
MachineForth for theARM processor

ReubenThomas
�

ComputerLaboratory, Universityof Cambridge

23rdAugust1999

Abstract
FoxandMoore[2] haverecentlyproposedanew VM for Forth,calledMachineForth.

Usingasimpleconcretemodel,it issaidtobereadilyadaptabletodifferenthardware,and
to producereasonablyefficientcodewithoutneedingto descendto assembler. It is also
intendedto beanexcellentbasisfor Forthcompilers.Thispaperexaminestheseclaims
with respectto an implementationfor the ARM processor, andcomparesa Machine-
Forth basedForth systemwith a similar systemusingtheARM’s machinemodel,and
aconventionalForthsystem.

1 Intr oduction

In March1999therewasadiscussiononcomp.lang.forthof CharlesMoore’sMachine
Forth,avirtual machinemodelwhichhewassaidto beusingfor all hisForthprogramming,
andhadrealisedin severalsilicondesignssuchastheF21.

Jeff Fox, Moore’samanuensis,saidthatMoorefelt theMachineForthVM to berather
betterfor low-level Forth programmingthan the classicForth VM, allowing one to get
closeto themachinewhile retainingthesameVM no matterwhatprocessoris beingused
underneath.Furthermore,thesimplicity of thedesignmeantthatit requirednomorethana
smallmacroassemblerto implement.

Intrigued,I decidedto testthemodelfor myselfby implementingit ontheARM proces-
sor[3]. I wantedto seehow thenew instructionssuchasauto-incrementaddressingwould
easeprogramming,how the lack of old faithfulssuchasSWAP andROT would hinderit,
how simple the systemwould be to build, andhow it would comparewith conventional
Forth systemsin termsof speedandcodedensity. Also of interestwashow muchif at all
theMachineForth VM would needto bechangedto matchtheARM hardware.

My testdrive of MachineForth consistedof writing a Forth compiler in it, which in
keepingwith Moore’spreoccupationwith smallnesswasto beminimal. (Anotherobvious
experimentwouldhavebeentoport my usualcompiler,anextensiveANS-compliantsystem,
to MachineForth.) I thenrewrote thecompilerin ARM codeto comparewriting directly
for theARM with writing in MachineForth.Benchmarkswererunonbothsystems,andon
conventionalForth andC compilers.1

Thediscussionthat follows assumesfamiliarity with theMachineForth model,asde-
tailed in the preliminary F21 datasheet[2]. Herefrom,“Machine Forth” is abbreviated
“MF”, andmy version,with unashamedconceit,“MF32”.

2 Changesto the machinemodel

As I hadonly the F21’s specificationasmy guideto MF, I didn’t know how Moore had
implementedit on conventionalprocessors.Thefollowing issuesweredealtwith:

�
rrt@sc3d.org

1All thesourcecode,andbinariesfor AcornRISCOS,areavailablefrom http://sc3d.org/rrt/.

1

Data width Sincethe ARM hasa 32-bit architecture,the datawidth waschangedto 32
bits.

Testingcarry The instructionC=0 testsan extra bit storedwith eachstackitem on the
F21. This would be complex andslow to implementon a conventionalprocessor,
so the instructionwaschangedto testbit T31, which works for the original useof
testingnumbersto seeif they arenegative.It doesn’t helpwith arithmeticcarryunless
registersaretreatedas31-bit quantities,but with 32-bit registersmultiple-precision
operationis neededmuchlessoftenthanwith 20-bit registers.

Stacks The F21 holds its stackson-chip,so they arefixed-size;sincethe ARM hasno
hardwarestacks,they canbeof arbitrarysize.

Subroutine call and return In commonwith mostRISC processors,the ARM doesnot
automaticallypushthesubroutinereturnaddresson to thestack,but movesit into a
register, thusavoidingmemoryaccesseswhencalling leafsubroutines.Sincealways
pushingthereturnaddressis bothslow anduses8 bytespercall instructioninstead
of 4, anew register,L (“link”), wasadded,whichcachesthetopof thereturnstackin
thesameway thatT cachesthetopof thedatastack.Two new instructions,ret and
:, wereaddedto allow leafsubroutineoptimisation,andthesemanticsof instructions
dealingwith thereturnstackhadto bechangedslightly to takeL into account.

Byte addressing SincetheARM is byte-addressed,theincrementof P hadto be4. It also
seemedsensibleto addloadandstoreinstructionsto dealwith bytes.

Multiplication TheARM hashardwaremultiply, so+* wasreplacedby *. (+* hasother
applicationsapartfrom multiplication,but it seemsreasonableto removeaninstruc-
tion thatwouldberarelyusedwhena multiply is provided.)

nop The ARM hasno needfor a no-op,so nop wasremoved. It could in any casebe
emulatedwith phrasessuchaspush pop or dup drop.

OS accessTheinstructionswi wasaddedto allow theARM’sSWI (SoftWareInterrupt)
instructionto beusedto call thehostoperatingsystem.

TherevisedVM modelis:

2.1 Data elements

• Stacks:dataS, returnR

• Registers:T, L, A, P

2.2 Executioncycle

PerforminstructionatP; if P is notalteredby instructionthensetP to P+4; repeat

2.3 Instruction set

Table1 shows theinstructionsetandits semantics.Thefirst columngivestheinstruction’s
name,thesecondthenumberof immediateoperands.ThesearereferredtoasV1,V2, . . .The
third columngivesthesemantics.Thefollowing shorthandsareused:“pushX toT” means
“pushT to S, setT to X”, and“pop T to X” means“evaluateX, setX to T, popT from S”.

2

Instruction Operands Operation

1 pushV to T
else 1 jump to V
T=0 1 jump to V if T � 0
C=0 1 jump to V if T31 � 0
call 1 setL to P

�
4, jump to V

ret 0 setP to L
: 0 pushL to R
; 0 popP from R
A@ 0 pushA to T
A! 0 popT to A
@A 0 push[A] to T
!A 0 popT to [A]
B@A 0 push[A]0-7 to T
B!A 0 popT0-7 to [A]0-7
@A+ 0 push[A] to T, add4 to A
!A+ 0 popT to [A], add4 to A
B@A+ 0 push[A]0-7 to T, add1 to A
B!A+ 0 popT0-7 to [A]0-7, add1 to A
pop 0 pushL to T, popR to L
push 0 pushL to R, popT to L
@R+ 0 push[L] to T, add4 to L
!R+ 0 popT to [L], add4 to L
B@R+ 0 push[L]0-7 to T, add1 to L
B!R+ 0 popT0-7 to [L]0-7, add1 to L
com 0 one’scomplementT
2* 0 shift T oneplaceleft
2/ 0 shift T arithmeticallyoneplaceright
* 0 setT to [S] � T, popS
-or 0 setT to exclusive-orof [S] andT, popS
and 0 setT to andof [S] andT, popS
+ 0 setT to [S]

�
T, popS

dup 0 pushT to T
over 0 pushS to T
drop 0 popT from S
swi 3 popV2argumentsfromT intoARM registersR0 to

RV2 � 1, call SWI V1, pushV3 resultsfrom ARM
registersR0 to RV3 � 1 to T

Table1: TheMF32 instructionset

3

3 The assembler

The assemblerwaseasyto write, aspromised.I addedthe usualForth assemblercontrol
structuresforIF . . .THEN conditionalsandBEGIN . . .REPEAT/UNTIL/AGAIN loops,plus
theMF variantsbasedon -IF. After completingthecompilerI addeda simplepeephole
optimiser to the assemblerto remove push–poppairs; this probably took longer to get
working thantherestof theassembler, thoughthecodeis short.

4 The compiler

Thecompilerhasjust enoughtools to provide a minimal interpretive environment:an in-
terpreter/compiler, numericinputandoutput,andadictionarywith theability to createnew
definitions.

5 Difficulties with Machine Forth

5.1 Getting started

As expected,the codewashardto write at first becauseof the lack of familiar stackand
arithmeticoperators,and I found it hard to rememberwhich of A@/A! and@A/!A was
which (I eventuallysucceededby rememberingthelatterarelike@A+/!A+).

As time went on, I beganto find commonidioms suchasusingA andtheR stackto
permuteitems,sometimesusingR to storeloop indicesor limits, andDUP BEGIN DROP
to discardtheflagin conditionalloops(sinceMF’sif and-if instructionsdonotpopT).

5.2 Thinking portably

Despitegettingsomethingof the feel of MF, I found it difficult not to comparedifferent
MF instructionsequencesaccordingto theirARM translationwhenconsideringhow bestto
implementaword.For example,in my MF32implementation,0 lit is alwaysthefastest
wayto get0ontopof thestack.OntheF21dup dup -or isoftenabetterbet.Thisseems
to contradictMF’sportability, althoughbothcodesequencesproducethesameresultwhen
usedondifferentarchitectures.However, thisproblemoccursin any portablelanguage,and
is simply morevisibleon MF becauseit is sosimple.

5.3 Instruction cachesynchronisation

Oneproblemthatany dynamiccodegeneratorfor theStrongARMmustcopewith is that
its instructioncacheis not automaticallysynchronisedwith the datacache.A simpleand
safesolutionwasto addCODE! which synchronizesthe instructioncacheon theaddress
storedto, andto make, useit to storeinto thedictionary(theonly otherword thatdirectly
compilescodein my MF32 systemis THEN).

5.4 Adding primiti ves

I found that I neededseveral functionsthat are not provided by MF. I addednegate,
minus, or, lshift andrshift. I adoptedthe rule of thumbthat if a word could be
writtenwith fewerARM instructionsthanMF32instructions,I wouldaddit in ARM code;
in fact,all thosementionedabove wereaddedasinline primitives,asif they werepartof
theMF32 assembler.

4

5.5 Other assembly-codedwords

Severalpoststo comp.lang.forth have discussedtheomissionof SWAP. I endedup
addingSWAP to my system,but it wasonly usedfour times;everyothertimeapartialswap,
with onequantityendingup in A or onthereturnstack,wasmoreefficient.Theextra inline
primitivesweresimilarly little used:the only oneusedmorethantwo or threetimeswas
OR, which wasusedeighttimes.

EXECUTE, MIN andtheOS-dependentEMIT, SPACE, CR andBYE werealsowritten
in ARM assembly. EXECUTE deservesa specialmention:in F21 it’s simplypush ret,
but it’s a lot harderto write in MF32, thoughit canbedone(think aboutit beforelooking
at section9 for theanswer).

5.6 Lack of stack juggling

MF’slackof stackaccesswordsmeanthattheusualpressureForthappliestotheprogrammer
to avoid stackjugglingandto factorinto smallpiecesis evenstronger. At first it seemslike
astrait-jacket,but I foundthatonly oneor two wordswereseriouslyconstrainedby thelack
of PICK andROLL (NUMBER in particularwastricky). Eventhen,it wasprobablylargely
my fault for notbeingsufficiently accustomedto MF.

5.7 Division

For numberinputandoutput,divisionis amust.MF doesn’t haveadivisioninstruction,and
neitherdoestheARM, soI usedassemblerroutines.

5.8 Readingand writing the stack pointers

A seriousomissionis not beingableto readandwrite thestackpointers:this is important
not somuchfor implementingDEPTH asfor resettingthestackin QUIT. Whenthestack
is implementedin hardwareason theF21thereis no need,but in softwareit is necessary
to avoid a memoryleak.I avoidedtheproblemby makingQUIT simply restartthesystem
by branchingto theinitialisationcodewhichsetsup thestackpointers.

6 ARM Forth

Having finishedMF32for theARM, I rewrotethecompilerin ARM code.Thissoundslike
whatMoorecalls“HardwareForth”, but there’sadifference:while thecmForthcompiler’s
structurewasdictatedby themachine(in this case,theNovix Forth chip), ARM Machine
Forth is exactly thesameasMachineForth,justusingtheARM machinemodelratherthan
theMF model.

Thecodewasnot only shorter, but at leastaseasyto write (indeed,many of thewords
worked first time, andthey werenot just naïve translationsfrom the MF32 versions,but
werereworkedto takeadvantageof theARM). TheARM’ssmall,regularinstructionsetis
comparablein sizewith MachineForth (it hasabout20 basicinstructions),but is richerin
arithmeticandlogical operations,addressingmodes,andhasfeaturesthatMachineForth
lacks,suchasconditionalexecution.

On theotherhand,the fact that theARM is a registermachineleadsto duplicationin
thecompiler:somewordsthatareusefulfor interactiveuse,suchasDUP and+, arerarely
usedin compiledcode,wheretheability to addressregisterscanbeexploited.

5

MF32 ARM Forth

Definitions 109 175
Total size/cells 1478 1446
Codesize/cells 1180 854
Instructions 754MF

�
52ARM 854ARM

Sourcelength/bytes 16065 19679

Table2: Comparisonof theMF32 andARM Forthsystems

ANSI MF32 ARM Forth C

Time/s 6.48 7.30 1.94 0.92
Codesize/cells 32 37 25 22

Table3: Randomnumberbenchmarkdata

7 Comparisonof MF32 and ARM Forth

7.1 Size

Table2 showssomecomparisonsof theMF32 andARM Forth systems.
Thisgivesa codedensityof 6.0bytes,or 1.5ARM instructions,perMF32 instruction.

Thepeepholeoptimisersavedabout100instructions,or 9%of thetotal codegenerated.
While the ARM Forth systemhas66 moredefinitionsthanthe MF32 system,asthe

assemblerfor theARM chip is morecomplex thanthatfor MachineForth, thebinaryis 32
cellssmaller, andcontains326fewercellsof code.Further, mostof thewordsoccurringin
bothsystemsrequiredfewer ARM instructionsthanMF32 instructionsto write; it seems
thatARM Forth’scodedensityis roughlydoublethatof ARM MF32.

7.2 Speed

Two benchmarkswererunontheMF32system,theARM Forthsystem,anaïvesubroutine-
threadedANSI Forth compiler,2 and GNU C.3 The codefor the first, a simple random
numbergenerator, is shown in figure1,4 andthe codesizeandtimings in tables3 and4.
10,000,000iterationsof the first testwererun, andfor the second,a simpleprimefinder,
primesup to 10,000werefound.5

TheARM Forthversionsareby far thesmallestandquickestof theForthversions,but

2aForth 0.75,availablefrom http://sc3d.org/rrt/.
3GNU C 2.96for ARM, using-O2.
4TheC codeis omittedfor reasonsof brevity; it is a literal translationof theANS Forth version,andcanbe

foundin theMachineForthdistribution.
5It would have beenbetterto run well-known benchmarks,suchasErtl’s integer suite[1], but therewasnot

enoughtime to translatetheminto MachineForth andARM Forth.

ANSI MF32 ARM Forth C

Time/s 3.79 5.39 1.31 1.77
Codesize/cells 39 57 28 54

Table4: Primesbenchmarkdata

6

VARIABLE SEED -1 SEED !
: RANDOM SEED @ DUP 1 LSHIFT SWAP 0< IF 495090497 XOR

THEN DUP SEED ! ;
: TEST 0 DO RANDOM DROP LOOP ;

(a) ANSI

CREATE SEED -1 ,
: RANDOM SEED @A -IF 495090497 ELSE 0 THEN

SWAP 1 LSHIFT XOR DUP SEED !A ;
: TEST BEGIN RANDOM DROP 1 - 0UNTIL DROP ;

(b) MF32

CREATE SEED -1 ,

CODE RANDOM
LINK,
R @! 1 DB STM, save R0
495090497 LITERAL put magicon stack
’ SEED BL, call SEED(leavesaddressin A)
0 A 0@ LDR, loadvalueof SEED
0 0 # CMP, compareSEEDwith 0
0 0 1 #LL MOV, shift valueleft once
0 0 T MI EOR, if SEED< 0, EORwith magic
T 0 MOV, copy SEEDto top of stack
0 A 0@ STR, save new seed
R @! 1 IA LDM, reloadsavedR0
UNLINK,

END-CODE

CODE TEST
LINK,
R @! 1 DB STM, save R0
0 T MOV, copy topof stackto R0
T S 4 #@+ LDR, DROP
BEGIN,
’ RANDOM BL, call RANDOM
T S 4 #@+ LDR, DROP
0 0 1 # SET SUB, decrementandtestcounter

EQ UNTIL,
R @! 1 IA LDM, reloadsavedR0
UNLINK,

END-CODE

(c) ARM Forth

Figure1: Therandom-numberbenchmark

7

surprisinglytheANSI Forthcodeis bothsmallerandquicker thantheMF32version.6 The
C benchmarkresultsneedalittle explanation:thefirstbenchmarkis alittle smallerandeven
fasterthanARM Forthbecauseloadingtherandomnumbergeneratorseeddoesnotrequire
asubroutinecall, asit doesfor aCREATEd variable.Thesecondbenchmarkis muchlarger
becausethereareseveralsmallfunctions,andabouthalf thegeneratedcodeis functionentry
andexit sequences.

In anearlierversionof thispaper, I foolishlywrote“MF32 will obviouslylie somewhere
betweensubroutinethreadedcodeandnatively-compiledcodein speed”.Althoughit would
beequallyfoolish on thebasisof a few benchmarksto saythat that is false,MF’s claims
for speedandcodedensityneedfurtherscrutiny, at leaston typical desktoparchitectures.7

7.3 Easeof programming

ANSI ForthandMF32wereaboutequallyeasyto programin. Contraryto theexperienceof
writing thecompilers,ARM Forthwasmuchharder, mostlybecauseit washardto testthe
ARM wordsinteractively. Also, ARM codeis muchmorelong-windedandharderto read
thanForth. In particular, ARM Forth is harderto factor, becausedefinitionswhich return
flagswould naturallymodify the ARM flagsregisterin ARM Forth ratherthanreturning
a flag valueon thestack,but this is currentlyimpossible,astheflagsarepreservedacross
subroutinecalls.Perhapsthisshouldbechanged.

However, it is ratherunfair tocomparewriting MachineForthandARM codeasvehicles
for Forth,astheformerwasdesignedfor it, whereasthelatterwasnot.Usingamorenatural
machinecodestyle,ARM assembleris just aseasyto write asMachineForth,andif used
from within a conventionalForthcompiler, it canbetestedinteractively too.

8 Conclusions

This hasbeena small experiment,and it’s never wise to draw firm conclusionsabout
programmingin Forthfrom writing Forthcompilers.It is clearlythecasethatMF is easyto
implement,but that’sobviousjust from lookingat themachinemodel.Whetherit makesit
easierto write fast,small,portablecodeis debatable.For me,MachineForth fallsbetween
two stools:for high level code,I’ d ratherwrite in full-blown Forth,andfor low-level code,
I’ d ratherhave thepower, speed,andcompactnessof assembler(usedfrom within a Forth
compiler, of course!).

This impressionis perhapsbiasedby the fact that the processorsI’ ve programmed
extensively (the 6502,68000and ARM) have small and simple instructionsets.On an
unfamiliarprocessor, especiallyonewith alargeandcomplex instructionset,thesimplicity
of MF might helpmeto producereasonablecodemorequickly thanby learningthenative
assemblylanguage.

Theportability of MachineForth might alsobe cited in its favour, but that is only an
advantagewhenwriting high-levelcode;whenMF is beingusedasareplacementassembly
languagethecodebeingwrittenis machine-dependentanyway, andportability is irrelevant.

However, MF doesoffer someuseful ideas.Its explicit useof an addresslatch is a
simplewayto improvetheperformanceof smallForthcompilersthatcannotafford to have
anoptimiser. Evenmoreinterestingareits non-destructiveconditionals,whichcouldeasily
beusedin traditionalForth.

In conclusion,MachineForth’sjudiciousmixtureof noveltyandclassicsimplicitymerit
carefulstudy, thoughI for onewill not beabandoningthetraditionalcombinationof Forth
andassemblerin its favour.

6The primesbenchmarkspendsabout60% of its time executingthe softwaredivision routine,so is of less
significance,thoughit still shows thesametrendastherandomnumberbenchmark.

7Similar codedensityhasbeenreportedoncomp.lang.forth for anIntel implementation.

8

9 Answer to exercise

EXECUTE canbewritten in MF32 as

A! pop A@ push push ;

10 Acknowledgements

Jeff Fox waskind enoughto readandcommentonthepaper, arefereemadeseveralhelpful
comments,HannoSchwalmpointedouttheweaknessof theprimesbenchmark,andMarcel
Hendrixaskedfor thecomparisonwith C.

References

[1] M. Anton Ertl. Performanceof Forth systems,1996. http://www.complang.
tuwien.ac.at/forth/performance.html.

[2] CharlesMoore and Jeff Fox. Preliminaryspecificationof the F21, 1995. http:
//pisa.rockefeller.edu:8080/MISC/F21.specs.

[3] VLSI TechnologyInc.,EaglewoodCliffs, NJ. Acorn RISC Machine family Data Man-
ual, 1990.

9

