
Mite: a fast and exible virtual machine

Reuben Thomas�

Computer Laboratory, University of Cambridge

15th August 1998

Abstract

Recent interest in virtual machines has been due mainly to the need to

distribute executable content over the World Wide Web, where security and

standardization are the key concerns. To ful�l the potential of distributed

network computing virtual machines must be built into the OS kernel where

speed and exibility are of the essence. Mite is a virtual machine designed to

allow optimising compilers to produce compact portable binaries which can

be quickly translated at load-time into fast code. Its minimal core can be

extended with support for language, machine or OS-speci�c features. Mite's

design and current and planned implementation work are described, along

with reasons why it should be of particular interest to Forth programmers.

1 Introduction

Virtual machines have existed for almost as long as computers. A microprogrammed
processor is a hardware implementation of a virtual machine, and VMs have been
widely used as compiler targets, whether to make the compiler easier to write or
easier to port, or to increase code density, as with Forth. In recent years the explosive
growth of the Internet and in particular the desire to add executable content to the
World Wide Web has led to renewed interest in VMs. Since the prime target has
been the consumer market, standardization and security have been the key concerns.
This climate has given rise to several VMs with associated portable binary formats,
such as the Java Virtual Machine [1] and Dis [2].1

These VMs are more or less tied to the operating environments with which they
are bundled. Java's instruction set is heavily tailored to the Java language, though
ingenious programmers have managed to compile languages as diverse as Forth2 and
ML for it, and the Java security and module system is built into the VM. Dis too is
tailored to its operating system, Inferno, though it is more language-independent.

Existing VMs also tend to produce ine�cient native code. Java's simple stack-
based architecture requires much e�ort from a just-in-time compiler to produce even
reasonable code, although Dis's three-operand memory-to-memory architecture is
more CPU-like. Both lack information about the liveness of quantities and the
location of loops which optimising native code compilers use to produce good code.
Such information cannot be used by a compiler producing virtual code, which does
not know the characteristics of the target machine, so it must be placed in the
virtual code if e�cient native code is to be produced.

�Reuben.Thomas@cl.cam.ac.uk
1Other existing VMs such as Taos and Omniware seem to give better performance and be

language-independent, but information about them is hard to come by, seemingly for commercial

reasons.
2See comp.lang.forth for information about various e�orts in this direction.

1

Why are speed and exibility important? To allow distributed network comput-
ing to ful�l its promise the VM must be built into the OS kernel, so that all services
and applications can be distributed. But if all the code in a system is virtual, the
VM must be extremely e�cient. It must also be a good target for any compiled
language, and be capable of interfacing with the parts of the system that still use
compiled or hand-written native code, perhaps device drivers or the virtual memory
system. This is the niche that Mite attempts to �ll.

2 Aims, bene�ts and disadvantages

Mite is a standalone virtual machine, not tied to a particular operating system.
It attempts to address the de�ciencies in existing VMs outlined above. Inevitably,
it substitutes di�erent de�ciencies, but the hope is that the bene�ts outweigh the
costs. Mite aims to be:

Minimal Nothing more than a hardware abstraction layer for processors.

E�cient It should be possible to generate native code from virtual code whose
performance is close to that of good compiled code with little e�ort in the
JIT compiler, provided that the virtual code is of good quality.

Extensible It should be possible to extend the VM without a�ecting the core
semantics.

Universal The VM should be a good target for any language currently compiled
into native code. It should be possible to interpret or compile the virtual code.

The ful�lment of these aims brings the following bene�ts:

Familiarity As the VM should look similar to CPUs and hence familiar to pro-
grammers, the implementation of both high-level language compilers and nat-
ive code generators from the VM should be simpler than for a less familiar
VM model.

Adaptability It should be straightforward to add features required for particular
systems, for example security features or concurrency primitives.

Some disadvantages are:

Poverty In its bare form, Mite is nothing more than a portable assembly language.
For most practical applications it needs extending.

Reliance on good compilers Though it will be capable of producing good code,
there is nothing to prevent na��ve compilers producing poor virtual code, at
the expense of poor native code.

3 The virtual machine model

Mite has a load-store RISC-like architecture. This maps well on to modern RISC
processors, because it is easier to map registers to memory than vice versa: inform-
ation about liveness and priority of quantities which is unnecessary when they are
kept in memory is vital for good register allocation.

2 Reuben Thomas

3.1 Registers

The crucial di�erence between Mite and other VMs is the way it handles registers.
General-purpose registers are created as necessary and destroyed when they are no
longer needed. The directive NEW n t, p creates a new register which is referred to
by its number, n. It is inserted after position p in the register list. t is the register's
type, and denotes a temporary quantity. After creation a register can be moved
within the list, and, at the end of its life, destroyed.

The register list is the lynchpin of Mite's register allocation scheme. An unlimited
number of registers is not hard to cope with: excess registers are easily mapped on
to memory. By keeping the registers in a list it is easy for a JIT compiler to perform
register allocation: if k physical registers are available, then list positions 1 to k are
mapped to physical registers, and the rest to memory. When the list is permuted
so that registers move across the k boundary, spill and restore code is generated.
Provided the register list is kept up-to-date to reect the priority of the quantities
in it, a good register allocation will be achieved regardless of the value of k.

3.2 Immediate quantities

Immediate quantities are even more restricted in Mite than in most RISC processors:
the only place that they can occur is in NEW directives. A register may also be
declared constant by replacing t by tc; it can then be treated, where possible, as
an immediate operand, and need never be assigned to a physical register. On the
other hand, by forcing all immediate quantities to be assigned to virtual registers,
all the information needed for a good allocation to physical registers is available if
it is required.

3.3 Register size and addresses

To be usable on both 32-bit and 64-bit architectures, Mite does not have a �xed
register size, but requires registers to be the same size as addresses, as on most
real processors. Addresses must be either four or eight bytes wide. The width of
addresses is denoted WA. In the assembly language, constants are two dimensional:
the value of x+y is x+WAy. Thus, on a machine with 32-bit addresses, the number
4+2 would evaluate to 12, whereas on a machine with 64-bit addresses it would
evaluate to 20.

3.4 Memory model

Mite has a \pseudo-Harvard" architecture: code and data addresses may be in
separate address spaces or in the same space. This not only accommodates Harvard
architecture machines, but also allows more secure systems in which code is not
addressable by data instructions, such as Inferno, to be built on Mite.

Memory may be addressed in groups of one, two or four bytes, or in address-
sized groups. Memory accesses must be aligned to the size of the quantity being
addressed. This is a good example of Mite's highest common factor approach: some
processors can access unaligned quantities, but to allow this would complicate Mite's
implementation on other processors.

3.5 The ags

There are four ags: C for carry, Z for zero, N for negative and V for overow. These
are set by arithmetic operations, and may be acted on by conditional branches (see
section 4.4).

Reuben Thomas 3

The use of ags varies widely between processors. The manner in which ags
are set after each instruction di�ers, and some processors have a dedicated ags
register, while others allow a general-purpose register to be nominated to contain
the ags resulting from a particular instruction. It is easiest for Mite to specify that
every instruction sets the ags, and only to allow conditional branches.

4 The instruction set

The instruction set looks similar to that of a typical RISC processor. All operands
are registers.

4.1 Arithmetic and logical operations

The usual complement of operations is provided. Each takes a destination (or two in
the case of DIV), which caters to three-operand machines, but is still easy to translate
on two-operand machines, requiring just an extra register move instruction when
the destination is di�erent from the left-hand operand.

Twos-complement arithmetic is assumed; to allow other forms of negative num-
bers would add unnecessary complication, and the vast majority of current pro-
cessors use twos-complement arithmetic.

ADD, SUB and <MUL> perform the corresponding single-length arithmetic oper-
ations. DIV is the only elaborate arithmetic instruction. It may produce either the
quotient or the remainder or both, and may be signed or unsigned. Both oored
and rounded-to-zero division are provided. Having a single instruction to perform
division and remainder supports machines which perform division in software, as
most division algorithms calculate the quotient and remainder simultaneously. Con-
versely, allowing either to be discarded supports machines with division hardware,
as they often have separate instructions for division and remainder.

The logical operations AND, OR and XOR are provided, as well as logical shift
left, and logical and arithmetic shift right, SRL and SRA. The more esoteric logical
instructions provided by some processors were omitted along with bitwise rotates
both to ease implementation and because they are rarely used by compilers.

Comparisons may be performed by omitting the destination of SUB, AND or XOR;
the operation is performed but only the ags are a�ected.

4.2 Addressing memory

LD w x, [a] loads the w bytes from the address in a, which must be a multiple of
w, into x. ST w x, [a] stores the least signi�cant w bytes of x at the address in a.
Other addressing modes must be emulated; a sophisticated implementation of Mite
could recognize and generate some of them.

4.3 Code blocks

Code blocks divide a program into sections with a single entry point. A code block is
of the form c<label> [<reg>, ...] [<directive>. . .]. The label can be a branch
destination and the list of registers in square brackets contains those registers active
on entry to the block which are used during it. When a register is spilled the spill
code can be placed outside the block if the register is not listed at the start; this
mechanism pushes spill code out of loops where possible. Code blocks may be nested.

4 Reuben Thomas

4.4 Branching

The instruction Bc a performs a conditional branch to address a based on condition
c. The condition is evaluated according to the current state of the ags. There
are fourteen conditions covering all the usual tests and comparisons; the special
conditional code AL (ALways) causes an unconditional branch.

4.5 Subroutine call and return

Subroutine call and return is an area fraught with di�culty. It must be possible
to implement very e�ciently, while providing for procedure call standards, which
di�er widely from system to system, to be implemented transparently, so that Mite
code can interoperate with native code.

The instruction CALL a, [p1,. . . ,pn], [r1,. . . ,rm] calls the subroutine at a with
parameters pi and results rj . Only the registers passed to the subroutine may be
accessed by it (apart from any it creates), and return values must be passed in the rj
registers. Any registers not passed to or returned from the subroutine are preserved.
This seemingly high-level instruction allows subroutines to be implemented with the
normal low-level subroutine instructions, while enabling function call to be added
with a small extension.

The subroutine return address is assumed to be stored in a register, and it
can optionally be saved on the stack. This allows optimisation of leaf routines on
machines which do not automatically save return addresses on the stack.

4.6 Other features

Other features which have been omitted for reasons of space include a general-
purpose trap instruction which performs implementation-de�ned actions, and data
blocks, which hold literal data and reserve space. Mite code is organized into mod-
ules which may be loaded and translated independently.

4.7 An example program

As a concrete example, here is a subroutine which calculates the factorial of its
input:

cd.fact [1_t]

[

NEW 2_t=1

cd.loop [1_t,2_t]

[

NEW 3_tc=1

MUL 2,2,1

SUB 1,1,3

BNE .loop

KILL 3

]

KILL 1

RETR

]

5 Extensions

Several extensions to Mite have been considered; some have previously been part
of its speci�cation, but were considered too high-level or specialized to be included

Reuben Thomas 5

in the core, and others are useful to support various sorts of system that one may
want to build on top of Mite. In particular, an extension to support oating-point
arithmetic is necessary if Mite is to be used for numerical work. An extension to
support procedure call standards has already been designed to allow Mite to inter-
operate with native code.

6 Current and future work

At the moment Mite is being implemented for the ARM and Intel x86 series of
processors, along with a back end for the LCC C compiler to produce Mite code. The
procedure calling standard extension will also be implemented, so that C programs
can be compiled into Mite modules and then run either under Linux on the Intel
or Acorn RISC OS on the ARM. Since no linker will be written the system will be
restricted to single-�le programs which call only the standard library.

Future research could extend in several directions:

Making Mite secure Access control policies are above the level of Mite; for Mite,
security consists in ensuring that programs may not have unde�ned e�ects.
This means addressing the following issues:

1. Out-of-range loading, storing and branching. This is the trickiest prob-
lem, as there are several ways of attacking it involving di�erent trade-o�s
between exibility and speed.

2. Using up memory through in�nite recursion or allocating large stack
frames. This is the same problem that confronts procedure call stand-
ard designers, and requires safe stack extension with well de�ned failure
modes.

It would also be worth considering proof-carrying code, virtual code that
carries with it a proof that it satis�es certain criteria.

Distribution and concurrency In order to support distributed computing, it
might be worth building distribution primitives into Mite. It would be sensible
to put them on a formal basis, such as a process calculus, which would allow
for formal techniques to be applied to programs and protocols. This could
be valuable given the di�culty of programming distributed system owing to
concurrency and failure. The main problem would be to support the range of
idioms currently in use for dealing with concurrency and distribution.

Formalizing Mite As the value of formal methods is increasingly being realised in
building large software systems reliably, a formally de�ned and even veri�ed
virtual machine might be a great help. As Mite is small it should be relatively
easy to specify formally, yet as it is fundamental to the systems built on it
the returns would be disproportionately great.

Building Mite into an OS It should not be hard to port an operating system
such as Linux to Mite. If the VM were built into the kernel, it would be
possible to write most of the kernel and device drivers in virtual code. Linux
programs would become binary-portable across all the platforms it supports,
with a consequent leap in ease of use.

Investigating compilation for VMs Mite has been designed to work well with
existing compiler technology; in the longer term it would seem more sensible
to adapt compilers to VMs. This requires a reformulation of optimization in
terms of machine-dependent and machine-independent components, and the

6 Reuben Thomas

discovery of exactly what information can be usefully embedded in virtual
code so as to produce optimizations easily when it is translated.

7 Mite and Forth

Apart from the fact that most Forth compilers have historically used a virtual
machine, it is not obvious what Forth and Mite have in common, especially as
Forth's stack-based nature seems diametrically opposed to Mite's use of registers.
In fact, this di�erence is an illusion, and there is a transformation from the register
version of Mite to a stack version, the only di�erence being that that the stack
version lacks register usage information.

The instructions all become zero-operand, working on the top of the stack as in
Forth, and instead of the register directives, stack operators are introduced. It is
straightforward to translate mechanically between the two forms; to give a avour
of the result, here is the factorial program from section 4.7 in stack form:

cd.fact

[

#1 PUSH

cd.loop

[

1 PICK MUL

1 ROLL #1 PUSH SUB

1 ROLL BNE .loop

]

1 ROLL DROP RET

]

The translation here is na��ve: whenever a register is needed on top of the stack it
is ROLLed there if it is to be updated, and PICKed otherwise. Constant registers are
pushed whenever their value is needed. At the end of the loop, the stack order must
be restored to the same as at the start, hence the �nal 1 ROLL.

Note that translating from stack Mite to register Mite is much the same problem
as compiling Forth for a register machine, and doing it e�ciently is hard, as the
information lost in translating from register to stack form must be reconstructed.

8 Conclusion

Virtual machines have enjoyed renewed interest in recent years as an aid to distrib-
uting executable content across the World Wide Web. To harness the full potential
of distributed computing operating systems must be built on top of VMs, which
must therefore be more exible and e�cient. Mite attempts to address these issues,
while allowing specialization and extension for particular applications. Some corres-
pondences to Forth were also noted. Focusing on the virtual machine as a processor
abstraction layer should clarify many issues of design and usage and help hasten
the arrival of ubiquitously portable and distributable software.

References

[1] Sun Microsystems Computer Corporation. The Java Virtual Machine Speci�c-

ation, 1995. Release 1.0 Beta.

[2] Phil Winterbottom and Rob Pike. The design of the Inferno virtual machine,
1997.

Reuben Thomas 7

