Using Forth in an Investigation into Reversible
Computation.

Bill Stoddart
School of Computing and Mathematics
University of Teesside, U.K.

September 10, 2003

Abstract

Previous work by Landauer, Bennett and others has established that
(a) irreversibility in the computing process is associated with inevitable
dissipation of energy, and (b) this fundamental limitation on the efficiency
of computation can be overcome by formulating computations in a step-
wise reversible manner. We report how Forth is being used in an investi-
gation into the effects of reversibility on programming language semantics,
formal software development and programming style.

1 Introduction

In 1825 the world’s first steam powered passenger railway line was inaugurated
on Teesside. Powered by Stevenson’s Locomotion no. 1, it transported 600
passengers plus freight at about 10mph. The rapid advance in steam locomo-
tive design during the rest of the century and beyond was supported by the
emergence of the theory of thermodynamics, which placed ultimate limitations
on what could be expected of a steam engine. The same laws place fundamen-
tal lower limits on the power requirements of computing devices, and as the
construction of computers approaches a physical limit, these thermodynamic
considerations will become increasingly relevant to considerations of computing
efficiency.

An early thermodynamic analysis of computing was given in ”Irreversibility
and Heat Generated in the Computing Process” (1961) by Ralph Landauer of
IBM Research. [4]. Landauer argues that computing typically uses irreversible
steps, for example the assignment z := 0 cannot be reversed because it destroys
the value of z. Such steps are inevitably associated with the generation of heat
and the consumption of a certain minimum amount of energy. If a computing
process could be contrived which used only reversible steps, then the laws of
thermodynamics would not impose any minimum energy requirement for the
computation. He notes that individual steps in a computing process can be
made reversible by providing additional memory storage to preserve lost data,
but rejects this as a general technique as the result would be an unpredictable re-
quirement for additional memory which would need to be irreversibly initialised
to a known value: ” Our unwieldy machine has therefore avoided the irreversible

operations during the running of the program, only at the expense of added
comparable irreversibility during the loading of the program.”

This conclusion was incorrect, because we can organise the required addi-
tional memory efficiently as a stack, and regard its initialisation as a one off cost
which, once paid, will allow us to run all subsequent programs in a reversible
manner. Despite its erroneous conclusion Landauer’s paper made an enormous
contribution in setting the terms for a debate on reversibility and was recently
republished in the IBM Journal of Research and Development (in Vol 44, 2000).

Soon afterwards, Y Lecerf[5] formulated a reversible Turing Machine which
potentially indicated how reversible computations could be managed, but this
work did not feed into the reversible computing debate. However in 1973 Charles
Bennett, a colleague of Ralph Landauer at IBM Research, described[2] how an
arbitrary (one tape) Turing Machine could be translated into a reversible 3 tape
machine. The latter performs the calculation of the original machine, storing
any overwritten data on the (originally blank) second tape. It then copies the
result to the third tape. Finally it reverses its calculations so as to terminate
with the first tape back in its original condition, the second tape once again
blank and the result left on the third tape. Fundamental to Bennett’s analysis
is that writing to a blank tape is a reversible operation. The blank second tape
plays the role of the pre-initialised memory mentioned above.

An interesting recent contribution is given in the paper “Logical Reversibil-
ity” by P Zuliani [12]. Zuliani provides a similar formulation of non-reversible
computation in terms of reversible computation. However, rather than using
Turing Machines, he formulates his translation in terms of a variant of Dijk-
stra’s Guarded Command Language (GCL). His work extends reversibility to
computations involving non-deterministic and probabilistic choice, and presents
it in a form suitable for incorporation into a software development method.

In our own work we have previously investigated aspects of “semantic re-
versibility”. We have formulated the semantics of a reversible language in terms
of predicate transformers and expression transformers[7, 10]. This work has
been presented withing the framework of the B method, a formal method for
producing mathematically proven software[l]. We have configured a B devel-
opment tool to accept our modified form of the B language and completed the
formal development of an example program (the Knight’s Tour) which makes
use of reversibility to implement backtracking[11]. We have proposed the use
of reversible Forth to implemented the required functionality for our reversible
language[6, 9, 8].

Our central thesis is that the property of reversibility can have a profound
effect on what we think of as a programming language. It allows us to dispense
with one of the “healthiness conditions” which Dijkstra proposed for sequen-
tial programming languages, namely the “Law of the Excluded Miracle”. In
addition, by supporting speculative computations which leave no trace other
than to deposit a result, we can eliminate unwanted side effects and obtain an
integration of state based and functional programming styles.[10]

In the present paper we attempt to clarify the relationship between ther-
modynamic and semantic aspects of reversibility and to indicate how the effect
of reversibility on programming can be studied before we have access to phys-
ically reversible devices. The paper is organised as follows. In section two
we introduce some abstract constructs for reversible computation. In section
three we consider thermodynamic and semantic reversibility and relate these

to our Forth virtual machines. In section 4 we describe for the first time the
Forth implementation of “speculative computation” and in section 5 we draw
our conclusions.

2 Abstract Constructs for Reversible Computa-
tions

In designing languages for formal software development we look for language
constructs with simple semantic rules that allow the effect of programs to be
logically analysed. We work with Abrial’s “Generalised Substitution Language”
(GSL), which was designed for use in the construction of conventional (non-
reversible) programs. GSL has a “predicate transformer” semantics which we
now outline.

Write [S]Q for the condition that operation S will establish predicate Q).
For example:

[z:=z+1]z=3

is the condition that executing z := z+1 will establish z = 3. That condition
is z =2, so:

zi=z+1z=31z=2

i.e. the operation z := z + 1 will establish the post-condition z = 3 if and
only if the pre-condition z = 2 holds. Mechanically we can calculate this by
substituting z + 1 for z in £ = 3 giving z + 1 = 3 i.e. £ = 2. The substitution
has transformed the post-condition predicate into the pre-condition predicate,
hence the term “predicate transformer”.

We can formulate the general rule for assignment using lambda abstraction
on predicates. In (A z.P)E) let z be a variable, P a predicate and E an expres-
sion. Then (Az.P)E represents a new predicate obtained by substituting each
occurrence of z in P by E. So for example:

Azz=3)(z+1) = (z+1)=3
With this notation we can express the GSL rule for assignment as:
[z:=FE]Q =(\z.Q)E
In the following sections we introduce further constructs from GSL and show
how they can provide a semantics of reversible computation.

2.1 Choice and Guard Constructs

GSL has a choice construct S || T which makes a non-deterministic choice be-
tween running either S or T but the semantics of the construct do not say
which. The construct has the rule:

[S1T]Q = [S]QA[T]Q

Meaning: for a non-deterministic choice to be sure of establishing some
condition, both branches of the choice must be sure to do so. We are protecting
ourselves against “demonic” choice.

Choice is often used in combination with the guard construct ¢ — S (“g
guards S”). The conditional choice

if g then S else T end
can be expressed in GSL in terms of guards and choice as:
g— S|lm9g— T

Here the guard is used to control which choice that is made. An operation in a
choice construct can only be chosen if its guard is true.

The motivation for expressing an “if” construct in terms of choice and guards
is to obtain the simplest possible rules for the analysis of programs by other
programs. The rule for the guard construct is:

[9 —SlQ = g=1[5]Q

We name the operation that does nothing skip. It has the rule:

[skip]@ = @

We need it to analyse the semantics of
if g then S end
which is now expressible as:
g — S[|— g — skip
To see how all this works we now analyse the construct:
[if z=1thenz:=z+1end]z =2
i.e. we derive the pre-condition which ensures that the program:
if z=1then 2z := 2+ 1 end

will establish the post condition z = 2.

Derivation
[if z=1thenz:=2z+1end]z =2
z=1—0z:=z+1]- (2 =1) — skip]x =2 semantics of if

[z=1—2z:=z+1z=2A[-(z=1) — skip]x =2 choice rule
(z=1=>[z=z+1z=2)A (- (z =1) = [skip]z =2) guard rule (twice)

z=1=>z+1=2)A(-(z=1)=>1z=2) substitution and skip rules
true A (z =1V z =2) logic
z=1Vz=2 logic

this analysis tells us the pre-condition is z =1 V & = 2, a result which complies
with our intuition.

2.2 The Law of the Excluded Miracle

Abrial originally separated guards and choice because this separation provides
the extremely simple semantic rules given above. There is not meant to be any
meaningful interpretation of the construct ¢ — S taken in isolation. Rather
we require the conjunction of the guards in a choice construct to be true. In the
case of the construct: “if g then s else T end ” construct for example, we have
guards g and — g for the if and else clauses respectively, and the conjunction
of the guards is thus g A — g which is true as required.

If we take an isolated construct ¢ — S we find it has an apparently unre-
alistic behavior. For example consider the operation defined as:

magic = false — skip

Suppose we need to establish any post condition ¢. According to our rules
magic can do this for us:
[magic] @
[false — skip]@ defn of magic
false = [skip]@Q guard rule
true logic

This result is problematic. Since magic can establish any condition we could
use it to establish z = 1 and also to establish z # 1. Evidently this “miraculous”
behaviour cannot be attributed to any program which is implementable in the
normal sense of the word, and to rule it out of consideration Dijkstra formulated
a healthiness condition known as the “Law of the Excluded Miracle” which is
exactly the requirement on the conjunction of the guards which we have given
above[3].

Within this requirement the “miraculous” behaviour of a construct with a
false guard describes exactly what we want from a choice that is not taken.
Such a choice should always yield a result of true so that the total result from
a choice construct can be obtained by conjoining this with the results from the
other choices.

For example consider:

[(false — S)[| T1Q
[false — S1Q A [T]Q choice rule
true A [T]@Qshown above

[T1Q logic

Since the choice of S cannot be made because if its false guard, we want the
contribution of this choice to be true, so that the final result can be given by
true A [T]Q.

2.3 Reversibility and Backtracking: the Law of the Ex-
cluded Miracle Revoked.

We have now seen how our predicate transformer semantics can sometimes be
too powerful in the sense that it can describe a construct that achieves more
than we can expect any program can achieve, i.e. miraculous behaviour.

We have also seen that this miraculous behaviour can be tamed by the law
of the excluded miracle, so that it makes a useful contribution to our semantics
by describing the effect of a choice that is not taken.

Now we are ready to consider reversible computations, where we will dis-
cover another role that “miracles” can play. First we need a rule for sequential
composition:

[5; TIQ = [SI[T]Q

We now have all the rules required to describe a computation involving
reversibility. Consider the “program”:

S=(z:=1[z:=2); x =2 — skip

We will give the following operational interpretation of this code. The first
statement is a choice which may assign either x:=1 or x:=2. In the case that
x:=1 is chosen, the guard of the following statement will be false. This con-
dition triggers a reversal of computation. Execution will reverse back to the
choice statement and take the alternative assignment z := 2. The following
statement can now execute as skip, and the program terminates with x=2. On
the other hand if the initial choice is to assign z := 2 the following statement
can execute immediately, and the program terminates with x=2 without any
need for backtracking.

We will now give a formal proof that our semantics enable us to calculate
this result, but before we do so we need to make a comment. We now have
r = 2 — skip as a stand alone program statement. This offends against the
Law of the Excluded Miracle. Can this be justified?

In fact what is happening is that we are using the statement to control an
earlier choice. The overall program remains non-miraculous. The penalty we
have to pay in implementation terms is to provide a reversible computation plat-
form to run the code. The penalty in proof terms is that any proof to establish
a post condition must now have two parts, the second being to show that proof
is not due to magic. For a more thorough treatment of the implications for
formal software development the reader is referred to our paper “Refinement of
Reversible Computations” [11].

Proof: As noted above, the formal proof has two parts. The first is to show
[S]z = 2. The second is to show the result is not due to “magic”. For the second
part we must show there is something S cannot establish: i.e. = [S]false.

For the first part we must show [S]z = 2

[S]lz =2
= [z:=1]z:=2; x =2 — skip]z =2 by defn of S
= [z:=1]z:=2][zr =2 —> skip]z =2 by seq comp rule
= [z:=1]2z:=2)(z =2 = [skip]z = 2) by guard rule
= [z:=1]lz:=2)(z=2=>2=2) by skip rule
= [z:=1]z:=2]true by logic
= [z := 1]true A [z := 2]true by choice rule
= true A true by substitution
= true by logic.

For the second part we must show - [S]false

= [S]false
-z :=1]z:=2; x =2 — skip|false by defn of S
- [[z:=1]z := 2][x =2 — skip]false by seq comp rule

= -fz:=1]z:=2](z = 2 = [skip]false) by guard rule

= -afz:=1]z:=2](z =2 = false) by skip rule

= —z:=1z:=2]-(z=2) by logic

= —(z:=1-(z=2)A[z:=2]-((x =2)) by choice rule

= -(-1=2)A-(2=2)) by assignment rule
= - (true A false) by logic.

= true by logic.

In general, forward execution will reverse when it encounters a choice in which
all alternatives have false guards, or if it meets a single guarded command with
a false guard. Reverse execution will continue until a previous choice is found
which has an unexplored option. If no such choice is found reverse execution
will continue back to the start of the program, and the user will be told that
execution of the program was infeasible.

The law of the Excluded Miracle has been revoked in the sense that we can
now have programs with potentially miraculous behaviour as executable code.
If we attempt to run such a program as part of a larger program it will cause
execution to reverse and an alternative choice to be made. If we attempt to run
it stand alone, it will report that it cannot run, and give the user a prompt of
“ko” rather than “ok”.

2.4 Reversibility and Speculative Computation

Bennett’s scheme for a reversible computation was to perform the computation,
saving any overwritten data on a second tape; leave the result of the calculation
on a third tape; then reverse the calculation to restore the initial memory state
and clean the second tape.

We would like to formalise an equivalent process in the GSL language. Also,
we would like to allows many such reversible computations to be incorporated
into some overall computation.

In our recent work on this topic [10] we introduce the notation S¢ E, where S
is a program and F is an expression on the state space. It will have the following
operational interpretation. S is run as a reversible computation, saving any
overwritten data on a history stack. The expression E is then evaluated in the
resulting state. A copy is made of the result of the evaluation. Execution of the
evaluation and the program S is then reversed to restore the original state, and
the copy of the result becomes the result of the evaluation of S ¢ F..

We can treat S¢oFE as an expression on the current state space. Its evaluation
has no effect on the program state. Here is a simple example:

z:=0; y:=(z:=302x2)

The expression (z := 3 02 x z) evaluates to 6. Its evaluation leaves z set to
its previous value, so the overall effect is to set z = 0 and y = 6.

We have given a more substantial example, a mini-max algorithm, in a recent
paper [10]. When coding the algorithm speculative computation is used to “look
ahead” in the game without entailing any state change. This gives the feeling of a
functional programming style, but one in which we can freely access global state,
i.e. we do not have to carry state with us in the form of function parameters.

The formal definition of S F is given fully in [10]. It uses the idea of substi-
tution in expressions. For example z := 3¢ 2x* z is defined as the substitution of
3 for z in the expression 2xz. As with predicate transformers, a rule is given for
each connective in the language (guard, choice, sequential composition...). To
deal with non-deterministic choice we use the form S o {E} to represent the set
of all possible values of E that could be obtained from running S. For example:

(z:=1]lz:=2)o{z} =1,2

. If we run a miraculous program within the context of a speculative computa-
tion we obtain an empty set of results: e.g.

magic oz = {}

3 Logical and Semantic Reversibility

We have seen that the notion of reversibility has profound implications for com-
puting. The logical reversibility of Landaur and Bennett removes any known
theoretical requirements for a minimum energy dissipation during the comput-
ing process. The semantic reversibility discussed in the previous section allows
us to formulate language semantics in a more general way, revoking Dijkstra’s
Law of the Excluded Miracle and introducing a mechanism for speculative com-
putation. We now relate these two notions of reversibility.

Logical reversibility is a stronger criterion than semantic reversibility, be-
cause all “information” is relevant to the former, whereas to implement the
latter we need only concern ourselves with information which can influence the
outcome of the computing process.

The difference can be illustrated by considering a stack. At the beginning of
a computation the memory locations which are allocated to the stack contain
no semantic information. Their value cannot influence the computation. In
thermodynamic terms, however, the loss of any information from these locations
will have exactly the same implications for energy consumption as the loss of
information from any other locations.

It would seem then, that prior to pushing a value to the stack we must save
the previous contents of the next free location. For that we could use another
stack but that in turn will need to have its data saved... We seem in danger of
an infinite regression!

To avoid this we must invest an initial outlay of energy in irreversibly ini-
tialising the stack locations to zero (or any other agreed value). The return we
get for this initial investment is that reversing a write to the stack cell now only
entails resetting that location to its agreed initial value, rather than restoring
its old contents. The stack can be used repeatedly on this basis with no further
thermodynamically unavoidable energy consumption overheads.

If we are mainly interested in the effect of reversibility on programming, we
can ignore such considerations and concentrate on semantic reversibility. Also,
since logical reversibility implies semantic reversibility, the semantic structures
we are researching will be readily implementable on a logically reversible com-
puting device designed to support sequential programming. Indeed the MIT
Pendulum project has already prototyped such a device, though work on re-
versibility has also explored alternative paradigms, such as cellular automata.

We can extend the concept of logical and semantic reversibility to apply to
virtual machines. Forth can be made reversible by providing it with a history
stack, modifying its primitives to record an audit trail, and providing inverse
operations for all primitives. It also has a remarkable ability to be incrementally
extended, e.g. with new control structures. These characteristics make it the
ideal compiler target language for these investigations.

Two variants of our reversible Forth virtual machine have been described in
previous EuroForth conferences [6, 8]. Both use a history stack to keep an audit
trail of changes, but otherwise their organisations are very different.

That described in [6] uses a multiple code field threaded code approach with
separate code fields to support forward and reverse threading of instructions.
Reverse execution is interpreted literally, with even control transfers being re-
versed. The design has three code fields per operation, which serve for normal
(non-reversible) execution, conservative (reversible execution) and reverse exe-
cution. This allows the same compiled code to have three possible interpreta-
tions.

This machine had some pretensions to being efficient in so much as it is
implemented in assembler rather than C or Java, but the high cost of frequent
control jumps associated with threaded code led us to develop a second reversible
virtual machine which uses native compiled Forth. In this machine the history
stack is used to hold the addresses of the reverse execution routines as well as any
overwritten data. At the start of reverse execution the history stack becomes
the system stack. The entry addresses for the reverse execution routines can
then be thought of as return addresses and reverse execution just returns into
the top such routine. This finds any data it needs on the stack and then returns
into the next routine.

We originally intended the second machine to supplant the first, but we now
see they both have a role to play in our investigation.

In our current work the design of the first machine has been simplified. Each
threaded code operation now has just two code fields for forward and reverse
execution. The machine no longer supports a non-reversible computation mode.
Our aim is to develop this design to provide a rigorous simulation of logical
reversibility. Composed uniquely of stepwise reversible components and their
inverses, it will serve as a test bed which can demonstrate how the language
structures we propose can be implemented in logically reversible components.

The second machine will be used to investigate how efficiently semantic
reversibility can be implemented on the ubiquitous i386 architecture, and to
serve as the main execution platform to experiment with programming in a
reversible language.

4 Implementing Speculative Computation

In this section we consider the Forth implementation of speculative computa-
tion. Implementation of the other abstract constructs for reversible computation
(choice and guard) has been described in a previous paper [8].

Speculative computation should cope with nested instantiations such as:

So((To{E}U(U{F}))

in such a way that the only effect is to generate the resulting value and leave a

reference to it on the parameter stack. The intermediate values generated e.g.
by T ¢ {E} will have been uncomputed by reverse execution, and a deep copy
of them has to be made for incorporation into the result.

We will attempt to explain the implementation by giving the equivalent
Forth syntax, then tabulating the forward and reverse code laid down when
this syntax is compiled. Our description is for the first of our virtual machines
described above, where the same compiled code has a different interpretation in
forward and reverse execution.

The compiler translates the phrase S ¢ F into the Forth code:

<AFTER S E C AFTER>

Here S is the Forth translation of the GSL code S, E the Forth translation
of the GSL code E and C is code to insert the current value of F into the result
set.

The code C depends on the type of E. If F is an integer value the code will
just insert the current result into the result set. If the result is a more complex
data structure such as a set, a reference to the structure will be left as the result.
However we cannot just insert the reference in the result set as the structure
it refers to will be uncomputed during reverse execution. In this case C' must
make a deep copy of the result and insert a reference to this copy in the result
set.

In the following tabulation of code laid down by <AFTER S E C AFTER>,
numbering is used to indicate the order of execution and the destination of
branches. The mnemonics branch&f and branch&r indicate “branch and
reverse execute” and “branch and forward execute” respectively. The table is
followed by a list of notes, which again follow the execution order numbering of
the table.

Forward Reverse
14. Continue reverse execution
1. Reserve space for result set. 9. branché&f to 10.

2. Push obtained address to
speculative computation stack
3.5 8. 9
4. E 7. E
5. Deep copy current result
to result set

6. Magic
10. Resize result set. 13. branch&r to 14
11. Move result reference from
speculative computation stack 12. Deep release result

to parameter stack

Notes

1. The size of the result set is unknown at this point, so a generous amount
of space is reserved. The case in which this is insufficient is not covered
in our description.

2. This stack is needed for nested invocations of speculative execution.

3. Forward execution code for S.

4. Forward execution code for E.

5. The comment “deep copy” is only relevant where the current result is a

reference. In that case the values referenced (at all levels) must be copied,
as they will be uncomputed during reverse execution.

6. The effect of magic is to reverse execution.
7. Reverse execution code for E.

8. Reverse execution code for S. If S is non-deterministic, execution will
reverse through S to a point of choice with an unexplored alternative. At
that point forward execution will be resumed. If no unexplored choices
remain reverse execution will reach the command before S’.

9. Reverse execution only reaches this point after all forward execution paths
through S have been exhausted. We now branch past the code for S and
E and continue forward execution from that point.

10. Generally, too much space will have been reserved for the result. The
excess is recovered at this point.

11. We are now ready to place a reference to the result on the parameter stack.
This completes the speculative computation of S ¢ E.

12. This stage happens later, when execution reverses back over the specula-
tive computation. Since the only effect of the speculative compilation was
to leave a set of results, the only thing to be done during reverse execution
is to release the space allocated for this result. For logical reversibility it
would be more accurate to say deep erasure of the result, as the memory
space allocated would need to be returned to its initialised value.

13. This branch takes us over the reverse code for the speculative computation,
which must not be executed at this point.

5 Conclusions

Computing can be made “logically reversible” by preserving information at each
step. This removes any lower thermodynamic bound on theoretical energy re-
quirements. Semantic reversibility is a weaker requirement which can be ensured
by preserving at each step all information relevant to the outcome of the com-
putation if reversed and repeated from that step.

The original aspect of our research is to interpret semantic reversibility in
terms of a reformulation of the predicate transformer semantics of B GSL. The
reformulation admits a wider family of possible programs by revoking Dijkstra’s
“Law of the Excluded Miracle”. The result is a language with inherent back-
tracking which can incorporate speculative computations. Some of the required
control structures for such a language appear to be complex to implement. Re-
versible Forth provides an ideal interactive environment in which to experiment
with such implementations. By compiling from GSL to Forth, we keep the com-
pilation process simple and can tackle many of the implementation complexities
of reversible computing within an interactive Forth development environment.

For our experiments we use two different virtual machines. One simulates
logical reversibility. It will be used to demonstrates that our proposed pro-
gramming structures can be implemented entirely in terms of reversible compo-
nents (we hope!). The other attempts an efficient implementation of semantic
reversibility with the aim of making the techniques we investigate usable for
practical programming on current architectures.

References

[1] Jean-Raymond Abrial. The B Book. Cambridge University Press, 1996.

[2] C Bennett. Logical Reversibility of Computation. IBM Journal of Research
and Development, 17, 1973.

[3] E W Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

[4] R Landauer. Irreversibility and Heat Generated in the Computing Process.
IBM Journal of Research and Development, 5, 1961.

[6] Y Lecerf. Machines de Turing Réversibles. Comptes Rendus de I’Academie
Francaise des Sciences, 257, 1963.

[6] W J Stoddart. A Virtual Machine Architecture for Constraint Based
Programming. In P J Knaggs, editor, 16th EuroForth Conference, ISBN
9525310 z =z, 2000.

[7] W J Stoddart. An Execution Architecture for B-GSL. In Bowen J and
Dunne S E, editors, ZB2000, Lecture Notes in Computer Science, 2000.

[8] W J Stoddart. Efficient “reversibility” with guards and choice. In A Ertl,
editor, 18th FuroForth, Technical University of Vienna, 2002.

[9] W J Stoddart and F Zeyda. Implementing sets for reversible computation.
In A Ertl, editor, 18th EuroForth, Technical University of Vienna, 2002.

[10] W J Stoddart and F Zeyda. Expression transformers in B-GSL. In D Bert,
J Bowen, S King, and M Walden, editors, ZB03, Lecture Notes in Computer
Science, no 2651, 2003.

[11] F Zeyda, W J Stoddart, and S E Dunne. The refinement of reversible com-
putations. In T Muntean and K Sere, editors, 2nd International Workshop
on Refinement of Critical Systems, 2003. Available from
www.esil.univ-mrs.fr/ spc/rcs03/res03.

[12] P Zuliani. Logical reversibility. IBM Journal of Research and Development,
45(6), 2001.

