
Stack Caching in Forth

M. Anton Ertl∗

TU Wien

David Gregg

University of Dublin, Trinity College

Abstract

Stack caching speeds Forth up by keeping stack
items in registers, reducing the number of mem-
ory accesses for stack items. This paper describes
our work on extending Gforth’s stack caching imple-
mentation to support more than one register in the
canonical state, and presents timing results for the
resulting Forth system. For single-representation
stack caches, keeping just one stack item in registers
is usually best, and provides speedups up to a factor
of 2.84 over the straight-forward stack representa-
tion. For stack caches with multiple stack repre-
sentations, using the one-register representation as
canonical representation is usually optimal, result-
ing in an overall speedup of up to a factor of 3.80
(and up to a factor of 1.53 over single-representation
stack caching).

1 Introduction

In threaded-code interpreters for Forth, and espe-
cially in simple inline-expanding native-code com-
pilers a significant part of the run-time is consumed
by loading stack items from and storing them to
memory, and by stack pointer updates.

A frequent technique for reducing that overhead
is to keep the top-of-stack in a register. Stack
caching [Ert95] is a generalization of this technique.
In the past we have presented data based on sim-
ulations [Ert95], and timing data with restricted
forms of stack caching: Gforth was only able to per-
form single-state stack caching with one register,
and static stack caching with the canonical state
containing 0 or 1 registers [EG04].

In this paper, we describe how we lifted these
restrictions (Section 3), and present empirical re-
sults, including timing results for several different
machines (Section 4).

2 Background

This section gives an overview of stack caching
[Ert95, EG04].

∗Correspondence Address: Institut für Computer-

sprachen, Technische Universität Wien, Argentinierstraße 8,

A-1040 Wien, Austria; anton@mips.complang.tuwien.ac.at

spr9

registers memory

TOS
2nd

load r1=0(r9)
load r2=4(r9)
add r9=r9,4
sub r1=r2,r1
store 0(r9)=r1

machine code for −

Figure 1: A straight-forward representation of the
stack

sp

r1

r9

registers memory

TOS

2nd

load r2=0(r9)
add r9=r9,4
sub r1=r2,r1

machine code for −

Figure 2: Keeping the top-of-stack in a register

2.1 Stack representation

A straight-forward representation of the stack is to
keep all stack items in memory, and have a stack
pointer that points to the top-of-stack (Fig. 1). This
requires a memory access for every stack accessed
stack item.

A frequently used improvement over the straight-
forward representation is to keep the top-of-stack in
a register (Fig. 2). This makes the frequent accesses
to the top-of-stack substantially cheaper.

2.2 Using several registers

One might consider keeping more stack items in reg-
isters all the time. However, this does not necessar-
ily lead to an improvement in running time, because
with many stack items in registers, changing the
stack depth often requires additional moves between
registers (Fig. 3). Whether more stack items pro-
vide a speedup, depends on the mix of primitives,

Ertl, Gregg Stack Caching in Forth

sp

r1

r9

registers memory

TOS

5th

sub r1=r2,r1
move r2=r3
move r3=r4
load r4=0(r9)
add r9=r9,4

machine code for −

r2 2nd
r3 3rd
r4 4th

Figure 3: Keeping the four top stack items in reg-
isters

sp
2nd

r1

TOS
sp

TOS

3rd

r1

sp

2nd
r2 TOS

registers memoryregisters memoryregisters memory

r9 r9r9

representation 0
no items in regs

representation 1
1 item in regs

representation 2
2 items in regs

#before: rep 2
sub r1=r1,r2
#after: rep 1

#before: rep 1
load r2=0(r9)
add r9=r9,4
sub r1=r1,r2
#after: rep 1

#before: rep 0
load r2=0(r9)
load r1=4(r9)
add r9=r9,8
sub r1=r1,r2
#after: rep 1

machine code for −

Figure 4: A stack cache with multiple stack repre-
sentations

and on the characteristics of the machine executing
the code.

In the past we have presented only simulation
results for stack caches with more than one register.
In this work we present timing results from real
machines.

2.3 Multiple stack representations

To avoid the cost of the register moves (and other
costs) when changing the stack depth, one could
change the stack representation during the execu-
tion of a primitive (Fig. 4); note how cheap - be-
comes when it starts in representation 2 and is al-
lowed to finish in representation 1. Of course, then
the next primitive executed has to be in a version
that starts in representation 1 (or we have to insert
additional code that switches between representa-
tions). So, in order to make profitable use of this,
we need different implementations of at least the
common primitives, for different stack representa-
tions.

2.4 Static stack caching

How do we get the right version of the primitive to
execute? There are at least two ways, but the more
promising one is static stack caching: The compiler
keeps track of the stack representation, and for each
primitive it has to compile, it compilers an appro-
priate version of the primitive.

This approach requires that the stack representa-
tion is the same when two control flow paths join.
Moreover, for simplicity in the compiler it is best
if the stack representation is the same at all points
where control flow can happen (in compiler termi-
nology, at all basic block boundaries); this represen-
tation is the canonical stack representation.

In earlier work, we only had simulation results
for static stack caching [Ert95], or timing results
where the canonical stack representation could have
at most one register [EG04]. In the present work,
we present timing results for stack caches with other
canonical states.

3 Implementation

3.1 Interpreter generator

The code for Gforth’s primitives is written in a mix-
ture of Forth and C. E.g., here is the code for the
primitive +:

+ (n1 n2 -- n) core plus

n = n1+n2;

An interpreter generator [EGKP02] translates
this code into (GNU) C code, and gcc then trans-
lates it into an executable interpreter.

One important aspect of the interpreter genera-
tore is that it generates all the stack access code for
a primitive from the specification of the stack effect
in the first line of the primitive’s specification.

To implement stack caching, we generalized the
access-generating code to deal with arbitrary stack
representations, including different representations
before and after the primitive. We also added ways
to specify stack representations, and to determine
which versions of a primitive are generated.

One problem in this context were primitives
that access a stack pointer explicitly in their C
code, either because they have to manipulate it
(e.g. sp!), or because they do something beyond
the descriptive powers of the stack effect speci-
fication in the interpreter generator (e.g., ?dup).
The primitives affected in Gforth are: sp@ sp!

fp@ fp! ?dup ?dup-?branch ?dup-0=-?branch

pick >float fpick and some C call interface
primitives.

In our first foray into multi-state stack caching
[EG04], we just left these primitives alone, so that
they would just keep working with 0 or 1 stack items

Ertl, Gregg Stack Caching in Forth

in registers. However, this restricted the canonical
stack representations we could use to just those with
0 or 1 stack items in registers.

In the present work, we eliminated this restric-
tion: You can now put the string ... (possibly
prefixed by a stack prefix) into the stack effect de-
scription of a primitive; this causes the generator
to flush all the cached stack items to memory and
let the stack pointer(s) point to the top-of-stack,
thus presenting the C code with the straightforward
stack representation (Fig. 1); after the C code, stack
items are loaded into registers and the stack pointer
is adjusted as is necessary for the representation af-
ter the primitive. Here is an example:

pick (S:... u -- S:... w) core-ext

w = sp[u];

Here the S:... indicates that the data stack has
to be flushed before and reloaded after the primi-
tive. An additional advantage of this approach is
that these primitives became much easier to under-
stand than they used to be; before this extension,
one had to consider the kind of code that the gener-
ator would produce, often with conditional compi-
lation for dealing with the differences between using
0 or 1 register.

3.2 Code generator

When Gforth compiles Forth code (or loads the sys-
tem image), it has to select which versions of the
primitives (out of several with different input and
output stack representation) should be used. This
selection is performed by C code that hooks into the
Forth compiler via compile, and is also called from
the loader. This code generator uses a shortest-
path algorithm for selecting the optimal sequence of
primitive versions (optimality criterion: minimum
sum of the native-code sizes of the primitive ver-
sions). This code generation process is described in
more detail in our earlier work [EG04].

3.3 Effects on Forth code

To work correctly with stack caching, the colon defi-
nitions must not access stack items in memory (with
sp@ and memory operations). Fortunately, there
was only one colon definition in the Gforth system
that did this: roll. This definition was changed
into one that does not use sp@ and does not use
memory operations to access stack items.

In addition to that, there were some very small
changes to make the static stack caching code gener-
ator (written in C) aware of control flow joins (then,
begin).

These were the only changes that were needed in
the Forth code of the Gforth system, so the changes
for static stack caching were fairly local.

3.4 GCC issues

Stack caching introduces additional versions of the
primitives. The versions of Gforth we used for the
present work contain around 1200 primitives and
their versions: 355 basic primitives (starting and
ending in the canonical state), 795–848 versions
of popular primitives for other transitions between
stack representations, and 13 superinstructions (de-
activated in our experiments).

In older versions of GCC and with our old way of
coding NEXT in the primitives, having so many
primitives and their versions resulted in a huge
memory consumption (several hundred MB) and
long compile times (on the order of a half-hour).

With more recent GCC versions, this problem
was not present, but they generated code that dis-
abled dynamic superinstructions, a very profitable
optimization in Gforth that is also essential for our
implementation of static stack caching.

We worked around both of these problems by
changing the way we code NEXT. Instead of ap-
pending the NEXT sequence including an indirect
goto (goto *) to each primitive, we just have one
indirect goto (very early) in the whole function. At
the end of each NEXT, we append a direct goto to
this indirect goto:

engine(...)

{

...

before_goto:

goto *real_ca; /* indirect goto */

after_goto:

...

I_plus:

... /* all of + except NEXT */

ip++; /* maintain ip for accessing

immediate arguments */

K_plus:

real_ca = ip[-1]; /* NEXT, part 2 */

J_plus:

goto before_goto;

... /* other primitives */

}

For dynamic superinstructions, when we want
to generate the code for a + without a NEXT,
we copy the code between I plus and K plus to
the native-code area of the current definition. But
if we want to include the NEXT (normally that
only happens for branching primitives), we copy the
code between I plus and J plus, and append the
code between before goto and after goto; this
avoids the problems with the non-relocatability of
the goto before goto.

The benefit of this workaround in our context is
that even older gccs compile gforth-fast with the
1200 primitive versions in around a minute (on a

Ertl, Gregg Stack Caching in Forth

1066MHz PPC7447A), using about 50MB of RAM.
With newer gcc versions we get engines where dy-
namic superinstructions work.

The downside of this workaround is that, if dy-
namic superinstructions are disabled for some rea-
son, the the Forth system runs significantly slower
than the old version of Gforth would run when com-
piled with an older version of gcc: The additional
direct branch per primitive costs time; and on CPUs
with branch target buffers (e.g., various Pentiums
and Athlons), the shared indirect branch has sig-
nificantly worse branch prediction than the sepa-
rate indirect branches had. However, ideally dy-
namic superinstructions are enabled in all situations
where performance is important, so this disadvan-
tage should not be a problem.

4 Results

4.1 Hardware

The main component that determines the perfor-
mance in our benchmarks is the CPU. We used
three different hardware platforms with different
CPUs: a 450 MHz PPC7400 (PowerMac G4), a
1066MHz PPC7447A (iBook G4), and a 2000MHz
PPC970 (PowerMac G5). The PPC7400 is a
shallowly pipelined CPU (4 stages in the integer
pipeline) that can issue up to two instructions per
cycle; the PPC7447A is a deeper (7 stages) and
wider (triple-issue) CPU; and the PPC970 is very
deep (16 stages) and very wide (five-issue).

So we can expect to see some performance differ-
ences from these CPUs, even though they have the
same architecture. We use the PPC architecture
for our experiments, because gcc is able to allocate
many registers for the stack cache on this archi-
tecture, unlike on other architectures we have tried
(Alpha, MIPS, AMD64, ARM); we believe that this
is caused by the much higher number of callee-saved
registers in the PPC calling convention compared to
other calling conventions.

All of these machines were running Linux, and
we benchmarked the same executable programs on
all of them.

4.2 Forth systems

We built nine Gforth engines, all of them with 8
registers usable for stack caches. The engines dif-
fer in the canonical stack representation they sup-
port, one for each number of registers (0–8). The
other stack representations can be controlled using
a command-line parameter. E.g., we ran the en-
gine built for the canonical state with three reg-
isters with just one stack state to get results for
single-representation stack caching with three regis-
ters. We also ran it restricted to the representations

Program Vers. Lines Description

cross 0.6.9 3793 Forth cross-compiler

tscp 0.4 1625 chess

brainless 0.0.2 3519 chess

vmgen 0.6.9 2641 interpreter generator

bench-gc 1.1 1150 garbage collector

CD16sim 1.1 937 CPU emulator

brew t 38 31401 evolutionary playground

pentomino 516 puzzle solver

sieve 23 prime counting

bubble 74 bubble sort

matrix 55 integer matrix multiply

fib 10 double-recursive function

Figure 5: Benchmark programs used

with 0–3 registers with the three-register represen-
tation being canonical; similarly for 0–4 registers up
to 0–8 registers. In this way the 9 basic engines were
used for evaluating 53 stack caching organizations.

Even though we built the engines with a few
static superinstructions, we disabled them in bench-
marking, because the combination of static stack
caching and static superinstruction is not supported
yet, so the static superinstructions just work in the
canonical state, and enabling them might suppress
some of the effects of stack caching (to a greater
extent than an proper combination of stack caching
and static superinstructions would).

The engines were built with gcc-4.0.1 (Debian
4.0.1-2).1

4.3 Benchmarks

Figure 5 shows the benchmarks we used for our ex-
periments. In addition to timing results, we also
present instruction, load, and store counts; they
were collected using the performance monitoring
counters of the PPC7447A and the perfex utility
of the perfctr patch for Linux. We use the same
executables on all machines, so the number of ex-
ecuted instructions, loads, and stores are the same
on all of them. We ran each benchmark three times
for each configuration, and present the median of
the three runs.

4.4 Run-time and instructions

Figure 6 shows the number of instructions executed
by the benchmark Brainless. The line labeled n

1We suspected that auto-increment load and store in-

structions combined with the selection of which stack item

the stack pointer points to might influence the results, so

we also performed experiments with compiling with the

-mno-update flag, which suppresses generating code that uses

auto-increments. However, the results were essentially the

same either way, so our suspicion was disproved. In this

paper, we report the results without -mno-update.

Ertl, Gregg Stack Caching in Forth

n

0-1
0-2

0-3
0-4

0-5
0-6

0-7
0-8

0 1 2 3 4 5 6 7 8
canonical regs
n

instructions

0.5

0.7

1.0

1.4

Figure 6: Instructions executed by Brainless

n

0-1
0-2 0-3

0-4
0-5

0-6
0-7

0-8

0 1 2 3 4 5 6 7 8
canonical regs
n

time PPC7447A

0.5

0.7

1.0

1.4

Figure 7: Brainless run-time on PPC7447A

n

0-1

0-2 0-3

0-4
0-5

0-6
0-7

0-8

0 1 2 3 4 5 6 7 8
canonical regs
n

time PPC7400

0.5

0.7

1.0

1.4

Figure 8: Brainless run-time on PPC7400

n

0-1

0-2 0-3
0-4

0-5 0-6 0-7 0-8

0 1 2 3 4 5 6 7 8
canonical regs
n

time PPC970

0.5

0.7

1.0

1.4

Figure 9: Brainless run-time on PPC970

Ertl, Gregg Stack Caching in Forth

represents the stack caches with a single stack rep-
resentation; that stack representation is indicated
by the position on the x-axis. The lines labeled 0–x

represent stack caches using stack representations
with 0 to x registers; the canonical representation
is indicated by the position on the x-axis.

Figure 7, 8 and 9 show timing results for Brainless
on different CPUs.

Figure 12, 13, 14 and 15 show instruction counts
and timing results for all benchmarks; two single-
representation results are shown per benchmark:
for keeping one stack item in a register all the time,
and the best single-representation scheme for the
benchmark (this may be different from the best
scheme for other benchmarks). Similarly, for the
multiple-state schemes the scheme with up to three
registers (0-3) with the canonical representation
keeping one stack item in a register is shown, and
the best multi-representation scheme for the bench-
mark.

Which canonical representation?

For the multiple-representation stack caches, once
the number of registers available exceeds those in
the canonical representation by two or more, all
caches with the same canonical representation per-
form about the same. The number of instructions
executed is smallest for the canonical stack rep-
resentation with one register (except for some of
the smaller benchmarks). Similarly, for the single-
representation stack caches, the one with one regis-
ter executes the least instructions.

The PPC7400 timings behave quite similar to the
instruction counts, although the timing reduction
is somewhat higher than the instruction reduction;
on the PPC7447A and especially the PPC970 the
times for canonical representations with more than
one registers rise much more slowly (and sometimes
not at all).

Nevertheless, even on those CPUs using the one-
register representation as canonical representation
or, for single-representation stack caches, as the rep-
resentation is optimal for many benchmarks, and
close to optimal on the others.

How many registers?

With the canonical representation set to using one
register, how many registers should be used for a
multiple-representation stack cache? More than
three registers does not help much (see Section 5
for an explanation); so if three registers are avail-
able, they should be used. Two registers are almost
as good, but with just one register, the speedup over
the one-register single-representation stack cache is
tiny.

n
0-1

0-2 0-3 0-4 0-5 0-6 0-7 0-8

0 1 2 3 4 5 6 7 8
canonical regs
n

loads/insts

0

0.3

0.4

Figure 10: Load instructions executed dynamically
by Brainless

n
0-1

0-2 0-3 0-4 0-5 0-6 0-7 0-8

0 1 2 3 4 5 6 7 8
canonical regs
n

stores/insts

0

0.05

0.1

0.15

Figure 11: Store instructions executed dynamically
by Brainless

Are multiple representations worthwhile?

In the setup we evaluated, the 0-3 stack cache
with the one-register canonical representation pro-
vides up to a factor of 1.53 speedup (Pentomino on
the PPC7400) over the single-representation stack
cache with one register. If enough registers are
available (at least two), the speedup may well be
worth the implementation cost.

Benefit of single representation

While the case for multiple stack representations
depends on the circumstances, the case for keep-
ing one stack item in registers all the time is pretty
clear. For a tiny increase in implementation com-
plexity we get a significant increase in performance,
in particular on the PPC970. In earlier work
[EGKP02] we have also tested this on other CPUs;
the results were not as spectacular as for the PPCs,
but still worthwhile.

Ertl, Gregg Stack Caching in Forth

cross
tscp

brainless
vmgen

bench-gc
CD16

brew
pentomino

siev
bubble

matrix
fib

instructions

0.6

0.7

0.8

0.9

1.0 single rep: 1 reg best single rep multi rep: 0-3, canonical: 1 reg best multi rep

Figure 12: Instructions executed dynamically relative to the straight-forward stack representation

cross
tscp

brainless
vmgen

bench-gc
CD16

brew
pentomino

siev
bubble

matrix
fib

speedup PPC7400

2

1.4

1.0

single rep: 1 reg best single rep multi rep: 0-3, canonical: 1 reg best multi rep

Figure 13: Speedup on the PPC7400 over the straight-forward stack representation

cross
tscp

brainless
vmgen

bench-gc
CD16

brew
pentomino

siev
bubble

matrix
fib

speedup PPC7447A

2

1.4

1.0

single rep: 1 reg best single rep multi rep: 0-3, canonical: 1 reg best multi rep

Figure 14: Speedup on the PPC7447A over the straight-forward stack representation

Ertl, Gregg Stack Caching in Forth

cross
tscp

brainless
vmgen

bench-gc
CD16

brew
pentomino

siev
bubble

matrix
fib

speedup PPC970

4

2.8

2

1.4

1.0

single rep: 1 reg best single rep multi rep: 0-3, canonical: 1 reg best multi rep

Figure 15: Speedup on the PPC970 over the straight-forward stack representation

Loads and Stores

Figure 10 and Fig. 11 shows the number of exe-
cuted loads and stores as proportion of the number
of executed instructions.

Stack caching reduces both loads and stores by
about the same number. However, there is a big
baseline of loads that do not perform stack accesses,
which is the reason for the difference in the way the
pictures look.

One big contributor to this baseline is that each
primitive still loads the address of the next one.
This is mostly redundant in the context of dynamic
superinstructions and could be optimized away.

The significance in the number of loads and stores
is that some CPUs have particular performance is-
sues related to these instructions. In particular,
there are a number of CPUs that are store-limited,
because their writes go off-chip (no on-chip caches,
or only write-through on-chip caches); CPUs of
this class are the 486DX2 and some 486DX4s, the
MicroSPARC II, the 21064 and the 21164PC; for
newer high-performance CPUs this is a problem of
the past, but it might show up in embedded systems
(and sometimes as a bug workaround elsewhere).
For store-limited CPUs the speedup can be directly
proportional to the reduction in stores.

n0-1

0-2

0-3

0-4

0-5

0-6

0-7

0-8

0 1 2 3 4 5 6 7 8
canonical regs
n

time PPC7447A

1.0

1.4

2.0

2.8

Figure 16: Gforth startup time

Ertl, Gregg Stack Caching in Forth

n

0-1 0-2
0-3

0-4

0-5

0-6

0-7

0-8

0 1 2 3 4 5 6 7 8
default regs (n)

code size

0.8

0.9

1.0

1.2

1.4

Figure 17: Code size of the dynamically generated
native code for the Gforth image

4.5 Compile time

The time taken by the shortest-path algorithm used
in the code generator (Section 3.2) takes time lin-
ear with the number of stack representations. This
affects the startup time of Gforth (where the code
generator is applied to the code of the image file),
and the compilation speed. Figure 16 shows the re-
sulting changes in the startup time. Note that even
with 9 representations, the startup time of Gforth
on the 1066MHz PPC7447A is still only 0.05s, so
in most applications this is not a serious problem;
however, it is visible in the results of short-running
benchmarks.

It is possible to have a faster code generator that
uses a two-pass automaton and has performance in-
dependent of the number of stack representations,
but we have not implemented that (yet).

4.6 Code size

The code size is also affected by stack caching
(Fig. 17). With a single stack representation with
one register, the code is 0.94 times as large as with-
out stack caching. With multiple representations
the code size can be reduced to 0.86 times the size
without stack caching.

However, the additional primitive versions neces-
sary to make multiple representations effective also
should be added to the code size; for the engine with
0–8 registers, with one register for the canonical rep-
resentation, the additional code size is 26068 bytes
for the primitives alone; the additional code size for
0–3 registers would be significantly smaller, proba-
bly around 10KB. For the Gforth image alone going
from always-1 to 0–3 registers saves 24024 bytes, so
multiple-representation stack caching can pay for
itself already before compiling any additional code.

length

basic blocks

1 5 10 >15
0

1000

2000

3000

Figure 18: Number of primitives per basic block
(static) for Brainless

On the other hand, at least Gforth needs another
copy of the additional primitives (for determining
relocatability), plus embedded padding, plus some
tables describing the additional primitives. And for
a smaller image, the savings would be smaller. So
multi-representation stack caching does not neces-
sarily reduce the code size.

Moreover, if code size is at a premium, the user
would not use dynamic superinstructions, and there
would be no code size savings from multiple repre-
sentations, only the cost of the additional primi-
tives.

5 Further work

The improvement of multiple-representation stack
caching over single-representation stack caching is
a little disappointing. One reason for this could
be that the basic blocks in Forth code are very
short, forcing a return to the canonical represen-
tation very often (Fig. 18). In particular, for the
large number (45% for Brainless) of basic blocks
with length one there is no difference between a
multiple-representation stack cache and a single-
representation stack cache. So, given this basic
block length distribution, it is not very surprising
that there is not that much performance difference
between single and multiple representations.

So if we apply optimizations that make the ba-
sic blocks longer, we might see quite different re-
sults than those in this paper. For Forth the most
promising of these optimizations is inlining [GE04].
We will investigate the effect of inlining in the fu-
ture.

6 Related Work

Stack caching was first published by DeBaere and
Van Campenhout [DV90], who presented a small
example of dynamic stack caching.

Ertl, Gregg Stack Caching in Forth

Ertl [Ert95] discussed stack caching in more de-
tail, including various stack cache organizations,
static and dynamic stack caching, and presented
results in numbers of eliminated loads, stores, and
stack pointer updates, but produced no full imple-
mentation.

Sun’s Hot Spot JVM system performs dynamic
stack caching in its interpreter part [Gri01]: It
caches up to one stack item in registers; for each
of the four types (int, long, float, double), it has a
separate state that represents the presence of one
stack item of this type in registers (different reg-
isters are used for some of these types). It is not
necessary to implement instances of all instructions
for all states, because the type rules of the JVM
disallow many state/instruction combinations.

Ogata et al. [OKN02] implemented dynamic stack
caching with up to two registers, but eventually
dropped it because the speedup from that on their
Power3 machine was not large enough (1%–4% over
single-state stack caching) to justify the complexity.

The differences between the present paper and
these papers is that we present an implementation
of static stack caching.

Peng et al. [PWL04] introduce a technique for
saving real-machine code space in static stack
caching (with an unconventional stack cache orga-
nization) by arranging the code for the VM instruc-
tion instances such that they share one piece of
code, with different entry points for the different in-
stances. The difference between this paper and our
work is that we combine static stack caching with
dynamic superinstructions and that we use differ-
ent and more stack cache organizations (designed
for execution speed, not code sharing).

In our earlier work [EG04], we already com-
bined static stack caching with dynamic superin-
structions. In this work we expand on that work by
implementing stack caching with arbitrary canon-
ical representations, and evaluating the resulting
stack cache organizations. We also discuss issues
related to high-level Forth code and some issues we
had with gcc and how we solved them; also, in the
present paper we only give an overview over the
code generation topics that were discussed in depth
in our earlier papers.

7 Conclusion

For single-representation stack caching, keeping one
stack item (the top-of-stack) in a register is usu-
ally optimal; the resulting speedup (over using the
straight-forward stack representation) depends on
the benchmark and the CPU, and can reach up to
a factor of 2.84 (pentomino on PPC970); however,
on most other CPUs the speedups are significantly
smaller.

For multiple-representation stack caching, using
a canonical state with one register is often opti-
mal; with that fixed, using more than three regis-
ters for the stack cache provides little benefit. This
stack cache organization provides speedups of up
to a factor 3.80 (matrix on PPC970), but again the
results on other CPUs and other benchmarks are
often considerably less. The speedup of using this
stack caching scheme over single-stack stack caching
can reach up to a factor of 1.53 (pentomino on
PPC7400). Optimizations that make basic blocks
longer (e.g., inlining) might change these results.

References

[DV90] Eddy H. Debaere and Jan M. Van
Campenhout. Interpretation and In-
struction Path Coprocessing. The MIT
Press, 1990.

[EG04] M. Anton Ertl and David Gregg. Com-
bining stack caching with dynamic su-
perinstructions. In IVME ’04 Proceed-
ings, pages 7–14, 2004.

[EGKP02] M. Anton Ertl, David Gregg, Andreas
Krall, and Bernd Paysan. vmgen — a
generator of efficient virtual machine in-
terpreters. Software—Practice and Ex-
perience, 32(3):265–294, 2002.

[Ert95] M. Anton Ertl. Stack caching for inter-
preters. In SIGPLAN ’95 Conference
on Programming Language Design and
Implementation, pages 315–327, 1995.

[GE04] David Gregg and M. Anton Ertl. Inlin-
ing in Gforth: Early experiences. In Eu-
roForth 2004 Conference Proceedings,
2004.

[Gri01] Robert Griesemer. Interpreter gener-
ation and implementation utilizing in-
terpreter states and register caching.
Patent 6192516 B1, US, 2001.

[OKN02] Kazunori Ogata, Hideaki Komatsu,
and Toshio Nakatani. Bytecode fetch
optimization for a Java interpreter.
In Architectural Support for Program-
ming Languages and Operating Systems
(ASPLOS-X), pages 58–67, 2002.

[PWL04] Jinzhan Peng, Gansha Wu, and Guei-
Yuan Lueh. Code sharing among states
for stack-caching interpreter. In IVME
’04 Proceedings, pages 15–22, 2004.

