  A simple counter on each 
node is more than sufficient to make 
each node self-sufficient in terms of real 
time processing. 

Low Power by Design 
As more and more embedded processor 
chips find themselves in mobile 
applications, the requirement for low 
power dissipation has become critically 
important.  In traditional designs this is 
achieved through excruciating attention 
to detail, carefully determining the speed 
at which each signal path must operate 
and then choosing transistor sizes 
appropriate to that speed.  Only the 
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highest speed paths are implemented 
with large power-hungry transistors. 

But the multicore chip, with the ability 
to start and stop core processors as data 
is presented or denied, has a much 
simpler power-saving mechanism.  
Cores that are not processing data are 
not running and therefore are not 
dissipating any power.  Cores only run 
as they are needed and the turning on 
and shutting off is completely automatic 
and need not be invoked by the program. 

The effect on power dissipation is much 
larger when complete cores are shut 
down than by trying to gauge and size 
signal paths.  In fact, this approach has a 
second benefit.  Because of the 
automatic synchronization of data 
passing between cores, there is 
absolutely no reason to make the cores 
themselves synchronous.  That means, 
there is no reason to have a central clock 
to which each core must beat.  Data 
transfers always take place at the highest 
possible speed – an external clock adds 
nothing but complexity.  Now the central 
clock is replaced by an individual clock 
for each core – a simple ring oscillator – 
that runs as fast as the native speed of 
the silicon allows.  No central clock 
means there is no giant clock tree with 
millions of transistor nodes dissipating 
power at each tick.  Instead, the tiny 
individual clock oscillators run on each 
core, but only if that core is running.  If 
a core has been stopped because data is 
either unavailable at its shared register or 
has not yet been read by a neighbor, the 
ring oscillator is also stopped.  Clock 
dissipation only occurs in running cores, 
and even then these are fully 
asynchronous with regard to each other 
so that the power dissipation is spread 
over time. 

In a chip such as this, with dozens of 
core processors, only a fraction of those 
cores are running at any given time.  
Some of these cores will be off for 
significant amounts of time because the 
chip is in a mode that does not run tasks 
involving those cores.  But even the 
cores that are running are doing so in 
short spurts, first turning on and 
executing code as fast as silicon will 
allow. Then immediately shutting back 
off as they exhaust the data presented to 
them or waiting for a neighbor to pick it 
up and continue.  In this type of 
environment, we estimate only a third of 
the cores would be running at any given 
instant, though a few nanoseconds later, 
a different group of cores would be 
active, but still only about a third.  This 
effectively reduces the power dissipation 
of the entire chip by a factor of 2/3 while 
at the same time ensuring that each core 
runs at the maximum possible speed of 
the silicon with no compromises. 

Instruction Sets 
Instruction sets are mostly determined 
by the register set associated with the 
processor.  In the case of the multicore 
chip, however, the core processors are 
carefully designed to provide maximum 
speed with minimum size and 
complexity.  In other words, they are  
RISC processors, that are carefully 
optimized to run code using a very 
simple reduced instruction set.  By far 
the best match of processor architecture 
and processor language is to have the 
processor execute instructions in some 
high-level RISC language as native 
machine code.  This accomplishes two 
things:  first it packs the maximum 
amount of functionality into the smallest 
programs and second it maximizes the 
speed of execution by eliminating the 
need for intermediate translation 
between high-level source code and 
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machine code.  The first is critical in 
chips with limited memory sizes and the 
second is equally critical when 
processing demanding multimedia 
application algorithms. 

That leaves the question of which high-
level language to implement as the 
machine code instruction set on these 
core processors, and here, the choices 
are few.  Most modern high-level 
languages are designed to pass large 
amounts of data to a set of functions and 
subroutines as frames on the return 
stack.  This process is largely invisible to 
the programmer as it is hidden behind 
the machinations of the language 
compiler.  But that approach is wildly 
inefficient for core processors of the type 
we’re envisioning as the embedded chip 
of the future.  In this case, the processor 
may be RISC but languages like C and 
C++ are definitely not RISC.  
Fortunately there is a language that is 
optimum for these types of cores – so 
optimum in fact it appears that it was 
designed with multicore chips in mind.  
That language is Forth. 

Forth is ideal for small processor cores 
for several reasons, but the first is simply 
that it does not use a large number of 
processor registers.  The hardware 
needed to implement a Forth-based 
processor is minimal.  And because 
Forth programs are written by defining 
new words and then using those to 
define higher-level words yet, it is easy 
to identify a small set of core words – 
the kernel – that everything else is built 
on, and then building those core words 
into the processor as dedicated circuitry.  
The result is blinding speed in a very 
small core processor. 

By implementing as few as 32 
instructions in that core set, it is possible 
to achieve the ideal RISC compromise 

where the minimum instruction set 
handles the majority of applications code 
directly within that set and at the same 
time does not pad out the set with 
seldom used instructions that complicate 
the circuitry and ultimately slows 
execution.  Clearly, an instruction set 
with only 32 instructions can be 
implemented in as little as five bits, but 
by recognizing that some instructions 
only apply in certain contexts, it’s 
possible to pack multiple instructions 
into a small instruction word… as many 
as four instructions in an 18-bit word. 

Instruction packing like this achieves an 
automatic caching effect with no need 
for setting up L1 and L2 caches.  
Instead, each instruction fetch brings 
four instructions into the core processor.  
Although this built-in cache is certainly 
small, it is extremely effective when the 
instructions themselves take advantage 
of it.  For instance, micro for – next 
loops can be constructed that are 
contained entirely within the bounds of a 
single 18-bit instruction word.  These 
types of constructs are ideal when 
combined with the automatic status 
signaling built into the I/O registers 
because that means large blocks of data 
can be transferred with only a single 
instruction fetch.  And with this sort of 
instruction packing, the concept of 
executing instructions being presented 
on a shared I/O register from a 
neighboring processor core takes on new 
power because now each word appearing 
in that register represents not one, but 
four instructions.  These types of 
software / hardware structures and their 
staggering impact on performance in 
multicore chips are simply not available 
to traditional languages – they are only 
possible in an instruction set where 
multiple instructions are packed within a 
single word and complete loops can be 
executed from within that word. 
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No Central Operating System 
The idea of multiple cores on a single 
chip is certainly not new, and in fact 
there are at least a dozen already on the 
market or about to be introduced.  But 
virtually all of these are made up of two 
or four cores where those cores are large, 
complex processors designed to run 
desktop applications such as Windows.  
There is certainly a place for these — 
not in highly compact embedded 
applications  —  but in large servers.  
Such multicore processors all rely on a 
central operating system to load and 
direct the core processors. 

This arrangement is usually typified as 
SMP – Symmetric MultiProcessing – 
where each of the cores is identical.  To 
be successful it assumes that the 
software being run has been written in a 
multi-threaded form.  The operating 
system, probably running on one of the 
cores, takes that code and loads it onto 
the remaining cores by separating the 
code into blocks which set off the 
individual threads.  It loads the cores in a 
way to equalize the processing load 
across the cores using the threaded code 
blocks as the basic code increment.  
Where applications have been written in 
this multithreaded format, the multicore 
SMP approach works fairly well. 

Of course not all software is written that 
way, but even when it is not, the central 
operating system can load entire 
programs onto individual cores, so that 
some benefit of the multiple cores can be 
seen.  But none of this applies in the case 
of embedded processors.  There are no 
disk drives, no loading of cores with 
tasks on-the-fly, dynamically controlled 
by a central operating system.  Simply 
put, there is no central operating system 
in an embedded processor.  In the case 
of multicore chips, the role of the central 

operating system has been replaced with 
the concept of the thoughtful 
programmer. 

For these kinds of chips, code is written 
for specific cores on the chip.  It is not 
designed to run independently on any 
given core, since each core is connected 
to the outside world with a different set 
of I/O functions.  The code only makes 
sense in the context of the core for which 
it was written.  This is not a drawback of 
the approach, since the system has 
already been determined to be a camera, 
for instance, and not a camera one 
minute and a breadmaker the next.  If the 
cores were to have totally different tasks 
minute to minute, you could argue for 
the presence of a controlling program 
like a central operating system.  But 
since that flies in the face of the entire 
concept of the embedded processor, 
there is no central operating system. 

This presents a slight problem.  PCs, for 
instance, do not simply have an 
operating system, they also have a BIOS 
(Basic Input Output System) the 
operating system is built on.  That BIOS 
implements the most basic level of I/O 
drivers in the system.  And while the 
multicore embedded processor needs no 
central operating system, it still has the 
need for basic input / output drivers.  
And if we are going to avoid the idea of 
central, shared memory we are going to 
have to accept the idea of each core 
processor having its own BIOS. 

Since each core has its own ROM 
memory, it also has the ability to have its 
own BIOS.  In addition to simple input / 
output functions, the core processor 
BIOS can have all sorts of helper 
routines as well.  These BIOS routines 
are not simply copies, replicated in each 
core’s ROM across the chip.  They must 
be individualized to handle the 
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individual personalities of the cores.  
Although the cores themselves are the 
same, their location within the chip array 
makes them unique.  Some connect to 
certain types of I/O, while others 
connect to other cores.  Cores in the 
middle of the array probably have no 
external I/O at all beyond the shared 
registers that are used for inter-core 
communications. 

Multiple I/O Interfaces 
As embedded processors have moved 
from the original form of the 8048/8051 
to modern processors, the nature of the 
I/O has changed as well.  This is true 
regardless of whether we’re discussing 
single processors or multiple core 
processors.  Whereas originally simple 
parallel I/O lines plus a serial interface 
was sufficient, chips today must 
interface with other predetermined 
interfaces like USB, 1394, and SPI 
(Serial Protocol Interface). 

Today there are hundreds of peripheral 
chips utilizing the SPI interface, and a 
processor chip that provides a SPI 

interface (or multiple SPI interfaces).  
This opens up a world of inexpensive, 
powerful peripheral functions that can be 
easily incorporated into the system. 

Scaleable Embedded Arrays 
All of this time we’ve been discussing 
multicore chips without regard for the 
layout, the arrangement of the cores.   
But if the cores are identical, outside of 
their ROM contents that is, then the 
number of cores in the array is largely 
arbitrary and is set by the simple 
economics of the chip size as related to 
the demands of specific applications for 
processing power.   

Chips laid out by simply replicating 
cores makes them scaleable – if there are 
not enough cores to do the job, pick one 
with more.  Additionally, many (but not 
all) of the same structures available for 
inter-core communications are also 
available as cores communicate from 
chip to chip.  Accordingly, applications 
can be scaled by adding multiple chips 
to increase the number of cores, 
memory, and I/O.

IntellaSys specializes in innovating multicore processor solutions that target embedded 
applications requiring low-power operation, fast operating speed and a small footprint.  For more 
information visit: www.intellasys.net. 

 

 


