
21st EuroForth Conference

October 21-23, 2005

Santander, Spain

3

Preface

EuroForth is an annual conference on the Forth programming language, stack
machines, and related topics, and has been held since 1985. The 21th Euro-
Forth finds us in Santander for the first time. The two previous EuroForths
were held in Ross-on-Wye (2003) and in Schloss Dagstuhl (2004). Infor-
mation on earlier conferences can be found at the EuroForth home page
(http://dec.bournemouth.ac.uk/forth/euro/index.html).

Since 1994, EuroForth has a refereed and a non-refereed track. This year,
no papers were submitted to the program chair for refereeing.

A number of papers were submitted to the non-refereed track in time to
be included in these proceedings. In addition, a number of abstracts were
submitted for talks at the conference. Workshops and social events comple-
ment the program. The conference is preceded by a Forth200x standards
meeting.

We are grateful to Federico de Ceballos for organizing this year’s Euro-
Forth.

Anton Ertl

Program committee

Sergey N. Baranov, Motorola ZAO, Russia
M. Anton Ertl, TU Wien (chair)
David Gregg, University of Dublin, Trinity College
Phil Koopman, Carnegie Mellon University
Jaanus Pöial, Estonian Information Technology College, Tallinn
Bradford Rodriguez, T-Recursive Technology
Reuben Thomas

4

Contents

Abstracts without papers . 5
M. Anton Ertl, David Gregg: Stack Caching in Forth . 6
M. Anton Ertl, Bernd Paysan: Xchars or Unicode in Forth 16
Angel Robert Lynas, Bill Stoddart: SuDoku Solver Case Study: from speci-
fication to RVM-Forth (part I) . 21
N.J. Nelson, C. Williams: First experiences with Microcore 35
N.J. Nelson, K.B. Swiatlowski: Self Documenting Sequences 45
Federico de Ceballos: Simplicity in Forth . 51
Stephen Pelc: XML, SOAP and Web Services in Forth 57

5

Abstracts

Type checking FORTH

Jürgen Pfitzenmaier

Part I

The ANS standard for FORTH states in A.3.1.3.3 the one-to-one relationship
between addresses and unsigned numbers. This relationship can be applied in
two different ways: Using this relationship a lot (this is backed by the reading
of the current standard) or making only sparse use of this relationship. We
show that this relationship can make type checking FORTH unsound. A
few conservative changes to the standard would suppress the relationship in
most cases and enable a sound type checking without the need to change an
existing FORTH implementation. We give examples showing the problems
in the current standard and the proposed solutions.

Part II

The stack notations in the current ANS standard for FORTH are neither
sufficient to describe the role of execution tokens nor sufficient to describe
the semantic actions of deferred execution, or of the words IF and DOES¿
when it comes to type checking. A detailed example shows the necessary
conservative changes to the standard and how IF can be type checked.

Part III

Full type checking of a FORTH program needs (at least) one nonconservative
deviation from the ANS standard: the implementation dependent size on
stack of the data types colon-sys, do-sys, ..., nest-sys must be looked up by
an environmental query.

6

Stack Caching in Forth

M. Anton Ertl∗

TU Wien

David Gregg

University of Dublin, Trinity College

Abstract

Stack caching speeds Forth up by keeping stack
items in registers, reducing the number of mem-
ory accesses for stack items. This paper describes
our work on extending Gforth’s stack caching imple-
mentation to support more than one register in the
canonical state, and presents timing results for the
resulting Forth system. For single-representation
stack caches, keeping just one stack item in registers
is usually best, and provides speedups up to a factor
of 2.84 over the straight-forward stack representa-
tion. For stack caches with multiple stack repre-
sentations, using the one-register representation as
canonical representation is usually optimal, result-
ing in an overall speedup of up to a factor of 3.80
(and up to a factor of 1.53 over single-representation
stack caching).

1 Introduction

In threaded-code interpreters for Forth, and espe-
cially in simple inline-expanding native-code com-
pilers a significant part of the run-time is consumed
by loading stack items from and storing them to
memory, and by stack pointer updates.

A frequent technique for reducing that overhead
is to keep the top-of-stack in a register. Stack
caching [Ert95] is a generalization of this technique.
In the past we have presented data based on sim-
ulations [Ert95], and timing data with restricted
forms of stack caching: Gforth was only able to per-
form single-state stack caching with one register,
and static stack caching with the canonical state
containing 0 or 1 registers [EG04].

In this paper, we describe how we lifted these
restrictions (Section 3), and present empirical re-
sults, including timing results for several different
machines (Section 4).

2 Background

This section gives an overview of stack caching
[Ert95, EG04].

∗Correspondence Address: Institut für Computer-

sprachen, Technische Universität Wien, Argentinierstraße 8,

A-1040 Wien, Austria; anton@mips.complang.tuwien.ac.at

spr9

registers memory

TOS
2nd

load r1=0(r9)
load r2=4(r9)
add r9=r9,4
sub r1=r2,r1
store 0(r9)=r1

machine code for −

Figure 1: A straight-forward representation of the
stack

sp

r1

r9

registers memory

TOS

2nd

load r2=0(r9)
add r9=r9,4
sub r1=r2,r1

machine code for −

Figure 2: Keeping the top-of-stack in a register

2.1 Stack representation

A straight-forward representation of the stack is to
keep all stack items in memory, and have a stack
pointer that points to the top-of-stack (Fig. 1). This
requires a memory access for every stack accessed
stack item.

A frequently used improvement over the straight-
forward representation is to keep the top-of-stack in
a register (Fig. 2). This makes the frequent accesses
to the top-of-stack substantially cheaper.

2.2 Using several registers

One might consider keeping more stack items in reg-
isters all the time. However, this does not necessar-
ily lead to an improvement in running time, because
with many stack items in registers, changing the
stack depth often requires additional moves between
registers (Fig. 3). Whether more stack items pro-
vide a speedup, depends on the mix of primitives,

7

Ertl, Gregg Stack Caching in Forth

sp

r1

r9

registers memory

TOS

5th

sub r1=r2,r1
move r2=r3
move r3=r4
load r4=0(r9)
add r9=r9,4

machine code for −

r2 2nd
r3 3rd
r4 4th

Figure 3: Keeping the four top stack items in reg-
isters

sp
2nd

r1

TOS
sp

TOS

3rd

r1

sp

2nd
r2 TOS

registers memoryregisters memoryregisters memory

r9 r9r9

representation 0
no items in regs

representation 1
1 item in regs

representation 2
2 items in regs

#before: rep 2
sub r1=r1,r2
#after: rep 1

#before: rep 1
load r2=0(r9)
add r9=r9,4
sub r1=r1,r2
#after: rep 1

#before: rep 0
load r2=0(r9)
load r1=4(r9)
add r9=r9,8
sub r1=r1,r2
#after: rep 1

machine code for −

Figure 4: A stack cache with multiple stack repre-
sentations

and on the characteristics of the machine executing
the code.

In the past we have presented only simulation
results for stack caches with more than one register.
In this work we present timing results from real
machines.

2.3 Multiple stack representations

To avoid the cost of the register moves (and other
costs) when changing the stack depth, one could
change the stack representation during the execu-
tion of a primitive (Fig. 4); note how cheap - be-
comes when it starts in representation 2 and is al-
lowed to finish in representation 1. Of course, then
the next primitive executed has to be in a version
that starts in representation 1 (or we have to insert
additional code that switches between representa-
tions). So, in order to make profitable use of this,
we need different implementations of at least the
common primitives, for different stack representa-
tions.

2.4 Static stack caching

How do we get the right version of the primitive to
execute? There are at least two ways, but the more
promising one is static stack caching: The compiler
keeps track of the stack representation, and for each
primitive it has to compile, it compilers an appro-
priate version of the primitive.

This approach requires that the stack representa-
tion is the same when two control flow paths join.
Moreover, for simplicity in the compiler it is best
if the stack representation is the same at all points
where control flow can happen (in compiler termi-
nology, at all basic block boundaries); this represen-
tation is the canonical stack representation.

In earlier work, we only had simulation results
for static stack caching [Ert95], or timing results
where the canonical stack representation could have
at most one register [EG04]. In the present work,
we present timing results for stack caches with other
canonical states.

3 Implementation

3.1 Interpreter generator

The code for Gforth’s primitives is written in a mix-
ture of Forth and C. E.g., here is the code for the
primitive +:

+ (n1 n2 -- n) core plus

n = n1+n2;

An interpreter generator [EGKP02] translates
this code into (GNU) C code, and gcc then trans-
lates it into an executable interpreter.

One important aspect of the interpreter genera-
tore is that it generates all the stack access code for
a primitive from the specification of the stack effect
in the first line of the primitive’s specification.

To implement stack caching, we generalized the
access-generating code to deal with arbitrary stack
representations, including different representations
before and after the primitive. We also added ways
to specify stack representations, and to determine
which versions of a primitive are generated.

One problem in this context were primitives
that access a stack pointer explicitly in their C
code, either because they have to manipulate it
(e.g. sp!), or because they do something beyond
the descriptive powers of the stack effect speci-
fication in the interpreter generator (e.g., ?dup).
The primitives affected in Gforth are: sp@ sp!

fp@ fp! ?dup ?dup-?branch ?dup-0=-?branch

pick >float fpick and some C call interface
primitives.

In our first foray into multi-state stack caching
[EG04], we just left these primitives alone, so that
they would just keep working with 0 or 1 stack items

8

Ertl, Gregg Stack Caching in Forth

in registers. However, this restricted the canonical
stack representations we could use to just those with
0 or 1 stack items in registers.

In the present work, we eliminated this restric-
tion: You can now put the string ... (possibly
prefixed by a stack prefix) into the stack effect de-
scription of a primitive; this causes the generator
to flush all the cached stack items to memory and
let the stack pointer(s) point to the top-of-stack,
thus presenting the C code with the straightforward
stack representation (Fig. 1); after the C code, stack
items are loaded into registers and the stack pointer
is adjusted as is necessary for the representation af-
ter the primitive. Here is an example:

pick (S:... u -- S:... w) core-ext

w = sp[u];

Here the S:... indicates that the data stack has
to be flushed before and reloaded after the primi-
tive. An additional advantage of this approach is
that these primitives became much easier to under-
stand than they used to be; before this extension,
one had to consider the kind of code that the gener-
ator would produce, often with conditional compi-
lation for dealing with the differences between using
0 or 1 register.

3.2 Code generator

When Gforth compiles Forth code (or loads the sys-
tem image), it has to select which versions of the
primitives (out of several with different input and
output stack representation) should be used. This
selection is performed by C code that hooks into the
Forth compiler via compile, and is also called from
the loader. This code generator uses a shortest-
path algorithm for selecting the optimal sequence of
primitive versions (optimality criterion: minimum
sum of the native-code sizes of the primitive ver-
sions). This code generation process is described in
more detail in our earlier work [EG04].

3.3 Effects on Forth code

To work correctly with stack caching, the colon defi-
nitions must not access stack items in memory (with
sp@ and memory operations). Fortunately, there
was only one colon definition in the Gforth system
that did this: roll. This definition was changed
into one that does not use sp@ and does not use
memory operations to access stack items.

In addition to that, there were some very small
changes to make the static stack caching code gener-
ator (written in C) aware of control flow joins (then,
begin).

These were the only changes that were needed in
the Forth code of the Gforth system, so the changes
for static stack caching were fairly local.

3.4 GCC issues

Stack caching introduces additional versions of the
primitives. The versions of Gforth we used for the
present work contain around 1200 primitives and
their versions: 355 basic primitives (starting and
ending in the canonical state), 795–848 versions
of popular primitives for other transitions between
stack representations, and 13 superinstructions (de-
activated in our experiments).

In older versions of GCC and with our old way of
coding NEXT in the primitives, having so many
primitives and their versions resulted in a huge
memory consumption (several hundred MB) and
long compile times (on the order of a half-hour).

With more recent GCC versions, this problem
was not present, but they generated code that dis-
abled dynamic superinstructions, a very profitable
optimization in Gforth that is also essential for our
implementation of static stack caching.

We worked around both of these problems by
changing the way we code NEXT. Instead of ap-
pending the NEXT sequence including an indirect
goto (goto *) to each primitive, we just have one
indirect goto (very early) in the whole function. At
the end of each NEXT, we append a direct goto to
this indirect goto:

engine(...)

{

...

before_goto:

goto *real_ca; /* indirect goto */

after_goto:

...

I_plus:

... /* all of + except NEXT */

ip++; /* maintain ip for accessing

immediate arguments */

K_plus:

real_ca = ip[-1]; /* NEXT, part 2 */

J_plus:

goto before_goto;

... /* other primitives */

}

For dynamic superinstructions, when we want
to generate the code for a + without a NEXT,
we copy the code between I plus and K plus to
the native-code area of the current definition. But
if we want to include the NEXT (normally that
only happens for branching primitives), we copy the
code between I plus and J plus, and append the
code between before goto and after goto; this
avoids the problems with the non-relocatability of
the goto before goto.

The benefit of this workaround in our context is
that even older gccs compile gforth-fast with the
1200 primitive versions in around a minute (on a

9

Ertl, Gregg Stack Caching in Forth

1066MHz PPC7447A), using about 50MB of RAM.
With newer gcc versions we get engines where dy-
namic superinstructions work.

The downside of this workaround is that, if dy-
namic superinstructions are disabled for some rea-
son, the the Forth system runs significantly slower
than the old version of Gforth would run when com-
piled with an older version of gcc: The additional
direct branch per primitive costs time; and on CPUs
with branch target buffers (e.g., various Pentiums
and Athlons), the shared indirect branch has sig-
nificantly worse branch prediction than the sepa-
rate indirect branches had. However, ideally dy-
namic superinstructions are enabled in all situations
where performance is important, so this disadvan-
tage should not be a problem.

4 Results

4.1 Hardware

The main component that determines the perfor-
mance in our benchmarks is the CPU. We used
three different hardware platforms with different
CPUs: a 450 MHz PPC7400 (PowerMac G4), a
1066MHz PPC7447A (iBook G4), and a 2000MHz
PPC970 (PowerMac G5). The PPC7400 is a
shallowly pipelined CPU (4 stages in the integer
pipeline) that can issue up to two instructions per
cycle; the PPC7447A is a deeper (7 stages) and
wider (triple-issue) CPU; and the PPC970 is very
deep (16 stages) and very wide (five-issue).

So we can expect to see some performance differ-
ences from these CPUs, even though they have the
same architecture. We use the PPC architecture
for our experiments, because gcc is able to allocate
many registers for the stack cache on this archi-
tecture, unlike on other architectures we have tried
(Alpha, MIPS, AMD64, ARM); we believe that this
is caused by the much higher number of callee-saved
registers in the PPC calling convention compared to
other calling conventions.

All of these machines were running Linux, and
we benchmarked the same executable programs on
all of them.

4.2 Forth systems

We built nine Gforth engines, all of them with 8
registers usable for stack caches. The engines dif-
fer in the canonical stack representation they sup-
port, one for each number of registers (0–8). The
other stack representations can be controlled using
a command-line parameter. E.g., we ran the en-
gine built for the canonical state with three reg-
isters with just one stack state to get results for
single-representation stack caching with three regis-
ters. We also ran it restricted to the representations

Program Vers. Lines Description

cross 0.6.9 3793 Forth cross-compiler

tscp 0.4 1625 chess

brainless 0.0.2 3519 chess

vmgen 0.6.9 2641 interpreter generator

bench-gc 1.1 1150 garbage collector

CD16sim 1.1 937 CPU emulator

brew t 38 31401 evolutionary playground

pentomino 516 puzzle solver

sieve 23 prime counting

bubble 74 bubble sort

matrix 55 integer matrix multiply

fib 10 double-recursive function

Figure 5: Benchmark programs used

with 0–3 registers with the three-register represen-
tation being canonical; similarly for 0–4 registers up
to 0–8 registers. In this way the 9 basic engines were
used for evaluating 53 stack caching organizations.

Even though we built the engines with a few
static superinstructions, we disabled them in bench-
marking, because the combination of static stack
caching and static superinstruction is not supported
yet, so the static superinstructions just work in the
canonical state, and enabling them might suppress
some of the effects of stack caching (to a greater
extent than an proper combination of stack caching
and static superinstructions would).

The engines were built with gcc-4.0.1 (Debian
4.0.1-2).1

4.3 Benchmarks

Figure 5 shows the benchmarks we used for our ex-
periments. In addition to timing results, we also
present instruction, load, and store counts; they
were collected using the performance monitoring
counters of the PPC7447A and the perfex utility
of the perfctr patch for Linux. We use the same
executables on all machines, so the number of ex-
ecuted instructions, loads, and stores are the same
on all of them. We ran each benchmark three times
for each configuration, and present the median of
the three runs.

4.4 Run-time and instructions

Figure 6 shows the number of instructions executed
by the benchmark Brainless. The line labeled n

1We suspected that auto-increment load and store in-

structions combined with the selection of which stack item

the stack pointer points to might influence the results, so

we also performed experiments with compiling with the

-mno-update flag, which suppresses generating code that uses

auto-increments. However, the results were essentially the

same either way, so our suspicion was disproved. In this

paper, we report the results without -mno-update.

10

Ertl, Gregg Stack Caching in Forth

n

0-1
0-2

0-3
0-4

0-5
0-6

0-7
0-8

0 1 2 3 4 5 6 7 8
canonical regs
n

instructions

0.5

0.7

1.0

1.4

Figure 6: Instructions executed by Brainless

n

0-1
0-2 0-3

0-4
0-5

0-6
0-7

0-8

0 1 2 3 4 5 6 7 8
canonical regs
n

time PPC7447A

0.5

0.7

1.0

1.4

Figure 7: Brainless run-time on PPC7447A

n

0-1

0-2 0-3

0-4
0-5

0-6
0-7

0-8

0 1 2 3 4 5 6 7 8
canonical regs
n

time PPC7400

0.5

0.7

1.0

1.4

Figure 8: Brainless run-time on PPC7400

n

0-1

0-2 0-3
0-4

0-5 0-6 0-7 0-8

0 1 2 3 4 5 6 7 8
canonical regs
n

time PPC970

0.5

0.7

1.0

1.4

Figure 9: Brainless run-time on PPC970

11

Ertl, Gregg Stack Caching in Forth

represents the stack caches with a single stack rep-
resentation; that stack representation is indicated
by the position on the x-axis. The lines labeled 0–x

represent stack caches using stack representations
with 0 to x registers; the canonical representation
is indicated by the position on the x-axis.

Figure 7, 8 and 9 show timing results for Brainless
on different CPUs.

Figure 12, 13, 14 and 15 show instruction counts
and timing results for all benchmarks; two single-
representation results are shown per benchmark:
for keeping one stack item in a register all the time,
and the best single-representation scheme for the
benchmark (this may be different from the best
scheme for other benchmarks). Similarly, for the
multiple-state schemes the scheme with up to three
registers (0-3) with the canonical representation
keeping one stack item in a register is shown, and
the best multi-representation scheme for the bench-
mark.

Which canonical representation?

For the multiple-representation stack caches, once
the number of registers available exceeds those in
the canonical representation by two or more, all
caches with the same canonical representation per-
form about the same. The number of instructions
executed is smallest for the canonical stack rep-
resentation with one register (except for some of
the smaller benchmarks). Similarly, for the single-
representation stack caches, the one with one regis-
ter executes the least instructions.

The PPC7400 timings behave quite similar to the
instruction counts, although the timing reduction
is somewhat higher than the instruction reduction;
on the PPC7447A and especially the PPC970 the
times for canonical representations with more than
one registers rise much more slowly (and sometimes
not at all).

Nevertheless, even on those CPUs using the one-
register representation as canonical representation
or, for single-representation stack caches, as the rep-
resentation is optimal for many benchmarks, and
close to optimal on the others.

How many registers?

With the canonical representation set to using one
register, how many registers should be used for a
multiple-representation stack cache? More than
three registers does not help much (see Section 5
for an explanation); so if three registers are avail-
able, they should be used. Two registers are almost
as good, but with just one register, the speedup over
the one-register single-representation stack cache is
tiny.

n
0-1

0-2 0-3 0-4 0-5 0-6 0-7 0-8

0 1 2 3 4 5 6 7 8
canonical regs
n

loads/insts

0

0.3

0.4

Figure 10: Load instructions executed dynamically
by Brainless

n
0-1

0-2 0-3 0-4 0-5 0-6 0-7 0-8

0 1 2 3 4 5 6 7 8
canonical regs
n

stores/insts

0

0.05

0.1

0.15

Figure 11: Store instructions executed dynamically
by Brainless

Are multiple representations worthwhile?

In the setup we evaluated, the 0-3 stack cache
with the one-register canonical representation pro-
vides up to a factor of 1.53 speedup (Pentomino on
the PPC7400) over the single-representation stack
cache with one register. If enough registers are
available (at least two), the speedup may well be
worth the implementation cost.

Benefit of single representation

While the case for multiple stack representations
depends on the circumstances, the case for keep-
ing one stack item in registers all the time is pretty
clear. For a tiny increase in implementation com-
plexity we get a significant increase in performance,
in particular on the PPC970. In earlier work
[EGKP02] we have also tested this on other CPUs;
the results were not as spectacular as for the PPCs,
but still worthwhile.

12

Ertl, Gregg Stack Caching in Forth

cross
tscp

brainless
vmgen

bench-gc
CD16

brew
pentomino

siev
bubble

matrix
fib

instructions

0.6

0.7

0.8

0.9

1.0 single rep: 1 reg best single rep multi rep: 0-3, canonical: 1 reg best multi rep

Figure 12: Instructions executed dynamically relative to the straight-forward stack representation

cross
tscp

brainless
vmgen

bench-gc
CD16

brew
pentomino

siev
bubble

matrix
fib

speedup PPC7400

2

1.4

1.0

single rep: 1 reg best single rep multi rep: 0-3, canonical: 1 reg best multi rep

Figure 13: Speedup on the PPC7400 over the straight-forward stack representation

cross
tscp

brainless
vmgen

bench-gc
CD16

brew
pentomino

siev
bubble

matrix
fib

speedup PPC7447A

2

1.4

1.0

single rep: 1 reg best single rep multi rep: 0-3, canonical: 1 reg best multi rep

Figure 14: Speedup on the PPC7447A over the straight-forward stack representation

13

Ertl, Gregg Stack Caching in Forth

cross
tscp

brainless
vmgen

bench-gc
CD16

brew
pentomino

siev
bubble

matrix
fib

speedup PPC970

4

2.8

2

1.4

1.0

single rep: 1 reg best single rep multi rep: 0-3, canonical: 1 reg best multi rep

Figure 15: Speedup on the PPC970 over the straight-forward stack representation

Loads and Stores

Figure 10 and Fig. 11 shows the number of exe-
cuted loads and stores as proportion of the number
of executed instructions.

Stack caching reduces both loads and stores by
about the same number. However, there is a big
baseline of loads that do not perform stack accesses,
which is the reason for the difference in the way the
pictures look.

One big contributor to this baseline is that each
primitive still loads the address of the next one.
This is mostly redundant in the context of dynamic
superinstructions and could be optimized away.

The significance in the number of loads and stores
is that some CPUs have particular performance is-
sues related to these instructions. In particular,
there are a number of CPUs that are store-limited,
because their writes go off-chip (no on-chip caches,
or only write-through on-chip caches); CPUs of
this class are the 486DX2 and some 486DX4s, the
MicroSPARC II, the 21064 and the 21164PC; for
newer high-performance CPUs this is a problem of
the past, but it might show up in embedded systems
(and sometimes as a bug workaround elsewhere).
For store-limited CPUs the speedup can be directly
proportional to the reduction in stores.

n0-1

0-2

0-3

0-4

0-5

0-6

0-7

0-8

0 1 2 3 4 5 6 7 8
canonical regs
n

time PPC7447A

1.0

1.4

2.0

2.8

Figure 16: Gforth startup time

14

Ertl, Gregg Stack Caching in Forth

n

0-1 0-2
0-3

0-4

0-5

0-6

0-7

0-8

0 1 2 3 4 5 6 7 8
default regs (n)

code size

0.8

0.9

1.0

1.2

1.4

Figure 17: Code size of the dynamically generated
native code for the Gforth image

4.5 Compile time

The time taken by the shortest-path algorithm used
in the code generator (Section 3.2) takes time lin-
ear with the number of stack representations. This
affects the startup time of Gforth (where the code
generator is applied to the code of the image file),
and the compilation speed. Figure 16 shows the re-
sulting changes in the startup time. Note that even
with 9 representations, the startup time of Gforth
on the 1066MHz PPC7447A is still only 0.05s, so
in most applications this is not a serious problem;
however, it is visible in the results of short-running
benchmarks.

It is possible to have a faster code generator that
uses a two-pass automaton and has performance in-
dependent of the number of stack representations,
but we have not implemented that (yet).

4.6 Code size

The code size is also affected by stack caching
(Fig. 17). With a single stack representation with
one register, the code is 0.94 times as large as with-
out stack caching. With multiple representations
the code size can be reduced to 0.86 times the size
without stack caching.

However, the additional primitive versions neces-
sary to make multiple representations effective also
should be added to the code size; for the engine with
0–8 registers, with one register for the canonical rep-
resentation, the additional code size is 26068 bytes
for the primitives alone; the additional code size for
0–3 registers would be significantly smaller, proba-
bly around 10KB. For the Gforth image alone going
from always-1 to 0–3 registers saves 24024 bytes, so
multiple-representation stack caching can pay for
itself already before compiling any additional code.

length

basic blocks

1 5 10 >15
0

1000

2000

3000

Figure 18: Number of primitives per basic block
(static) for Brainless

On the other hand, at least Gforth needs another
copy of the additional primitives (for determining
relocatability), plus embedded padding, plus some
tables describing the additional primitives. And for
a smaller image, the savings would be smaller. So
multi-representation stack caching does not neces-
sarily reduce the code size.

Moreover, if code size is at a premium, the user
would not use dynamic superinstructions, and there
would be no code size savings from multiple repre-
sentations, only the cost of the additional primi-
tives.

5 Further work

The improvement of multiple-representation stack
caching over single-representation stack caching is
a little disappointing. One reason for this could
be that the basic blocks in Forth code are very
short, forcing a return to the canonical represen-
tation very often (Fig. 18). In particular, for the
large number (45% for Brainless) of basic blocks
with length one there is no difference between a
multiple-representation stack cache and a single-
representation stack cache. So, given this basic
block length distribution, it is not very surprising
that there is not that much performance difference
between single and multiple representations.

So if we apply optimizations that make the ba-
sic blocks longer, we might see quite different re-
sults than those in this paper. For Forth the most
promising of these optimizations is inlining [GE04].
We will investigate the effect of inlining in the fu-
ture.

6 Related Work

Stack caching was first published by DeBaere and
Van Campenhout [DV90], who presented a small
example of dynamic stack caching.

15

Ertl, Gregg Stack Caching in Forth

Ertl [Ert95] discussed stack caching in more de-
tail, including various stack cache organizations,
static and dynamic stack caching, and presented
results in numbers of eliminated loads, stores, and
stack pointer updates, but produced no full imple-
mentation.

Sun’s Hot Spot JVM system performs dynamic
stack caching in its interpreter part [Gri01]: It
caches up to one stack item in registers; for each
of the four types (int, long, float, double), it has a
separate state that represents the presence of one
stack item of this type in registers (different reg-
isters are used for some of these types). It is not
necessary to implement instances of all instructions
for all states, because the type rules of the JVM
disallow many state/instruction combinations.

Ogata et al. [OKN02] implemented dynamic stack
caching with up to two registers, but eventually
dropped it because the speedup from that on their
Power3 machine was not large enough (1%–4% over
single-state stack caching) to justify the complexity.

The differences between the present paper and
these papers is that we present an implementation
of static stack caching.

Peng et al. [PWL04] introduce a technique for
saving real-machine code space in static stack
caching (with an unconventional stack cache orga-
nization) by arranging the code for the VM instruc-
tion instances such that they share one piece of
code, with different entry points for the different in-
stances. The difference between this paper and our
work is that we combine static stack caching with
dynamic superinstructions and that we use differ-
ent and more stack cache organizations (designed
for execution speed, not code sharing).

In our earlier work [EG04], we already com-
bined static stack caching with dynamic superin-
structions. In this work we expand on that work by
implementing stack caching with arbitrary canon-
ical representations, and evaluating the resulting
stack cache organizations. We also discuss issues
related to high-level Forth code and some issues we
had with gcc and how we solved them; also, in the
present paper we only give an overview over the
code generation topics that were discussed in depth
in our earlier papers.

7 Conclusion

For single-representation stack caching, keeping one
stack item (the top-of-stack) in a register is usu-
ally optimal; the resulting speedup (over using the
straight-forward stack representation) depends on
the benchmark and the CPU, and can reach up to
a factor of 2.84 (pentomino on PPC970); however,
on most other CPUs the speedups are significantly
smaller.

For multiple-representation stack caching, using
a canonical state with one register is often opti-
mal; with that fixed, using more than three regis-
ters for the stack cache provides little benefit. This
stack cache organization provides speedups of up
to a factor 3.80 (matrix on PPC970), but again the
results on other CPUs and other benchmarks are
often considerably less. The speedup of using this
stack caching scheme over single-stack stack caching
can reach up to a factor of 1.53 (pentomino on
PPC7400). Optimizations that make basic blocks
longer (e.g., inlining) might change these results.

References

[DV90] Eddy H. Debaere and Jan M. Van
Campenhout. Interpretation and In-
struction Path Coprocessing. The MIT
Press, 1990.

[EG04] M. Anton Ertl and David Gregg. Com-
bining stack caching with dynamic su-
perinstructions. In IVME ’04 Proceed-
ings, pages 7–14, 2004.

[EGKP02] M. Anton Ertl, David Gregg, Andreas
Krall, and Bernd Paysan. vmgen — a
generator of efficient virtual machine in-
terpreters. Software—Practice and Ex-
perience, 32(3):265–294, 2002.

[Ert95] M. Anton Ertl. Stack caching for inter-
preters. In SIGPLAN ’95 Conference
on Programming Language Design and
Implementation, pages 315–327, 1995.

[GE04] David Gregg and M. Anton Ertl. Inlin-
ing in Gforth: Early experiences. In Eu-
roForth 2004 Conference Proceedings,
2004.

[Gri01] Robert Griesemer. Interpreter gener-
ation and implementation utilizing in-
terpreter states and register caching.
Patent 6192516 B1, US, 2001.

[OKN02] Kazunori Ogata, Hideaki Komatsu,
and Toshio Nakatani. Bytecode fetch
optimization for a Java interpreter.
In Architectural Support for Program-
ming Languages and Operating Systems
(ASPLOS-X), pages 58–67, 2002.

[PWL04] Jinzhan Peng, Gansha Wu, and Guei-
Yuan Lueh. Code sharing among states
for stack-caching interpreter. In IVME
’04 Proceedings, pages 15–22, 2004.

16

Xchars

or

Unicode in Forth

First Experiences

M. Anton Ertl∗

TU Wien

Bernd Paysan

Abstract

When dealing with different scripts at the same
time (e.g., Latin, Greek, Cyrillic), or with Chinese
ideograms, 8-bit fixed-width characters are too nar-
row. However, many Forth programs have an en-
vironmental dependency on 1 chars = 1, so just
making Forth characters wider would cause quite
a lot of portability problems. We propose to add
xchars for dealing with potentially wider, variable-
width characters. This extension is relatively pain-
less, requiring changes in only those program parts
that work with individual characters, if they should
work with the extended characters; uses of string
words need no changes to work with extended char-
acters. The xchar words can also be implemented
on 8-bit-only Forth systems, so programs written to
use xchars can also work on such systems.

1 Introduction

Most Forth systems today support character sets
fitting into 8 bits, such as ASCII (7 bits) and its
8-bit extensions like ISO Latin-1.

However, such 8-bit character sets are not suf-
ficient to support Chinese, Japanese, and Korean
Han ideographs, or to express a text that contains,
say, German, Russian, and Greek words. To ad-
dress this problem, Unicode1 was developed. Uni-
code is a universal character set.

There are several alternative encodings of Uni-
code characters: In UTF-32 each character consists
of 32 bits, in UTF-16 each character consists of 1–
2 16-bit entities, in UTF-8 each character consists
of 1–4 8-bit entities. I.e., UTF-8 and UTF-16 are

∗Correspondence Address: Institut für Computer-
sprachen, Technische Universität Wien, Argentinierstraße 8,
A-1040 Wien, Austria; anton@mips.complang.tuwien.ac.at

1Actually, there were two standards: ISO 10646 and Uni-
code, produced by two different organizations, resulting in
two standards documents; fortunately, the two documents
define the same character set. We use the name Unicode
throughout this paper.

variable-width encodings.

How can Forth accomodate Unicode? ANS Forth
only allows ASCII or only graphic ASCII characters
in many contexts. However, ANS Forth also sup-
ports fixed-width, but large characters; e.g., a Forth
system could use 32-bit characters to support the
UTF-32 encoding of Unicode; since the codes for
the ASCII characters are the same in Unicode, this
would actually be a fully compliant ANS Forth im-
plementation. Indeed, Jax4th was one of the first
ANS Forth implementations and implemented char-
acters as fixed-width 16-bit characters (for the then-
current 16-bit (subset of) Unicode).

However, most Forth programs, even if they
are otherwise mostly ANS Forth compliant, as-
sume that 1 chars produces 1.2 These Forth pro-
grams would not work correctly on a system where
1 chars produces 4, as would be the case with
UTF-32 characters on a byte-addressed machine.
And it is relatively hard to find all the places where
one forgot to insert chars or 1 chars / or where
one used 1+ instead of char+. So going to UTF-32
characters would be a rather painful option.

Fortunately, Forth programs usually do not work
with individual characters (with, e.g., words like
emit) in many places. They work much more of-
ten with strings of characters (with, e.g., words like
type). So if we find a way to deal with Unicode
where string-handling code would continue to work,
and only character-handling code needed changing,
that solution would require much less porting effort
for most programs than using UTF-32 with the ex-
isting character words and an appropriate chars

size.

In this paper, we propose such a solution based on
a new character type (xchars) and words for deal-
ing with that type. In the following paper, we ex-
plain and discuss the new data types and words
(Section 2), look at scenarios for using various en-

2Since all widely used ANS Forth systems have the prop-
erty that 1 CHARS produces 1, it is pretty much impossible
to test that a program does not have this environmental de-
pendency.

17

Ertl, Paysan Xchars

codings and character sizes in Forth systems (Sec-
tion 3), give some examples of using these words
(Section 4), report our experience with implement-
ing these ideas in Gforth (Section 5), and compare
our work to that of others.

2 Glossary

The following set of words is not final. It contains
a number of redundant words, and we might decide
to recommend a smaller set for widespread adop-
tion. Conversely, there might also be words that
are useful and that we missed or are still undecided
(see Section 2.4).

If you are missing string words (like type), that’s
because you can use the ANS Forth string words on
strings containing xchars.

2.1 Data types

xc An xchar (extended character) on the stack. For
Unicode characters this will typically be the
(decoded) Unicode number of the character.

xc-addr The address of an xchar in memory.
Xchar addresses are character-aligned. An
xchar can be represented (encoded) in memory
differently than on the stack.

xc-addr u A string containing xchars. u counts
the chars, not the xchars (or tha aus) in the
string. All ANS Forth string words can be used
on such a string.

2.2 Words

xchar+ (xc-addr1 – xc-addr2) Corresponds
to char+. xc-addr2 is the address of the xc
after xc-addr1.

xchar- (xc-addr1 – xc-addr2) Corresponds
to char-. xc-addr2 is the address of the xc
before xc-addr1.

+x/string (xc-addr1 u1 – xc-addr2 u2)
Corresponds to 1 /string.

-x/string (xc-addr1 u1 – xc-addr2 u2)
Corresponds to -1 /string.

xc@ (xc-addr – xc) Corresponds to c@. Fetch
the xchar at xc-addr onto the stack.

xc@+ (xc-addr1 – xc-addr2 xc) Fetch xc
from xc-addr1; xc-addr2 is the address of the
next xchar.

xc@+/string (xc-addr1 u1 – xc-addr2 u2 xc)
Fetch xc from xc-addr1 and also perform the
action of +x/string.

xc!+? (xc c-addr1 u1 – c-addr2 u2 f) If the
buffer at c-addr1 u1 is big enough for xc, store
xc there, f is true and c-addr2 u2 describe the
rest of the buffer. If the buffer is too small, f
is false and c-addr2 u2 is the same as c-addr1
u1.3

xc-size (xc – u) U is the number of chars that
xc takes when stored in memory.

-trailing-garbage (c-addr u1 – c-addr u2)
Given a string c-addr1 u1 containing xchars
and further chars that do not form a complete
xchar, c-addr u2 is the same string with only
the complete xchars.

wcwidth (xc – u) U is the display width of xc
on a monospaced display. Currently this word
can produce the values 0, 1, 2.

display-width (xc-addr u – u2) u2 is the dis-
play width of the string xc-addr u on a
monospaced display.

Ambiguous conditions exist, if the xchar(s)
read from memory by xchar+ xchar-

+x/string -x/string xc@ xc@+ xc@+/string

display-width are not properly encoded xchars4,
or if the count would underflow (for +x/string

xc@+/string -trailing-garbage).
In addition, words like key, emit, char and

[char] have to be extended to work with xchars.

2.3 Requirements and Guarantees

An encoding to be used with the xchar words must
have the following properties:

1. The length of an xchar can be determined in
forward processing (every encoding has that
property).

2. The length of an xchar can be determined
in backwards processing (not every encoding
has this property, but UTF-8, UTF-16, some
encodings for Asian languages, and of course
fixed-width encodings have it).

3. Partial xchars can be recognized (this is usually
a consequence of backwards processability).

4. The on-stack representation of ASCII charac-
ters is the ASCII number (so that char, emit
etc. work as expected).

3Bernd Paysan’s reference implementation also cantains a
word xc!+ (xc xc-addr1 -- xc-addr2), but this word is
cumbersome to use safely and easy to use not safely, leading
to buffer overflows (like C’s strcat()).

4E.g., in UTF-8, if an ASCII character is followed by a
character in the range $80–$bf, or if the xchar is not encoded
in the shortest possible sequence.

18

Ertl, Paysan Xchars

In addition, the following property is needed to
ensure that all ANS Forth programs work on a
system with xchars when processing ASCII-only
strings (which is the only case that ANS Forth ac-
tually covers):

5. The in-memory encoding of ASCII characters
is the same for xchars and chars.

2.4 Input and output

The xchars words were designed for having one uni-
versal encoding used throughout the Forth system.
However, Forth code might have to deal with other
encodings on I/O.

For I/O of text files (and other things supported
by the Forth system with a file-like interface) in a
specific encoding, the encoding of the external text
could be specified in the fam (file access mode) pa-
rameter of open-file (with a bin-like word), and
the reading and writing words would perform the
conversion between the external and the internal
encoding. One consequence of this conversion is
that you usually cannot use file positions for such
files in calculations to compute other file positions
(because the size of the data in the file has little re-
lation to the size of the data in the Forth system).

For text fields in binary files (e.g., Java .class

files), the file has to be read/written in binary mode,
and the text fields have to be converted between
the external and the internal encoding with string
conversion words.

These ideas have not been implemented in Gforth
yet, and there are no word specifications yet.

2.5 Multiple internal encodings

Some people have suggested words for changing the
Forth-internal encoding at run-time. We did not
design xchars for such an environment, and would
probably design an extension for such an environ-
ment differently. The way to deal with different
encodings in the outside world in the xchars con-
text is to convert them all to a universal encoding
in the Forth system, and convert back on output.

The technical problem with switching between
the internal encodings is that existing strings will
continue to be in the old encoding, and interpret-
ing them in the context of the new encoding will
produce wrong results. So the program would have
to keep track of which strings are in which encod-
ings and always switch around between encodings,
which is cumbersome and error-prone. And if two
strings containing different encodings have to be
used in the same operation (e.g., in compare), there
is no way to set the switch right (and actually, with
our xchars proposal compare does not encoding-
dependent work).

3 Implementation scenarios

3.1 8-bit xchars and 8-bit chars

That is very easy to implement on top of current
systems. It may appear pointless, but it allows to
run code that uses xchars on systems that only deal
with 8-bit characters. And it allows developing code
on such systems that should work on systems with
more featureful xchar implementations (although
one should probably still test on a more featureful
system). Gforth implements this scenario.

3.2 UTF-8 xchars and 8-bit chars

This combination satisfies all the requirements
above (including requirement 5), as well as sat-
isfying the widespread environmental dependency
on 1 chars = 1 (on byte-addressable machines).
Moreover, the memory representation of a non-
ASCII xchar consists only of non-ASCII chars; this
means that even some programs working on individ-
ual characters will work on strings containing non-
ASCII xchars, e.g., if the program searches for an
ASCII character. Gforth implements this scenario.

3.3 UTF-32 xchars and 32-bit chars

This scenario satisfies all the requirements above
(including requirement 5), but (on byte-addressable
machines) not the environmental dependency on
1 chars = 1. Xchars don’t make much sense in
that scenario, classical ANS Forth characters do ev-
erything they do.

3.4 UTF-32 xchars and 8 bit chars

This scenario satisfies all the requirements above ex-
cept requirement 5; in addition it satisfies the envi-
ronmental dependency on 1 chars= 1. While such
a system does not conform to ANS Forth (because
requirement 5 is not satisfied), it probably takes less
effort to port most programs to such a system than
to a system like that in Section 3.3.

If this scenario would become the standard sce-
nario, it would make sense to define a different
wordset optimized for fixed-width wchars for it
rather than our xchars wordset, which is designed
for dealing with variable-width characters.

3.5 Other scenarios

Scenarios involving UTF-16 have similar tradeoffs
to the UTF-32 scenarios, except that UTF-16 is a
variable-width encoding.

19

Ertl, Paysan Xchars

4 Code examples

Here we present some examples of using the xchars
words.

One thing that we noticed is that it is actually
not that easy to find examples where characters are
dealt with individually (instead of in strings).

The following word works like type, but prints
the string back-to-front.

: revtype1 (xc-addr u --)

over >r + begin

dup r@ u> while

xchar- dup xc@ emit

repeat

r> 2drop ;

One other thing we noticed is that often, instead
of converting an xchar to the on-stack representa-
tion, it can just as well be treated as a string (and
this is often more efficient):

: revtype2 (xc-addr u --)

over >r + begin

dup r@ u> while

0 -x/string over swap type

repeat

r> 2drop ;

Here is another example, implementation of the
widely-available word scan that searches for a char-
acter in a string. First, here is an xchar variant of
the non-xchar version in Gforth:

: scan1 (xc-addr1 u1 xc -- xc-addr2 u2)

>r

BEGIN

dup

WHILE

over xc@ r@ <>

WHILE

+x/string

REPEAT THEN

rdrop ;

And here is a version that deals with the xc as
string:

: xc->s (xc -- xc-addr u)

\ convert xc into ALLOCATEd

\ in-memory representation

dup xc-size dup chars allocate throw

swap (xc xc-addr u)

2dup 2>r xc!+? 0= abort" bug"

2drop 2r> ;

: scan2 (xc-addr1 u1 xc -- xc-addr2 u2)

xc->s 2dup 2>r search 0= if \ no match

dup /string then

2r> drop free throw ;

In many cases, the programmer can also provide
the xchar as string and call search directly instead
of through scan2.

Finally, here is a primitive implementation of
accept for xchars.

: accept1 (c-addr +n -- +n2)

over >r begin

key dup #cr <> while (c-a1 u1 xc)

dup 2swap xc!+? >r rot r> 0= if

drop #bell then

emit

repeat

2drop r> - ;

5 Experience

We have implemented Xchars and UTF-8 support
in the Gforth development version in December
2004 and January 2005, during the course of a
month. The xchars addition itself took only a week
(after earlier work on an UTF-8 specific wordset).

The main code changes were the addition of a
156-line file for UTF-8 handling, an 80-line file for
generic xchar handling and for the 8-bit implemen-
tation, changes in accept (20 deleted lines, 117 lines
added), and changes of less than 100 lines overall in
about five other files.

Overall, these changes were relatively painless,
and certainly much easier than the changes we
would expect had we tried to change the char size.

One interesting challenge was that we did not im-
plement display-width, and had to work around
that lack in two places:

We use a pretty sophisticated editor for accept,
where the user can move the cursor back and edit
there without deleting the text. In order to achieve
this without display-width, accept now always
jumps to the start of the line, draws the part of
the line before the cursors, remembers the cursor
position, then draws the rest of the line and restores
the cursor position to the remembered value.

The other problem was indicating where in an
input line an error had happened. Originally Gforth
did this by having a second line below the first with
^^^ characters pointing out the word. Now Gforth
indicates the word by surrounding it with >>> and
<<<.

Figure 1 gives an idea of how Gforth processing
Unicode looks, including a case where an error mes-
sage is shown.

6 Related work

Jax4th for Windows NT by Jack Woehr was one
of the first dpANS Forth systems. It supported

20

Ertl, Paysan Xchars

Figure 1: Gforth processes Unicode characters

the then-16-bit Unicode by making characters 16-
bit in size, making use of the freedom that ANS
Forth had given to Forth systems in this area (by
making 1 chars = 2). However, Jax4th was not
used widely, and all widely-used systems imple-
ment 1 chars = 1. More importantly, many near-
ANS programs have an environmental dependency
on 1 chars = 1 and would break on systems like
Jax4th. Therefore we decided to take a different
approach in Gforth and introduced xchars.

Pelc and Knaggs [PK01] identified the same prob-
lems as we did (in particular the widespread en-
vironmental dependency on 1 chars = 1), and
similar to us propose adding new words for deal-
ing with wider characters: They propose adding
wide-character versions of the existing character
and string words, for use with wide fixed-width
encodings; the system and old-style applications
would continue to use the regular character and
string words, but applications could be converted
to use these wide-character words. In contrast, we
propose adding words that support variable-width
encodings, but only for words that deal with in-
dividual characters; the string words work just as
well for strings containing extended characters as
for strings containing classical characters. Our ap-
proach requires less conversion work, so we propose
applying it throughout the system instead of just
to application data.

Java uses Unicode as character set and UTF-16
as internal character encoding.

Kuhn compiled an excellent resource on UTF-8
and Unicode [Kuh05], which is highly recommended
for anyone having to deal with these issues and con-
tains many links to other documents on the topic.

7 Conclusion

Xchars allow Forth systems to support Unicode (in
particular in its UTF-8 encoding) in a relatively
compatible way: String words (and programs us-
ing them) continue to work without changes; words
dealing with individual characters work as usual
with ASCII characters, but have to be adapted for
working with extended characters.

Xchars can also be implemented easily on sys-
tems that only support 8-bit character encodings, so
programs using xchars are not restricted to systems
with Unicode (or other wide character) support.

Xchars have been implemented in Gforth and big-
Forth. The Gforth porting experience was relatively
painless, requiring adding or changing only a few
hundred lines of Forth code.

References

[Kuh05] Markus Kuhn. UTF-8 and
Unicode FAQ for Unix/Linux.
http://www.cl.cam.ac.uk/˜mgk25/
unicode.html, 2005.

[PK01] Stephen Pelc and Peter Knaggs.
ANS Forth and large characters.
http://www.mpeforth.com/arena/
i18n.widechar.v7.PDF, 2001.

21

SuDoku Solver Case Study: from specification to RVM-Forth

(part I)

Angel Robert Lynas, Bill Stoddart

October 4, 2005

Abstract

A project is underway to formulate a development cycle from B — suitably aug-
menting its implementation language B0 with reversibility constructs — to a coded
implementation in the reversible target language RVM-Forth[3, 4] with translation
schemas defined for this final stage. This paper describes the first phase of a case
study using the puzzle SuDoku to investigate possible ways of fleshing out such a
development cycle. We adopt an experimental approach, using a relatively simple
specification as a springboard for what a generated code implementation might look
like, and explore correspondences between the specification and implementation.

1 Introduction

1.1 Background and Terminology

The ancient Japanese puzzle SuDoku is of course no such thing; it’s American and only a
few decades old. Its basic form is a 9× 9 grid of squares (which we refer to as a “board”,
not entirely defensibly) divided into nine 3 × 3 subsections, hereinafter called “sectors”.
A puzzle consists of a partly filled-in board which must be filled in such that every row,
column and sector contains all the digits 1 to 9.

The structure of the puzzle and its solutions leads naturally to a set-based model,
wherein the constraints on a square’s value and the properties of a solution can be readily
expressed.

The target programming language is based on ANS Forth, and runs in a Reversible
Virtual Machine developed by Bill Stoddart [3, 4] with an embedded set implementation
built on work by Frank Zeyda [5]. The language will be referred to as RVM-Forth; the
defining feature which concerns us is a guard/ choice set of constructs, described in [2],
whereby a non-deterministic reversible choice (written as CHOICE) can be made from
elements in a set. The guard construct takes a flag from the stack, and if this is false,
reverses to the last non-deterministic choice, choosing another forward path. Should there
be no choices left, the previous CHOICE is revisited. On running out of options, a ko

prompt is given to signal this to the user (for instance, if a puzzle turns out to have no
solution).

Variables can be declared as reversible, in which case their earlier values are restored
on reversal; thus the (important) state obtaining at the time of the CHOICE can be
reinstated. The full code for the implementation is provided in appendix C.

22

1.2 Objectives

The overall context of our research is to investigate the formal development of reversible
programs, using a modified version of the B Method[1]. The B language has an exact
mathematical description, so that programs written in it can be subject to formal logical
analysis (a theorem prover is an important part of any B development environment). B
presents a user with (at least) two levels of the B language, which are respectively a
specification language (highly expressive but not implementable) and an implementation
language. A developer writes both a specification and implementation of a program, and
is obliged to show that the implementation satisfies the specification.

Our aim, over several of these reports, is to produce a complete B development cycle
of a simple solver, from abstract B specification through to an RB0 implementation (this
being our reversible version of the B implementation language).

The RB0 code will compile to RVM-Forth, and we hope to gain some insights into
how to optimise that mapping by seeing how various applications can be programmed
in RVM-Forth itself. We are particularly interested in set-based representations of data
and automatic backtracking, because both of these lend themselves to the logical analysis
which is at the heart of the B method. [3]

2 Data Model

The basic requirement is for a mapping from each assigned square of the board to its value,
this being the current board; and for the remaining squares, a mapping to a set of their
available values. The squares can be indexed sequentially, or by row-column co-ordinates,
the latter proving simpler in most areas. We therefore define XY as the set of integers
0..8, and thence a square is a pair (row, column) of type XY ×XY , the cartesian product1

of XY with itself. For convenience, the type of a square is defined as:

SQUARE =̂ (0..8) × (0..8)

The current board is a function from squares to 1..9 — the integer set defined as DIGIT .
Initially a partial function, the solution sees it become a total function (and trivially a
surjection). So defining a Boolean solved, we can specify a variable board, beginning thus:

board ∈ SQUARE 7→ DIGIT ∧
solved = TRUE ⇒ board ∈ SQUARE →→ DIGIT ∧ . . .

The specification variable board becomes the RVM-Forth variable BOARD. There remains
a criterion for validity which each square must fulfil, of course. Complementary to this
and used in the RVM-Forth implementation is the function from blank squares to their
possible values:

POSSIBLE ∈ SQUARE 7→ P(DIGIT)

2.1 Constraint Zone

A further requirement is the notion of a Constraint Zone for a given square, which is the
union of its row, column, and sector. The shaded area in fig 1 around square S is its
constraint zone. The row and column are simply specified; row 3, for instance, is the set

1A brief explanation of set operations used in the paper is given in appendix A.

23

SI

S

Figure 1: The Constraint Zone for square S

of pairs from (3,0) to (3,8), or the cartesian product of {3} and XY . A function can be
defined as a constant row to encapsulate this, with properties:

row ∈ XY → P(SQUARE) ∧ (1)

∀ rr .(rr ∈ XY ⇒ row(rr) = {rr} × XY)

The sector can be generated in a number of ways; the method used here is to map each
square (via a function) to a “sector index” — the square at the top left-hand side of
the sector in question (that labelled SI in fig 1). The set of sector squares can then be
generated orthogonally from these.

Having obtained the constraint zone for a blank square, its relational image with
BOARD will yield the subset of DIGIT the square cannot be assigned. The complement,
i.e. DIGIT minus these values, will be paired with the square in the initialisation of
POSSIBLE. The implementation operation AVAILABLE, which generates these values, is
examined below.

2.2 Solution

There remains the rest of the solution specification; while the final board must be a total
function, each of its squares must also be valid — that is, the value should not appear
elsewhere in its constraint zone. Defining this last as czone:

czone(r , c) =̂ row(r) ∪ col(c) ∪ sector(sectorindex (r , c))

A “valid square” function can be defined from a square and a board to a boolean, the
salient part of the definition being:

is valid square(rr , cc, bd) = TRUE ⇔
bd(rr 7→ cc) 6∈ bd(| czone(rr , cc) |))

When solved becomes true (having been initialised to false), then for all the squares in
board, is valid square is true; it should also be true for every assigned square in partially-
filled boards — from which the solution condition would follow. In the code version, this
is ensured by the assignment mechanism in any case; illegal assignments would not be
possible.

24

3 Method

An implementation based on the above data model can give us an idea what the final
generated product might look like. From the model, an algorithm for a sequential, iterative
modus operandi suggests itself; we present the outline followed by some more detailed
points. The BOARD and POSSIBLE sets have been initialised at this point: for row r ,
column c and values vi , their elements have the forms:

BOARD : ((r , c), v)
POSSIBLE : ((r , c), {v1, v2, . . . , vn})

1. Extract set of most constrained blank squares, along with their values (this is a
subset of POSSIBLE).

2. Choose (non-reversibly) a square from the domain of this set. Remove this entry
from POSSIBLE.

3. Choose a value from those available; this must be a reversible CHOICE. Create a
pair from the square and value, and add it to BOARD.

4. Update the blanks in the constraint zone of the square, i.e. remove the value just
assigned from their available sets.

5. If any of the resulting sets are empty, the board is now non-viable; in this case, we
must backtrack to step 3, restoring state along the way.

6. Otherwise, update POSSIBLE itself with these new values.

7. Repeat until board full.

3.1 Algorithm expansion

1. Concentrating on the most constrained blanks simply seems most logical; should a
wrong choice be made, there will be fewer subsequent attempts to work through.
More sophisticated techniques would be able to reduce the available values by other
comparisons with the current state; our näıve version does not apply all possible
constraints, but instead allows the backtracking mechanism to take the strain.

2. The above being the case, it’s likely that more than one square will be returned, so
one must be chosen to work with. A point which bears stressing is that, if a solution
exists at all from this stage, it can be found from any of these squares. Faster from
some than others, perhaps, though there is no way of knowing which. So:

(a) The choice may as well be random.

(b) The choice must not be reversible.

The latter point may well not be obvious at first glance (it can be tempting to
assume that any choice should be a CHOICE). However, if none of the values from
the chosen square lead to a viable board, reversing will simply cause another square
from the set (if any) to be chosen; there’s a strong likelihood that this will also fail
(needlessly duplicating a fruitless search) and will quite possibly close off backward
paths to points from which an actual solution could be found.

In fact the usual upshot (from observation) of trying a reversible square choice is
that a handful of squares in mutually exclusive constraint zones end up dealing out

25

the same slightly larger handful of values in an apparently never-ending set of nested
loops. This is an example of inappropriate use of CHOICE, since there is no division
into “wrong” and “right” squares, and therefore nothing to be gained from trying
another one on failure.

3. The choice of value, on the other hand, is clearly critical: probably only one will
lead to a solution.; this should be the only reversible CHOICE in the program. If
no valid number exists, then a previous assignment must have been wrong.

4. The assigned value is now no longer available to those blanks constrained by the
current square, so it must be removed from all of their “possible” assignment sets
(a subset of POSSIBLE itself).

5. This should always leave at least one remaining possible value for a square; an empty
set here indicates we cannot find a solution given this assignment. This is the test
for the reversibility guard, which will provoke backtracking.

6. The action guarded is updating the POSSIBLE set (described in more detail below).

4 Implementation

By virtue of the direct availability of set declarations and operations, many of the data
model specifications and algorithm operations translate quite naturally into RVM-Forth,
allowing for the postfix conversion. A simple example is the row generator row() — recall
the function specification in (1) above on page 3, which becomes the following definition:

: GENROW (n -- n.n.*.P)

INT { , } XY PROD ;

The first line is the name and a comment with the stack effect; translating as “integer
in, set of integer pairs out”, as the specification says. INT { } is one way of creating an
integer set, and here the comma between the curly braces allocates space for whatever is
on top of the stack, within that set. This gives us {n} ; XY puts the set of column numbers
on the stack while PROD generates the cartesian product of these two sets. The issue of
garbage collection for such anonymous dynamically-created sets is addressed in appendix
B. On its own, GENROW looks like this in action:

5 GENROW .SET

{(5,0),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(5,7),(5,8)} ok

The union of this with the outputs of GENCOL and GENSECTOR form the set of squares
in the constraint zone, returned by GENCZONE. With the square (3,2) on the stack (single
line of output split for document):

DUP .PAIR CR GENCZONE .SET (3,2)

{(0,2),(1,2),(2,2),(3,0),(3,1),(3,2),(3,3),

(3,4),(3,5),(3,6),(3,7),(3,8),(4,0),(4,1),

(4,2),(5,0),(5,1),(5,2),(6,2),(7,2),(8,2)}ok

Part of the initialisation involves the set POSSIBLE, wherein each blank square is paired
with its available values: generation of the latter is performed by AVAILABLE. As de-
scribed above in section 2.1, what is required is the set of digits in DIGIT which are not

26

in the already assigned squares within the constraint zone of the square (r , c) in question;
this is specifiable in set notation as:

DIGIT − board(| czone(r , c) |)

Converted for postfix and stack adjustment, it maps exactly to RVM-Forth:

: AVAILABLE (n.n.* -- n.P)

GENCZONE BOARD SWAP IMAGE DIGIT SWAP \ ;

Using the same square as the last example, with a sample puzzle loaded:

DUP .PAIR CR AVAILABLE .SET (3,2)

{1,2,5,8,9}ok

4.1 The Update procedure

A more detailed look at this is now presented, it being the section where the reversibility
guard comes into play. A boolean variable called VALID acts as a flag for the guard,
initialised to true. Arguments are the square and the value just assigned to it. Outline:

1. Generate the subset of POSSIBLE which needs updating. This is simply done by
finding the constraint zone of the square with GENZONE, and performing a do-
main restriction (the word <| in the definition below: described in appendix A) on
POSSIBLE. If the resulting set is not empty, the loop now builds a new set of this
type.

2. (Begin loop) For each blank square in this set, remove the assigned value from its
set of available values, where present. If the resulting set is empty, set VALID to
false and exit loop. Otherwise, add the new pair (square, remaining possible values)
to the set being built.

3. (End loop) Test VALID: if false, instigate reversal to previous CHOICE (and make
another choice). Otherwise, use function override (<+) to update POSSIBLE with
the new sets of values for the affected squares.

The RVM-Forth code to achieve this is shown below. ASSIGNED is a variable holding
the last assigned value, and UNPAIR leaves the first and second elements in that order
on the stack.

1. : UPDATE-POSSIBLE (n.n.* n --)

2. to ASSIGNED GENCZONE POSSIBLE <|

3. DUP ?{} NOT IF (test for non-empty set)

4. INT INT PROD INT POW PROD {

5. DUP CARD 0 DO

6. DUP I @ELEMENT (index through elements)

7. UNPAIR ASSIGNED SUBTRACT-ELEMENT

8. DUP ?{} IF FALSE to VALID LEAVE ELSE |->P,S , THEN

9. LOOP } VALID --> POSSIBLE SWAP <+ to POSSIBLE THEN DROP ;

Line 4 This is the RVM postfix way of specifying a pair comprising a pair of integers and
a set of integers (i.e. a square plus set of values)

((r , c), {v1, v2, . . . , vn})

27

Line 8 Having subtracted the assigned value, we now check the remaining set with the
empty set test. In theory, the guard might go directly after this, but reversing
from the middle of a set-building operation is incompatible with the reversibility
mechanism; a boolean is used so the guard can be outside.

Line 9 The symbol for the guard is -->, here testing VALID. The symbol is cognate with
the General Substitution Language’s =⇒ , normally associated with an IF. . . THEN
construct in a B specification2. Here and in the proposed RB0 language, it functions
as a “naked” guard, prompting backtracking on failure.

5 Performance

In terms of raw speed, running in a virtual machine atop a subsystem for sets (albeit an
efficient one) is unlikely to be optimal. Instead we balance the simplicity of the devel-
opment using a näıve heuristic against the number of tries the program needs to solve a
problem designated “very hard”, or “fiendish” (anything less challenging requires little if
any backtracking).

While the choice of square could simply take the first one encountered (using ELE-
MENT), there is a non-backtracking random choice available called PCHOICE, and along
with a reversible RANDOM-CHOICE for the value assignment, this gives a variety of
possible paths for the program to follow. Sometimes a solution will be found very quickly
even for the hardest puzzles in this way. The average range for puzzles encountered so far
is 150-500 attempted assignments. The unconstrained search space for assigning about 50
squares from 9 potential values for each one is not considered further here.

6 Further Work

The initial approach here has been to attack both ends of the problem first to gain an idea
of what a complete development should encompass. While refinement from the abstract
machines will often use the usual techniques, certain differences will be apparent: in the
data model, sets need not be refined away as they are directly implementable; also the re-
versible computations introduce certain differences in refinement methods (and associated
proofs), outlined in [6]. Issues thrown up by refinement of this case study will therefore
require investigation.

6.1 Code generation: stack vs locals?

The code generation stage is in very early infancy as yet; translation schemas to support
this have been begun, but certain questions arise. Forth, RVM or otherwise, is a stack-
based language, and much of its operational simplicity derives from not having to declare
and handle local variables for basic operations. B, on the other hand, is in the tradition
of variable-manipulation languages, and this provides an uncomfortable meeting-point for
the two modes.

Provision of an explicit stack at the specification level would cause more problems than
it would solve, leaving two alternatives. Ideally, we would aim for a transparent “under
the hood” translation system, whereby appropriate use was made of the Forth stack from
a standard local-using specification. Initially, however, translation will (relatively) simply

2Such programming-style constructs are “syntactic sugar” for the underlying GSL notation.

28

map B locals to RVM locals, less than optimal though this will prove; meanwhile a reliable
way of optimising the translation must be investigated.

The combination of top-down approach from specification and bottom-up approach from
code will provide illumination from two aspects for the development of a middle stage,
hypothetical as yet, an implementation-level specification language closely based on the
existing B0.

References

[1] Jean-Raymond Abrial. The B Book. Cambridge University Press, 1996.

[2] W J Stoddart. Efficient reversibility with Guards and Choice. In M A Ertl, editor,
18th EuroForth, 2002. Available from:
http://www.complang.tuwien.ac.at/anton/euroforth2002/papers/bill.rev.ps.gz.

[3] W J Stoddart. Using Forth in an Investigation into Reversible Computation. In
P Knaggs and M A Ertl, editors, 19th EuroForth, 2003.

[4] W J Stoddart. RVM-Forth, a Reversible Virtual Machine: User Manual. In M A Ertl,
editor, 19th EuroForth, 2004. Available from
http://dec.bournemouth.ac.uk/forth/euro/ef04/stoddart04.pdf or
http://www.scm.tees.ac.uk/formalmethods/index.php.

[5] W J Stoddart and F Zeyda. Implementing sets for reversible computation. In A ERTL,
editor, 18th Euroforth, Technical University of Vienna. 2002.

[6] F Zeyda, W J Stoddart, and S E Dunne. The Refinement of Reversible Computations.
In T Muntean and K Sere, editors, 2nd International Workshop on Refinement of
Critical Systems, 2003. Available from www.esil.univ-mrs.fr/ spc/rcs03/rcs03.

A Set operations

Many set operations are provided “out of the box” with RVM-Forth, and more advanced
ones can be built up with little trouble. For instance, from two sets (of arbitrary types),
the set of all possible pairs (cartesian product) can be generated with PROD:

SAVOURY SWEET .SET .SET

{chocolate,fruit,honey} {cheese,fish,onion} ok

SWEET SAVOURY PROD .SET

{(chocolate,cheese),(chocolate,fish),(chocolate,onion),

(fruit,cheese),(fruit,fish),(fruit,onion),

(honey,cheese),(honey,fish),(honey,onion)} ok

Tasty. As usual, the order of the stack parameters is the same as for the infix operator:
S × T becomes S T PROD.

Working with relations and functions is also straightforward. We define a simplistic
telephone directory (a relation from strings to integers) to work with, called PHONE,
which looks like this:

CR PHONE .SET

{(Bill,2673),(Frank,4611),(Keerthi,4611),(Michelle,4611),

(Rob,4611),(Steve,2657)}

29

An operation used in the text is domain restriction (the word <|), in which a set of values
from the domain is used to extract only those pairs which have a first value in that set
— the result being returned as another set. For instance, with a query set dynamically
constructed:

STRING { " Michelle" , " Keerthi" , } PHONE <| ok.

.SET {(Keerthi,4611),(Michelle,4611)}ok

A relational image is really just the range of this result, though it’s normally implemented
as a separate operation. The set notation S (| U |), where U is a subset of the domain of
S, becomes S U IMAGE in RVM-Forth:

PHONE STRING { " Michelle" , " Keerthi" , } IMAGE ok.

.SET {4611}ok

Which is the range of the previous result. Range restriction is the mirror image of domain
restriction (the word |>); notice the stack parameters are the other way round to reflect
the ordering of the infix operator:

PHONE INT { 4611 , } |> ok.

.SET {(Frank,4611),(Keerthi,4611),(Michelle,4611),(Rob,4611)}ok

A certain overcrowding is becoming apparent. Some rehousing later, the outdated phone
numbers can be overwritten with function override. The word <+ is defined as:

: <+ (s1:x.P s2:x.P -- s3:x.P where s3 = s1 <+ s2)

DUP DOM ROT <<| \/ ;

Using <<|, which is domain subtraction (the complement of domain restriction), this
removes the pairs from s1 which are due to be updated, then unions the remainder with
s2. To update our phones, we construct a set UPDATES:

{(Frank,2680),(Rob,3719)}

and invoke function override to effectively overwrite those pairs whose first value matches
one of the first values in the update set. Thus:

PHONE UPDATES <+ to PHONE ok

CR PHONE .SET

{(Bill,2673),(Frank,2680),(Keerthi,4611),(Michelle,4611),

(Rob,3719),(Steve,2657)}ok

This is of course used in the SuDoku program to update the POSSIBLE set with reduced
sets of values for the affected squares only.

B Garbage Collection

As might be imagined such wanton creation of arbitrary sets has huge potential for garbage
creation; this is automatically collected during reverse execution, but not necessarily oth-
erwise. However, the potential-value capabilities of the RVM allow for the provision of a
wrapper which ensures garbage collection for this sort of program. The details are covered
in [4], but the results of using these capabilities are shown here with the aid of a diagnostic
tool called Heapwatch (c© Frank Zeyda). On starting the RVM itself:

30

HW-STATS HeapWatch: Statistical Information:

Current memory in use: 936 bytes (0 KB)

Number of calls to malloc(): 40

Number of calls to calloc(): 0

Number of calls to realloc(): 33 (24 ret. same + 9 diff. address)

Largest memory allocation: 56 bytes in file setkernel.c, line 252.

Average allocation size: 26 bytes

Peak memory utilisation: 936 bytes (0 KB) + 2625 KB for HeapWatch.

After a single run of the solver without garbage collection invoked, the situation is as
below — followed immediately by another run and the memory report.

HW-STATS HeapWatch: Statistical Information:

Current memory in use: 211816 bytes (206 KB)

Number of calls to malloc(): 38819

Number of calls to calloc(): 0

Number of calls to realloc(): 30506 (19868 ret. same + 10638 diff. address)

Largest memory allocation: 344 bytes in file setkernel.c, line 211.

Average allocation size: 44 bytes

Peak memory utilisation: 211816 bytes (206 KB) + 2625 KB for HeapWatch.

(******** another puzzle solved here **********)

HW-STATS HeapWatch: Statistical Information:

Current memory in use: 427324 bytes (417 KB)

Number of calls to malloc(): 56596

Number of calls to calloc(): 0

Number of calls to realloc(): 43834 (29158 ret. same + 14676 diff. address)

Largest memory allocation: 344 bytes in file setkernel.c, line 211.

Average allocation size: 44 bytes

Peak memory utilisation: 427324 bytes (417 KB) + 2625 KB for HeapWatch.

ok..

Clearly some garbage is being left behind, and would continue to build up. Using the
<TRY S CUT> construct to wrap the program, however, allows it to run, print (or store) its
output, and then garbage associated with the run is collected. From a similar cold start
to the first quoted above, a run now leaves the system in this situation:

HW-STATS HeapWatch: Statistical Information:

Current memory in use: 936 bytes (0 KB)

Number of calls to malloc(): 38819

Number of calls to calloc(): 0

Number of calls to realloc(): 30506 (19866 ret. same + 10640 diff. address)

Largest memory allocation: 344 bytes in file setkernel.c, line 211.

Average allocation size: 44 bytes

Peak memory utilisation: 211816 bytes (206 KB) + 2625 KB for HeapWatch.

So the memory allocated by the frequent calls to malloc() or realloc() has now all
been reclaimed.

31

C RVM-Forth Implementation Code

(========== Declarations and initial Board ====================)

1 9 .. VALUE DIGIT

0 8 .. VALUE XY

NULL VALUE_ BOARD (Reversible variable)

NULL VALUE_ POSSIBLE (Reversible variable)

1 VALUE LOOPS 1 VALUE TRIES (Bookkeeping)

8 VALUE COLI 8 VALUE ROWI 0 VALUE ASSIGNED

TRUE VALUE_ VALID (Set to false if square left with no domain)

(Generalised board-builder; assumes 81 numbers loaded on stack)

: BUILD-BOARD (n TIMES 81 --)

8 to ROWI

INT INT PROD INT PROD {

BEGIN ROWI -1 >

WHILE

8 to COLI

BEGIN COLI -1 >

WHILE

DUP 0= NOT

IF ROWI COLI |->I,I SWAP |->P,I ,

ELSE DROP

THEN

COLI 1- to COLI

REPEAT

ROWI 1- to ROWI

REPEAT } to BOARD ;

(================ Utilties; zone generation etc ================)

: UNPAIR (x1.x2.* -- x1 x2)

DUP FIRST SWAP SECOND ;

: GENROW (n -- n.n.*.P)

INT { , } XY PROD ;

: GENCOL (n -- n.n.*.P)

XY SWAP INT { , } PROD ;

(Here, nr is the row number, and nc isn’t.

The output is the row & col of the sector index)

: SECTORINDEX (nr nc -- n n)

DUP 3 MOD - SWAP

DUP 3 MOD - SWAP ;

: GENSECTOR (nr nc -- n.n.*.P)

SECTORINDEX

DUP 2 + .. SWAP

DUP 2 + .. SWAP PROD ;

(Find the constraint zone for a particular square)

: GENCZONE (n.n.* -- n.n.*.P)

UNPAIR DUP

32

GENCOL ROT ROT OVER

GENROW ROT ROT

GENSECTOR \/ \/ ;

(Now we find the values a blank square can take)

: AVAILABLE (n.n.* -- n.P)

GENCZONE BOARD SWAP IMAGE DIGIT SWAP \ ;

(===)

(Pretty(ish)-print subsystem. Can safely be ignored)

0 VALUE ELEMINDEX NULL VALUE BOARDSIZE

: VLINE 124 EMIT ;

: LINE VLINE CR ." +---------+---------+---------+" CR ;

(Convert co-ord pairs to scalar square numbers)

: CONVERTBOARD (n.n.*.n.P --)

INT INT PROD {

DUP CARD 0 DO

DUP I @ELEMENT

UNPAIR SWAP UNPAIR SWAP 9 * +

SWAP |->I,I ,

LOOP

} NIP ;

: .BOARD (--)

CONVERTBOARD

0 to ELEMINDEX DUP CARD to BOARDSIZE

81 0 DO ELEMINDEX BOARDSIZE < IF

DUP ELEMINDEX @ELEMENT

ELSE DUP 0 @ELEMENT

THEN

I 27 MOD 0=

IF LINE VLINE ELSE I 9 MOD 0=

IF VLINE CR VLINE ELSE I 3 MOD 0=

IF VLINE

THEN

THEN

THEN

DUP FIRST I = IF

SPACE SECOND . ELEMINDEX 1+ to ELEMINDEX

ELSE 3 SPACES DROP THEN

LOOP LINE DROP CR ;

(===================== End of print system ===================)

(Build set of squares and their possible values)

: INIT-POSSIBLE (--)

XY XY PROD BOARD DOM \

INT INT PROD INT POW PROD {

DUP CARD 0 DO

DUP I @ELEMENT

DUP AVAILABLE |->P,S ,

LOOP

} to POSSIBLE DROP ;

33

(Get the next squares from the most constrained -- returns a

subset of POSSIBLE. We cheat a bit by using the set ordering

to find the lowest card in the range of POSSIBLE)

: GETSQUARES (n -- n.n.*.n.P.*.P)

0 (: VALUE N :)

POSSIBLE DUP RAN ELEMENT CARD to N

INT INT PROD INT POW PROD {

DUP CARD 0 DO

DUP I @ELEMENT

DUP SECOND CARD N =

IF , ELSE DROP THEN

LOOP

} 1LEAVE ;

(Picks next square and its availables (an element of POSSIBLE)

to send to assign; subtract it from POSSIBLE)

: NEXTUP (n.n.*.n.P.*.P -- n.n.*.n.P.*)

PCHOICE DUP POSSIBLE SWAP

SUBTRACT-ELEMENT to POSSIBLE ;

(Assigns from square and set of values a single value, adding

pair to Board; leaves square and value separately)

: ASSIGN (n.n.*.n.P.* -- n.n.* n)

UNPAIR RANDOM-CHOICE TRIES 1+ to TRIES

2DUP |->P,I BOARD SWAP ADD-ELEMENT to BOARD ;

(Remove assigned from the domain of each square in the constraint

zone of the last assigned square -- update by func override. Should

not attempt to update when no blanks need updating)

: UPDATE-POSSIBLE (n.n.* n --)

to ASSIGNED GENCZONE POSSIBLE <|

DUP ?{} NOT IF

INT INT PROD INT POW PROD {

DUP CARD 0 DO

DUP I @ELEMENT

UNPAIR ASSIGNED SUBTRACT-ELEMENT

DUP ?{} IF FALSE to VALID LEAVE ELSE |->P,S , THEN

LOOP } VALID --> POSSIBLE SWAP <+ to POSSIBLE THEN DROP ;

(============ Run and step-through facilities ================)

: START (--)

NULL to BOARD NULL to POSSIBLE

1 to TRIES 1 to LOOPS

32 WORD LOAD-FILE BUILD-BOARD INIT-POSSIBLE ;

: STEP (--)

GETSQUARES NEXTUP

ASSIGN UPDATE-POSSIBLE LOOPS 1+ to LOOPS ;

: SOLVE (-- n.n.*.n.*.P)

BEGIN

BOARD CARD 81 <

WHILE

STEP

REPEAT ;

34

(Takes filename after word, e.g.: TRY-TO-SOLVE S1)

: TRY-TO-SOLVE (--) CR

START SOLVE BOARD .BOARD TRIES . ." TRIES IN "

LOOPS . ." LOOPS. " CR ;

(Garbage collecting wrapper for above)

.(TRY <filename> runs the puzzle)

: TRY

<CHOICE

<TRY TRY-TO-SOLVE CUT>

[]

CR

CHOICE> ;

35

First experiences with Microcore

N.J. Nelson, C. Williams

__

Abstract

Following the convincing demonstrations at EuroForth 2004, we decided to use the "Microcore"

VHDL Forth processor in the design of three new products. This paper will describe our

progress in expanding the core design with additional peripherals, performing simulation, board

implementation, and early experiments in writing code on the Microcore.

N.J. Nelson B.Sc., C.Eng., M.I.E.E.

Micross Electronics Ltd.,

Units 4-5, Great Western Court,

Ross-on-Wye, Herefordshire.

HR9 7XP U.K.

Tel. +44 1989 768080

Fax. +44 1989 768163

Email. njn@micross.co.uk

C. Williams B.Sc., C.Eng., M.I.E.E.

Chrysalis Design,

Craig-y-don,

Llandinam,

Powys

SY17 5BG

Tel. / Fax. +44 1686 688065

Email. chris@chrydesn.demon.co.uk

36

1. Overview of Microcore

Microcore is a VHDL description of a microcontroller, which can be implemented in an FPGA.

It is highly configurable, and in particular, the external data path width is a compilation

variable, so that various different "sizes" of the same processor may be constructed, with

different performance / cost balances. The code for Microcore is available under a licence which

is similar to open source software, and which encourages other to contribute to the project

development while retaining compatibility and openness.

Microcore was first described by Klaus Schleisiek at the 17th EuroForth at Dagstuhl, and he

also described an implementation of the device at the 20th conference, where he gave a

convincing demonstration of the technology.

Microcore has its own website from which the code may be downloaded.

2. Reasons for choosing Microcore

Advantages unique to Microcore

a) It's free. This is a serious consideration for a small company where development budgets are

tight.

b) It comes from a known and trusted developer. Klaus also designed the IX1 microcontroller

which has given us years of completely trouble-free service.

c) You can actually talk to the designer, who even answers email and telephone calls. This is in

marked contrast to other offerings of standard cores.

d) Genuine futureproofing

Even if the hardware goes obsolete, the software won't. There should be no difficulty in moving

a Microcore project to a future FPGA technology. The struggle to buy "one careful previous

owner" RTX chips will be over.

e) Control

We have all the code to produce versions of Microcore for as long as we need to.

f) No black boxes

If there is a problem, nothing is hidden. We can analyse the problem to whatever depth is

required.

g) Simple and inexpensive design tools

We have used Xilinx and Mentor Graphics tools.

h) Different sizes, same code

We can use exactly the same software on both 8 bit and 32 bit external data bus width versions.

j) Simplicity

We almost understand quite a bit of it.

k) It runs Forth

All of us understand it, and with careful core design it should be possible to port large chunks of

our existing code straight in.

Advantages of FPGA microcontrollers over fixed hardware

l) Potential for future performance enhancement

As the speed of FPGAs increases, so will the speed of Microcore.

37

m) Extensibility

On-chip peripherals can be added relatively easily.

n) Pinout flexibility

Pinouts can be matched to the PCB layout requirements, enabling a simpler and less expensive 4

layer PCB to be used. Without this, a 6 layer PCB would almost certainly be needed.

3. Our particular requirements

We needed to replace and upgrade three products.

a) The Virtual Programmable Logic Controller

This is a high integrity device which provides the central control functions of a distributed

automation system. We described this card at EuroForth 97. It uses the RTX2001 as its CPU,

and has a PCI interface with a PC but is otherwise completely autonomous. This has been a very

satisfactory design with excellent reliability.

b) The Rapid Automated Bacterial Impedance Technique (RABIT), also a PCI card but this time

designed as a centralised data logger for a large number of distributed microbiological tests

cells.

c) The RABIT block module, which provides ultra-accurate temperature control and digitisation

of a group of 32 microbiological test cells.

Both RABIT circuits used the Intel 251 microcontroller, which is possibly the worst

microcontroller ever produced. We shall be very glad to replace it.

The new versions of both a) and b) are very similar, using 32 bit data bus widths and an

Ethernet connection to the PC instead of a PCI connection. They have differing power supply,

communication and memory requirements.

The new version of c) will be an 8 bit implementation.

4. Experiences with the tools

Design philosophy

Our basic design philosophy is to make it simple and to use as much of the Microcore design as

possible. We don�t want to have to dig deep into the VHDL to understand it and by doing a

conservative design where we keep a respectful distance from the limits we hope to reduce our

problems. We also need to remember that the number of boards that we will make is quite small,

and that the cost of the development tools must be kept to a minimum.

The chips used in the design also affect the tools. Each chip vendor has its own tool set for

which it is optimised, but limited to its own ICs, this includes both Lattice and Xilinx . By

choosing a class of chip that has already been used to implement Microcore other potential

pitfalls may be reduced. Microcore has already been implemented in the Xilinx Spartan series of

chips. These are currently cheaper than the Lattice parts, but they do require an external flash

memory to initialise them. We want to reduce manufacturing problems so we don�t want ball

grid array packages. We also want a part that will give room for experimentation in the future.

38

The XC3S400 PQ208 is a Xilinx Spartan 3 device in a 208 pin plastic quad flat pack and it will

accept the Microcore with room for expansion and the additional peripherals that we need. A

cheap programmer is available for transferring the compiled output on the computer to the flash

memory on the board and modifying the design as often as required.

Choice of tools

There are two possible tool sets we could use, the Xilinx ISE (Integrated Software

Environment), or the Synplify system from Synplicity. The pros and cons of each are as

follows:

Xilinx ISE Synplify

Free ~£10,000

Complete design from beginning

to end

Works with Xilinx tools

Limited optimisation increases

chip area used.

Advanced optimisation gives smallest

possible design

Design may not give maximum

possible speed.

Advanced optimisation may give

fastest design

The ModelSim simulator from Mentor Graphics is provided to simulate the designs at all levels.

This accepts a VHDL description that can be functional, i.e. no timing information, and allows

the VHDL to be checked for accuracy, right up to a full post layout description that gives

detailed operations and timings.

We chose to use the Xilinx ISE foundation pack that can be downloaded free from the Xilinx

web site. By not pushing the design to its limits we hope that the reduced optimisation will not

cause a problem. The huge reduction in cost is also more in line with the number of chips we are

likely to produce.

Here is a typical screen for the ISE version 7:

This shows a project window where all the files can be entered, a process window where for

each file all the possible actions are listed, an edit window where all the files can be viewed and

edited and a console where progress and errors are displayed.

39

From here, all the different operations needed to build a design are managed. One obvious

operation is to run the simulator. By selecting the test bench file, which contains waveforms,

you have the option to run the simulator directly. A typical screen shot:

This again shows a multi-window screen with the waveform result on the right.

The first job in evaluating the tools and the microcore design was to try and run a functional

simulation.

40

This shows the first instructions in the boot memory being run at the end of reset and loading

immediate data onto the stack. The first 2 instructions have the top bit set that then loads the

following 7 bits onto the stack.

5. Peripherals we have developed

At this stage of using Microcore we need two additional peripherals:

x� Watchdog counter

x� SPI serial interface

Watchdog counter.

The watchdog counter counts a period of time, using the master input clock as its reference and

if it is not reset in that period by the software it causes a processor reset. We require a timeout of

1ms and can set this directly into the hardware based on the processor master clock.

The VHDL code is as follows:

watchdog_reload <= '1' when sel_io = '1' AND
(addr(watchdog_select_address_bit) = '1') else '0';

watchdog_control : process(m_clk,rst_n,watchdog_reload,watchdog_div)
BEGIN
 if(rst_n = '0') then
 --On reset set a slightly longer watchdog time
 watchdog_div <= (OTHERS => '1');
 else
 if (rising_edge(m_clk)) then
 if watchdog_reload = '1' then
 watchdog_div <= "110000110101000000"; --200000
 else if two_meg_div = "0000" then
 watchdog_div <= watchdog_div - 1;
 end if;
 end if;
 end if;
 end if;

END PROCESS watchdog_control;

This describes a simple down counter watchdog_div that is decremented on every rising edge

clock with the code:

watchdog_div <= watchdog_div - 1;

This is modified if we have a reset signal or a watchdog_reload signal. The watchdog reload

signal comes from a memory access instruction from the processor to the watchdog address.

The microcore reset generator then looks at both the external reset signal and the value of

watchdog_div. If watchdog_div ever gets to a value of �0�, the processor is reset, and can start

again.

41

SPI serial interface

The SPI (Serial Peripheral Interface) is more complex than this. It uses a clock line, two data

lines (one input and one output) and a chip enable to provide bidirectional data transfer, and can

be used to talk to a wide range of chips. We currently need to communicate with a serial flash

memory to store our programs. Normally, data transfers are in 8 bit bytes, but we have made

good use of the 32 bit data path to allow up to 4 bytes to be transferred at a time without

processor intervention.

The general hardware arrangement is as follows:

D31-24
D23-16

D15-8
D7 - 0

D out

D in

32 bit data register

Status register D7 - 0

Bit Function Status register

0 Int Read, cleared when written

1 Start Write, cleared when done

2 B0 Write

3 B1 Write

Byte count to

transfer

4 CE1 Write Chip enable 1

5 CE2 Write Chip enable 2

CLK

Clock control Bit counter State machine

The 32 bit shift register sends data out from the low order byte, and reads data in through the

high order byte. The status register, a memory location in the I/O memory area holds 5 bits to

control the operation:

x� An interrupt bit to indicate when a transfer is complete.

x� A start bit, set by the user to start a transfer and cleared automatically when the

transfer is complete.

x� A two bit count of the number of bytes to be transferred, set by the processor.

x� A pair of chip enables, passed directly to the devices, set by the processor.

42

The VHDL for this has been developed as a separate module. This contains the status register,

all the shift registers and counters. It is controlled by a hardware state machine implemented as

follows:

state_machine: process(reset,state,status_reg,shift_clock)
BEGIN

if reset = '1' then
 state <= waiting;
 bit_counter <= "000000";
 elsif falling_edge(shift_clock) then
 case state is
 when waiting => if status_reg(start_bit) = '1' then
 state <= running;
 if status_reg(byte_count_1_bit downto
byte_count_0_bit) = "00" then
 bit_counter <= "000111";
 elsif status_reg(byte_count_1_bit downto
byte_count_0_bit) = "01" then
 bit_counter <= "001111";
 elsif status_reg(byte_count_1_bit downto
byte_count_0_bit) = "10" then
 bit_counter <= "010111";
 else
 bit_counter <= "011111";
 end if;
 end if;
 when running => bit_counter <= bit_counter - 1;
 if bit_counter = 0 then
 state <= waiting;
 end if;
 when others => state <= waiting;
 end case;
 end if;
END PROCESS state_machine;

As you can see, the naming conventions and appearance are much closer to �C� than to Forth,

but you can also see that it is using its current �state� which can be �waiting� or �running� along

with the start_bit in the status register and the bit counter to control its operation.

In use you load the data to be transferred into the shift registers, set the start_bit, the byte count

and the chip enable, and wait either for the interrupt or by poling the start bit for the end of the

transfer. Any data read back from the device can then be read into the program from the shift

registers.

43

6. The first hardware design

This is the block diagram of the complete system that we are building:

uCore

Xilinx Spartan 3

Interbus

IX1

Ethernet

DM9000

1

Ethernet

DM9000

2

Silicon

Osc

SMPS

18v-36v input

1.2v, 2.5v, 3.3v,5v

outputs.

256K * 8

RAM

Program

256K * 32

RAM

Data/Rstack

Battery backed

RAM 256K *

32

SPI FLASH

prog memory

128K/512K

Centronics

port

Centronics debug

The most important question to ask at the start of the design is at what voltage the chips will

run. The Xilinx chip requires 1.2V and 2.5V for its internal operation but will interface to the

outside world at any voltage up to 3.3V. Looking at the chips around it, some are available at

3V, some at 3.3V and others at 5V.

In this case most chips are available for 3.3V operation, except for the IX1 chip that is only

available at 5V. This meant providing a separate 5V supply using voltage converters on the

signals to and from the Microcore.

The next question to ask is how the memory is to be organised. We need 32 bit wide RAM for

stack and data, but we also need an area of battery backed ram for long term storage. The

memory needs to be 10ns to run at full speed and we could not find memory that fast that was

also low power enough to be battery backed. Our solution is to have both kinds of memory,

with the 55ns battery backed ram requiring 2 cycles for access.

44

The program memory is only 8 bits wide but requires the same compromises. It needs to be fast

RAM and non-volatile. We could not find anything to do this. We compromised with a fast

RAM chip and a slow serial flash memory. The Microcore can be made to write to its program

memory, so at boot time, running the internal boot loader, the code in the flash memory can be

read out and written to the RAM. The program then jumps to the start of the RAM. The flash

memory can be written by the program as well.

The external peripherals that we need for the application are placed on the memory bus. The

Centronics debug port comes straight from the Microcore design and is used in initial

development for programme load and debugging. The master clock is a silicon oscillator, which

is an alternative to a crystal. This has the advantage both of size and its ability to �jitter� slightly.

This does not affect the operation of the Microcore, but it does reduce the electromagnetic

interference and that helps with technical approvals.

The design was started using version 1.30 of the Microcore. Part way through the process 1.31

became available. This has some significant differences and required some changes to our

designs. Then 1.32 became available. The rapid changes can cause problems in the design. It is

better to stay with a version until its limitations cause real problems rather than change every

time a new version is available.

7. First steps in software development

We expect to have some hardware to show in time for the conference. With luck, a little

software might even have been written.

8. Conclusions

We'll tell you next year!

45

Self Documenting Sequences

N.J. Nelson, K.B. Swiatlowski

__

Abstract

When creating automation code for mechanical handling equipment which is specially adapted

for installation at a wide variety of different sites, it is common for numerous alterations in the

code to be required on site, at the last minute. Under pressure, user documentation starts to

diverge from code. How nice it would be, if clear, accurate and readable documentation could

be regenerated automatically each time the code was recompiled - and translated, also

automatically, into the customer's language!

__

N.J. Nelson B.Sc., C.Eng., M.I.E.E.

K.B. Swiatlowski Mgr.

Micross Electronics Ltd.,

Units 4-5, Great Western Court,

Ross-on-Wye, Herefordshire.

HR9 7XP U.K.

Tel. +44 1989 768080

Fax. +44 1989 768163

Email. njn@micross.co.uk

46

1. Background - sequences

At the 1997 EuroForth conference, Jonathan Morrish won a prize for his paper, "Rapid

development of real time multi-sequence control programmes ".

Jonathan is no longer with Micross, but the wordset he described was so successful that we're

still using them today.

In a typical complex conveyor system, the overall control process is broken down into a set of

"sequences", each of which controls the movement of an item from one position to another. The

sequences is divided into a series of "steps" thus forming a kind of state machine.

A simple example Jonathan used looked like:

A container runs by gravity into a vertical conveyor, is elevated, and runs off to a storage

position.

The sequence would be described in the documentation as follows:

Sequence 1 - Hoist

Step Stepped on by Outputs

 Bag runs into hoist

0 Wait for container to arrive in hoist (X1) None

 Hoist at bottom (X4)

 Bag settles in hoist

1 Wait for 3s for container to settle None

 Hoist goes up

2 Hoist at top (X2) Hoist UP (Y1)

 Bag runs out of hoist

3 Container out of hoist (X3) Open stop (Y2)

 Hoist goes down

4 Hoist at bottom (X4) Hoist DOWN (Y3)

47

Since 75% of our equipment is exported, the documentation is generally provided in at least two

languages.

In Jonathan's wordset, the sequence is coded as follows:

: HOIST
 1 SS CASE \ SS - set up specified sequence
 0 OF 1 X 4 X AND ?NS ENDOF \ X - true if input on
 1 OF 3 SECS ?NS ENDOF \ SECS - true if time
 2 OF 2 X ?NS ENDOF \ ?NS - next step if true
 3 OF 3 X 20DNS ENDOF \ 20DNS - set diagnostic after 20s
 4 OF 4 X ?0S ENDOF \ 0S - reset sequence
 ENDCASE
 S@ \ S@ - returns step number
 DUP 2 = 1 Y \ Y - output on/off
 DUP 3 = 2 Y
 4 = 3 Y
;

Note how compact the code is.

2. The problem

a) All conveyor systems are different, so sequences need to be individually documented and

coded for each installation.

b) Complete conveyor systems are very large and complex and are only completely assembled

for the first time at the end customer's site.

c) At the time of installation it is always found that there differences between the original

specification and the customer's actual requirements.

d) Code modifications are therefore made on the spot.

e) Under the intense pressure of commissioning a large system, the code begins to diverge from

the documentation.

3. The Eureka Moment

This occurred during the third glass of wine after the second day of EuroForth 2004.

The documentation essentially contains the same information as the code itself. The only

difference is that the documentation refers to names of sequences, steps and signals, as well as

numbers. However, the documentation already contains a list of signals, therefore sequence and

step names is the only additional data in the documentation.

Although each sequence is different, the same phrases e.g. "Hoist goes up" are frequently

repeated from job to job. They already exist in French and German. Hence automatic translation

is usually possible.

48

Therefore, the code can be used to generate, and even translate the code, provided only two new

words are added to the wordset:

n SQ" Sequence name" \ Document sequence name, then do SS CASE

n ST" Step name" \ Document step name, then do OF

4. The specification

As we developed the specification, we realised that further advantages could be gained. Since

the code had generated the documentation, the program "knew" about the documentation

structure and thus could display the information dynamically, potentially making the debugging

of sequences much easier. For example, the current step could be described, and each logical

action could indicate its true or false state. To find a faulty signal, it was merely necessary to

notice which one was coloured false. The visualisation therefore became an important feature of

the new sequence system.

However, the overriding requirement was that, with the exception of the two words mentioned

above, the code should be exactly the same as before - just as simple and compact.

5. The implementation

Data about a sequence is generated during compilation. The function assigned to the word

differs for different stages of the compilation, so every word that needs to generate

documentation has to be be declared as DEFER-ed.

Example:

DEFER X (x---f)
DEFER ?NS (f ---)

: ~?NS (f--) \ �~� sign added to the word's name
 IF 0T NS THEN ;

: ~X (x---f) \ True if input is ON
 INPUTIMAGE + C@ ;

: IMM-X
 GET-FROM-DP DROP \ Gets compiled input number from dictionary
 COMPILE ~X ;

: IMM-?NS
 GET-FROM-DP DROP \ Puts �next step� entry into data structure
 COMPILE ~?NS ;

Every new word which needs to generate a description is registered (added) in function GET-

SQD-WORD, to permit automatic assignment of multiple words during invoking words:

START-DESCRIPTION and END-DESCRIPTION. START-DESCRIPTION sets

IMMEDIATE flag of deferred word, END-DESCRIPTION resets that flag and assigns

controlling words instead of compiling words.

Word GET-FROM-DP takes the last entry from the dictionary and the function �name� that

called it and passes it to the word SQD-VOCAB, which fills the step data structure to preserve

parameters.

49

STRUCT STEP-ELEM \ Data structure for one step instruction

 CELL FIELD .DP_NUMBER \ Any number associated with data?

 CELL FIELD .PHRASE-FUN \ Points a function generating description string

 CELL FIELD .TYPE \ Extra parameter to distinguish ie input from output

 CELL FIELD .PHRASE-ADD \ Anything to stick on the end, holds a sqphrase number?

 CELL FIELD .TICKNUM \ Store the number to recall the name (and CFA)

 CELL FIELD .TICKTYPE \ Store the type of the word � number of parameters.

END-STRUCT

The list of instructions for each step of each sequence is generated, which index gives access to

the instruction's parameters, description and FA.

A useful word SOURCE>INT returns an integer that comes after a word in the source stream.

So having a piece of code like this:

3 PARAM@ 5 =

we can get both numbers 3 from the dictionary and 5 from the source. -1 is returned if a word is

next instead of a number.

6. The result

START-DESCRIPTION

: SQ78

 78 SQ" Hoist example"

 0 ST" Bag runs into hoist"

 1 X 4 X AND ?NS \ IO names taken from IO data base

 ENDOF

 1 ST� Bag settles in hoist�

 3 SECS ?NS

 ENDOF

 2 ST� Hoist goes up�

 2 X ?NS

 ENDOF

 3 ST� Bag runs out of hoist�

 3 X 20DNS

 ENDOF

 4 ST� Hoist goes down�

 4 X ?OS

 ENDOF

;

END-DESCRIPTION

50

7. Conclusion

The new system has already been used in three installations and has greatly decreased the time

taken to write and debug sequences. It has also proved very popular with the plant maintenance

technicians, who can identify faulty mechanical parts, sensors or actuators more quickly.

51

Simplicity in Forth

Federico de Ceballos

Universidad de Cantabria

federico.ceballos@unican.es

October, 2005

Abstract

In his book "Simplicity" [1], celebrated author Edward de Bono (famous for concepts such as

"Lateral Thinking" or "Po") put forward ten rules that should be used in every system that tries

to define itself as simple. This paper studies how the Forth language meets these rules.

1 Advantages of Simplicity

Simplicity is a nice word and, therefore, one we would like to have at our side. Simplicity can

ease our lives and our actions. Learning a simple system saves us time, money and energy.

Simplicity is both elegant and powerful.

A complex system may have the user's illusion. This means that the user believes he or she

commands the system and is in charge or everything. However, this can be very far away from

the truth.

2 Disadvantages of Simplicity

By travelling the simplicity way, we may end being simplistic. By doing so, we may lose the

usefulness of the original idea.

De Bono mentions the following advantages of a very complex book:

If you don't have anything to say, it is better if you say it in the most complicated way

possible, otherwise the other people will notice the lack of content.

Critics will love your book because they will feel as privileged, as they believe to be the

only ones who can understand it.

Critics will use rivers of ink describing your work, something that doesn't happen with a

simple book.

University professors will appreciate the book, because their science will be needed in

order to explain it to the common people.

Nobody will dare criticize it, as nobody will feel sure about having understood it.

Philosophers may read in the book whatever they like, as its complexity justifies any

interpretation.

The public will buy the book to show off their own culture, even if they don't ever read

it.

The book will become a cult object.

52

It will be natural to think that the author is a profound thinker studying very complex

concepts.

A lot of fake intellectuals will have a good time, enjoying the complexity of the book.

These don't really apply to software, as the view from the end-user will not usually include the

view from the inside. It may happen that a really complex system may be thought of as a marvel

of simplicity.

3 How to Search for Simplicity

The following strategies can be used in order to advance in the quest for simplicity.

The historical analysis

Cut

Listen

Combine

Find out the concepts

The « mass » and the exceptions

Restructure

Begin again from square one

Make modules and smaller units

The provocative amputation

Wishful thinking

The energy transfer

The ladder approach

The perfume approach

Even if they are general concepts, a programmer will find that these phrases evoke methods that

he or she has used in the past.

The idea of modular programming with short words should be close to any Forth programmer's

heart. On the other hand, the idea of combination to generate the answer to several problems at

the same time will probably bring forward the over-generalized solution criticized in Thinking

Forth [2].

53

4 The Ten Rules of Simplicity

In this section, we shall take a detailed look to each of the rules prescribed by de Bono, not from

his point of view, but rather from their usefulness to a Forth programmer.

You must attribute a high value to simplicity

Forth is a useful language. However, other computer languages can be regarded as equally

useful. It may even be argued that the usefulness of mainstream languages is greater than that of

"niche" ones.

A Forth programmer should therefore be conscious about the different among different

paradigms and the reason behind the choice.

You must pursue simplicity with determination

It is not often the case that there is only one way of solving a particular task. According to these

rules, the simplicity of the solution should be one of the factors taken into account when

comparing different approaches.

You must thoroughly know the soil you are treading

One thing many Forth programmers have in common is the intimate knowledge (the phrase

"carnal knowledge" comes to mind) they have about the programming environment they are

using. They also extend this intimate knowledge to the hardware they are using and sometimes

even to the external system controlled by the hardware.

All this should give this kind of programmer a head start when approaching a new problem.

54

You must project alternatives and possibilities

The Forth language encourages the programmer towards an incremental development. This

way, the programmer improves his or her knowledge of the problem as he or she advances in

the solution.

It should be noted that the best way is often unknown until the end of the project is getting

closer.

A language that allows the programmer to easily compare different alternatives using a level of

development that can be shown to work correctly is an interesting choice.

You must discuss and eliminate some of the existing elements

In a normal language, the resources available are by and large fixed. What you can do is extend

the language with some given packages. Sometimes these packages are just black boxes ready

to be used and other times the user can customize them.

In Forth the compiler can be enhanced, changed and sometimes even built again from scratch.

The additional packages are nearly always given as source code, divided into minute words that

can be included only when needed and can also be changed easily.

Because of this, the author has chosen Forth when he tried to develop a simple environment that

could be mastered by the end user in all its details [4].

This is a clear advantage, but it can transform itself in a problem and the programmer spends a

lot of time "improving the tools" and no much is left to really solve the problem at hand.

Another problem is that we can be carried over by the sheer beauty of elimination. However,

when we eliminate everything, nothing remains [6].

You must be ready for a fresh start

In his book "The Mythical Man-Month: Essays on Software Engineering" [3], Frederick P.

Brooks argues that in many cases a full system should be developed with the only aim of using

it to learn how that sort of system should be properly developed. Once this first version is ready,

it should be thrown away and a second one should be started from the beginning.

However, this statement should be taken with a grain of salt. If the system is really complex, too

much expense would already have gone into it so it would be difficult to justify that time and

money just for experience. (As the dictum goes, experience is what you get when you don't get

anything else.) If the system is simple enough, a good programmer should be able to write at

least some useful code from the very beginning.

In Forth, the programmer should have a nice toolset, and this should improve with the time

spent in the project. If some part of these tools couldn't be used, we would think that something

has gone terrible wrong.

You must use concepts

Forth is made of words. It could even be argued that Forth is nothing but words. The name of

the word is an important part of any definition.

Choosing good names is an art in itself. This is more important in Forth than in other languages.

As Dijkstra put it: Besides a mathematical inclination, an exceptionally good mastery of one's

native tongue is the most vital asset of a competent programmer.

55

It may be necessary to divide things in smaller units

The human mind is really good at analysing problems, far above that any machine developed so

far. On the other hand, it is widely acknowledge that this same mind has some basic limitations

when trying combine several different ideas.

According to Miller [5], seven is the magic number that matches the different concepts what can

be kept in our heads at the same time. Forth allows the programmer to code using tiny

definitions. It has been said that the correct length of a definition should be one or two lines

long. (Maybe using seven other words, once the stack noise has been removed.)

You must be prepared to sacrifice other values in favour of simplicity

It would be naïve to think that Forth is the only language that can be used to solve a given

problem. Furthermore, it would be simplistic to assume that other languages are in a different

league and only we are using Forth because of some sort of arcane knowledge.

We must assume that other languages have some important advantages over Forth:

The compiler is readily available when buying the machine or installing the operating

system, so that it can be used without any especial action.

A great number of book, articles, examples, tutorial and web pages are available.

It has a great user base and knowledge can be shared.

Maybe these reasons are not very important to us. However, they are there, and we should know

what sacrifices we are doing if we decide to use other way.

You must know in whose name you are projecting simplicity

This is a really difficult subject. It can be easily forgotten what we are looking for and which

advantages we shall gain with it. It is easy to let yourself go in the beauty of problem solving

and forget that our code and our computer are only tools in the way and not the final objective.

We could be tempted to describe Forth metaphorically, as Mike Ham did: Forth is like Tao: it is

a way, and is realized when followed. Its fragility is its strength, its simplicity its direction. This

sounds nice, but a language is also a tool. At the end of the day, we would like to be able to

enjoy the result of our work and not only how much we enjoyed working.

5 Conclusions

The author believes that the language Forth should be presented to other programmers as an

example of a simple language capable of meeting most if not all of their need in quite an elegant

manner. Even if they keep using their favourite language, the insight given by Forth will be

priceless.

On the other hand, Forth programmers should also ponder what the rest of the programming

community is doing and how it is solving day-to-day problems more or less successfully. A

Forth programmer should not be blinded by the shine of his or her tools and should restrict him-

or herself to carry out the current task in the most efficient manner.

References

[1] Edward de Bono. Semplicità. Sperling & Kupfer Editori, 1998.

[2] Leo Brodie. Thinking Forth. Fig Leaf Press, 1984.

56

[3] Frederick P. Brooks. The Mythical Man-Month: Essays on Software Engineering.

Addison-Wesley Professional, 1995.

[4] Federico de Ceballos. A Minimal Development Environment for the AVR Processor.

17th EuroForth Conference. Schloss Dagstuhl, 2001.

[5] George A. Miller. The Magical Number Seven, Plus or Minus Two: Some Limits on Our

Capacity for Processing Information. The Psychological Review, 1956.

[6] C.H. Ting. Tao of Forth. Twenty-First Forml Conference. Asilomar, 1999.

57

XML, SOAP and Web Services in Forth

Stephen Pelc

Microprocessor Engineering

133 Hill Lane

Southampton SO15 5AF

stephen@mpeforth.com

Abstract

Web services enable applications to exchange data using an extension to HTTP. Implementing

web services requires extensions to an HTTP server, parsing and generating XML and then

interfacing to other applications. This paper discusses what was needed to extend MPE�s

PowerNet to handle web services, and how we took advantage of Forth itself to simplify the

solution.

Introduction

Web services are a a means of exchanging data between applications. The transfers are designed

for machine use, not for human use; despite this the transfers are mostly printable. Data is

exchanged using XML templates and data descriptions. You can treat XML as an extensible

version of HTML with stricter rules.

Unlike many other application interchange protocols such as DCOM, web services are based on

open standards and so are not restricted to use under specific operating systems. Because all

data transfers are in text form, web services do not suffer from the data marshalling issues of

other techniques.This is achieved at the expense of an increase in data size of about 10:1, which

can make severe demands on the underlying networks used to link machines. It has long been

MPE�s opinion that heterogeneous interoperability is most easily achieved using sockets and

text transfers. This was an ideal opportunity to test the assertion.

The work was supported by Construction Computer Software (Cape Town, South Africa), and

so follows their requirements. The initial design work and test systems were provided by

Graham Stevenson of Oxford Network Solutions.

After much reading of documentation and specifications, the implementation order was:

x� XML input

x� XML output

x� Testing against an existing web service

x� PowerNet changes

x� Generate WSDL files

x� Test with Excel

PowerNet v3

PowerNet v3 is a Forth TCP/IP stack with Telnet, web server, CGI and ASP facilities. It has

been running for some years on embedded systems. The version for Windows replaces the

embedd TCP/IP stack with calls to the Winsock API. Above that level, the multi-threaded

58

servers require very little change between the embedded and the Windows versions. Scripting

facilities are provided by Forth itself.

At a very early stage in the design of PowerNet, we decided to implement each connection to a

server as a task, and to treat the TCP/IP sockets as standard Forth I/O streams. Although this can

increase the amount of RAM required by a busy server, it has the big advantage of simplicity.

An additional advantage is that the usual Forth I/O handling, particularly KEY EMIT and

friends, can be used with each connection. This design decision was to pay off handsomely

when implementing web services.

An example transaction

The following is a SOAP request to a server:

POST /service1.asmx HTTP/1.1

Host: oxns.demon.co.uk

Content-Type: text/xml; charset=utf-8

Content-Length: length

SOAPAction: "http://oxns.demon.co.uk:37851/HelloWorld"

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

>

 <soap:Body>

 <HelloWorld xmlns="http://oxns.demon.co.uk:37851/">

 <s1>string</s1>

 <s2>string</s2>

 <i1>int</i1>

 </HelloWorld>

 </soap:Body>

</soap:Envelope>

The response is generated from the script file HelloWorld.aspx:

HTTP/1.1 200 OK

Content-Type: text/xml; charset=utf-8

Content-Length: length

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

>

 <soap:Body>

 <HelloWorldResponse

 xmlns=http://oxns.demon.co.uk:37851/
 >

 <HelloWorldResult>string</HelloWorldResult>

59

 </HelloWorldResponse>

 </soap:Body>

</soap:Envelope>

The request's SOAPaction header is parsed to yield HelloWorld, which is the required action

and corresponds to a Forth wordlist. This name is extended to select the file HelloWorld.aspx

which is output and processed by the ASP processor with the selected wordlist in the search

order. The ASPX file that generated the response above could have been as follows.

<?xml version="1.0" encoding="utf-8"?>

<% language=forthscript %>

<soap:Envelope

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

>

 <soap:Body>

 <HelloWorldResponse

 xmlns="http://oxns.demon.co.uk:37851/">

 <HelloWorldResult>

 <% /s1 .Param ." :" /s2 .Param ." :" /i1 .param %>

 </HelloWorldResult>

 </HelloWorldResponse>

 </soap:Body>

</soap:Envelope>

The key line is this one:

<% /s1 .Param ." :" /s2 .Param ." :" /i1 .param %>

This text between <% and %> is treated as Forth sourced and EVALUATEd by the Forth

interpreter. Any output from the Forth is simply sent to the socket to which the response text

goes.

XML input design

XML is an enhanced HTML with much stricter rules. In particular, every opening tag must have

a closing tag. The major difference is that the choice of tag names is up to you, and each section

of an XML document forms a tree.

As with HTL, you can choose to ignore tag pairs. We chose to process input the tags at the

closing tags because the text was available as the content of the tag.

 <s1>string</s1>

 <s2>string</s2>

 <i1>int</i1>

Thus, for output we need to be able to access the tags by name, and to extract the data from

them. The simplest way is to create Forth words for tags we wish to process, and to ignore all

others. In the output phase, we can then use these Forth words.

60

All Forth words corresponding to tags share a common data structure which controls how data

is set and displayed. To ease construction of services, a source notation was devised. An

example is:

[services

 [service Service1

 Xcstring: /s1

 Xcstring: /s2

 Xint: /i1

 Xint: /i2

 Xfloat: /fl1

 Xoperation: HelloComplexWorld

 Xoperation: HelloLong

 Xoperation: HelloWorld

 Xoperation: HelloInts

 Xoperation: HelloFloat

 Xoperation: HelloDouble

 service]

services]

Several services can be available from one server. A service description consists of the data it

uses and the operations it supports.

XML parser implementation

We started from Jenny Brien�s code published in ForthWrite, the magazine of the UK Forth

Interest group. It was later reimplemented by Leo Wong, with extensions for handling

attributes, which are the name/value pairs (name=�value�) found after the tag names inside

a tag declaration.

The code has been extensively rewritten to add error checking and to deal with more cases

which were discovered when we exported a large Excel spreadsheet to XML.

The intention of the original code was to be able to include an XML file as a Forth source

code file. This makes testing easy, but has limitations when dealing with web services as the

HTTP headers have to be bypassed. The solution was to provide a version of include that we

call IncludeMem (caddr u --) which performs the function of include from a block

of memory. This word has other uses in embedded systems and is sufficiently useful that we

incorporated it into the VFX Kernel, not least because the word has carnal knowledge of the

kernel.

The final code code can be found in the file Lib\XML.fth in all VFX Forth for Windows

distributions.

XML output design

Output of XML for web services is defined in ters of standard data types. Having defined a

structure for each data item, we can insert the correct output routine when we define an instance

of a data type. In the ForthScript below

<% /s1 .Param ." :" /s2 .Param ." :" /i1 .param %>

61

the words /s1 /s2 and /i1 correspond to the closing XML tags </s1> </s2> and

</i1>. The word .Param displays the data in XML format.

The only issues here are in matching the specification, and in converting the XML special

characters such as the �<� and �>� characters to their XML representations.

Testing against an existing web service

The parser was tested by constructing an example web service using the Microsoft C#.NET

toolchain. This showed what we can expect from other systems. We could then test Excel

against this web service. By logging the transactions, we could see what was expected.

The objective of our first server was thus to replicate the test server.

Required changes to PowerNet

The major changes to PowerNet were in the detection of a web service request. We handled this

by using the ASMX extension for web service files. Another change was that most web service

requests are made as POST requests, whereas most web pages are served as GET requests. GET

requests are used when the state of the server will not change. Since web services exchange and

modify data, the state of the server can change, and so POST requests are used.

We also had to modify the CGI handler to recognise the �?wsdl� string which is discussed

below.

WSDL files

It is all very well to be able to exchange data, but you also have to be able to publish how you

are going to exchange the data. This is handled by the Web Services Description Language

(WSDL, or �wizdl�). Every web service includes two files which can be accessed by GET

requests.

The first is a standard web page which tells humans how to use the service and often includes

software documentation. The second is an XML description of the service as an XML schema.

In the real world

So does it really work? Yes, it does. There were the usual problems with Excel not being totally

standards compliant, especially in terms of requiring �keep-alive� connections. However, since

these restrictions are the result of recommendations in later versions of the HTPP RFCs, these

problems may be forgiven even if they cause problems in low-resource environments such as

are found in embedded systems.

Embedded systems

Much as we have complained about the behaviour of Excel, it is in reality the application that

most people want to be able to exchange data with. PowerNet v3 can be coerced to work with

16k of RAM in total, is much more comfortable in 32k, and surprising in 64k bytes. The effect

62

of keep-alive connections with Excel is that you have to generate XML output data (or at least

know its size) before generating the HTTP header.. This requires either more code or more

RAM. We simply chose the more RAM route for the PC implementation.

Future developments

We intend to port PowerNet v4 to embedded systems, and to enhance the ease of use by

automating the generation of the response scripts and WSDL files.

