
Internationalisation – the user perspective
\\stephen\c\mpe\projects\international\internationalisation.v2.doc
Revised 13 August 1998

Authors:
Stephen Pelc, MicroProcessor Engineering
Willem Botha, Construction Computer Software
Nick Nelson, Micross Electronics
Peter Knaggs, Bournemouth University

Contact:
Stephen Pelc
MicroProcessor Engineering
133 Hill Lane
Southampton SO15 5AF
England

Tel: +44 1703 631441
Fax: +44 1703 339691
Net: sfp@mpeltd.demon.co.uk
Web: http://www.mpeltd.demon.co.uk

Introduction
Internationalisation (or localisation) is becoming a major issue for several of MPE’s clients. These
clients are of the opinion that the current ANS definitions of character related words are broken for
multi-language use. In addition, in a world of 16 bit and multibyte character sets, the standard appears
confused between characters and bytes.

Construction Computer Software (CCS) have 15 years experience of supporting multiple languages
with Forth. Their software is used all over the world, and in languages for which Unicode support is
not yet available. Coping with multibyte character sets must be included within an internationalisation
system.

Micross Electronics have ported applications to run in Japanese and several European languages.

The word set presented here is based on a system that has been in use at CCS for many years.

Objectives
A modification of the CCS word set has been designed. The authors are prepared to propose as the
basis of an ANS standard. This is referred to as the LOCALE word set. The basis of this is that all
strings for internationalisation will be compiled as LOCALE structures, and all access to the strings is
through these structures. It appears that the following word set is adequate in the first place. The word
set is designed to cope with character sets that are of different size to the native set. For example, the
development language may be 8 bit ASCII, whereas the language strings may be returned in Unicode
(16 bit) or UTF8 or other multibyte character sets. Note that use of the standard Forth words to
navigate through strings under these conditions is impossible.

The word set is split into user and implementer groups to indicate what factors need to be language
sensitive. It is also likely that all LOCALE structures will need to be linked in case reindexing of hash
tables or other internal structures is necessary.

The word L" is proposed for language sensitive strings, and behaves in a similar way to the ANS word
C", but returns a string identified known as a LOCALESTRUCT from which the required language
string can be extracted. The reason for this is so that text information in the native development
language is still available in the source, making source maintenance much easier because the intention
of the string is still available to the developer. In addition, the Forth compiler can be extended to
produce a text file containing the native strings.

In practice, many applications not are localised by the software developer, but their agents in other
countries. The use of L" permits the software developer to produce tools that will produce text files
that can be edited and converted to another language locally without dependency on computer language
or operating system specific tools such as resource compilers and managers.

This document is not an ANS proposal yet, but is a working paper from which we will generate an
ANS proposal.

The LOCALE word sets
User LOCALE word set
LANGUAGE \ lang -- ; lang is a language code, e.g. Windows constant
Sets the current language for the LOCALE system. Note that several variants of a basic language may
exist, e.g. Portugese and Brazilian dialects of Portugese.

GET-LANGUAGE \ -- lang
Returns the language code last set by LANGUAGE.

COUNTRY \ country -- ; country is a country code, e.g. Windows constant
Sets the current country for the LOCALE system. This is necessary for countries that have several
languages, e.g. Belgium, Canada, Switzerland, South Africa, Russia, China.

GET-COUNTRY \ -- country
Returns the country code last set by COUNTRY.

L" \ -- ; -- localestruct ; L" <native text>"
Compiles a LOCALE structure with an inline string compiled as a counted string in the native language
of the development system. At run time, the address of the LOCALE structure is returned. Other words
use this structure to extract language specific information.

(L") \ -- localestruct
Steps over an inline LOCALE structure and returns its address

LOCALE-FETCH \ localestruct -- $addr
Fetches a string in the current language that corresponds to the native string compiled with the
LOCALE structure, and returns its address. The format of the string at $addr is implementation
dependent, and may depend on the operating system and character encoding in use.

LOCALE-COUNT \ $addr – addr len(au)
Given the address of a translated language string returns the address of the first character, and its length
in address units. This function enables translated strings to be copied by words such as CMOVE.

Implementer word set
This word set need not be part of the standard, but is provided here to indicate what is needed in a
practical implementation, and to show what is system dependent.

LOCALE-INDEX \ localestruct –
Updates the internal data structure. Useful if structures are added and changes to internal structures are
required.

LOCALE-LINK \ localestruct1 – localestruct2
Given the address of one LOCALE structure, returns the address of the next.

LOCALE-TYPE \ addr len(au) –
Displays the LOCALE string whose address and length are given.

LOCALE$ \ localestruct – c-addr
Given a LOCALE structure, returns the address of the corresponding native string that was compiled
by L".

Impact on ANS Forths
Any word that depends on the current definition of COUNT cannot be used for internationalisation.
This includes, but is not limited to:

COUNT C@ CMOVE /STRING SEARCH
WORD C! CMOVE> PARSE COMPARE
SKIP SCAN

Unless all these words are deferred, their use is restricted to the character size of the native Forth. For
example most Forth systems are written for a seven or eight bit character set, but the applications
written in those Forth systems may have to display messages in 16 bit or multibyte character sets.

It has been proposed that COUNT should return the number of address units (ANSism, but normally
bytes) used in the string and not the number of characters. In this way, most if not all, words based
around COUNT will continue to work. Perhaps a word such as CHARLEN (addr -- n) could count
the number of (printable?) characters in the string.

If the words above are to be made language sensitive, then the following others are needed as well.

C@++ C!++ TOUPPER TOLOWER CONCAT

Since character strings may have multibyte character sets, C@ and C! cannot be used to handle bytes if
they are character related. The majority of communication protocols, eg. TCP/IP, are 8 bit byte (octet)
oriented, and access to bytes (and other fixed size units) will also be required for Forth. This topic is
not covered in this document. Consequently the following words are needed:

B@ B! BMOVE BMOVE>

An alternative approach is recognise that the Cxxx words are really byte operators or operators on at
least 8 bits (in cell addressed or bit addressed CPUs), and to define a new set of operators to act on
character strings.

Formatting Considerations
We have not yet discussed the various formatting problems: Date/Time, Calendar, Currency and
Number. I will accept that these are based on the current country setting rather than the current
language setting. For example English is used in at least nine different countries, each with their own

formatting considerations. There are also a few countries that have multiple languages; Canada for
example uses both French and English. This was also the main thrust of Peter Knaggs EuroFORTH '97
paper, although that was not complete. I refer you to Chapter 5 of Kano for further discussion.

Relevant Standards
There are a number of different standards that can be used for country and language codes. The codes
used by Microsoft (See Appendix K of Kano) are recommended for two reasons:

1) They are the most complete set we have thus far seen.
2) Most people working in the multi-lingual environment will have already come across them.

There are also a few problems with using these codes:
1) They do not conform to any standard (or standard that we know of), although being used by

Microsoft they are a de-facto standard.
2) The “primary language” ID is well defined, however, the “secondary” (or country) ID is not

so well defined. A combination of both the “primary” (or language) ID and the “secondary”
(or variant/country) ID is required to fully identify a given locale. For example, Britain
requires a primary ID of 9 (English) and a secondary ID of 8, giving a country code of 0809
(Hex), however, the same secondary code, combined with the primary code 1 indicates “Iraq”.

[ISO90] International Standards Organisation. Programming Languages— C. ISO/IEC 9899:1990.

[ISO95] International Standards Organisation. Information Technology— Programming
Languages— Ada. ISO/IEC 8652:1995.

[ISO97] International Standards Organisation. Information Technology— Programming
Languages— Forth. ISO/IEC 15145:1997.

[ISO98a] International Standards Organisation. Information technology— Framework for
internationalization. ISO/IEC TR 11017:1998.

[ISO98b] International Standards Organisation. Information technology— International string
ordering— Method for comparing character strings and description of a default tailorable
Ordering. ISO/IEC DIS 14651. 1998.

[ISO98c] International Standards Organisation. Functionality for internationalization— Specification
of cultural conventions. ISO/IEC DIS 14652. 1998.

Bibliography
[Kan95] Kano, Nadine. Developing International Software. Microsoft Press, 1995.

[Kay94] Kay, Russell. “Software Goes Global.” Byte Magazine (June 1994): 90–91.

[Kna97] Peter Knaggs. “A Truly International Standard.” Proceedings of the EuroFORTH '97
Conference, Southampton: MPE Ltd., 1997.

[Kna98] Peter Knaggs (Ed). International Considerations for the Forth Programming Language,
Draft Revision 2. Bournemouth University, 1998.
http://dec.bournemouth.ac.uk/forth/international.

[Nak94] Nakakoji, Kumiyo. “Crossing the Cultural Boundary.” Byte Magazine (June 1994): 107–9.

[Odo94] O’Donnell, Sandra Martin. Programming for the World: How to Modify Software to
Meet the Needs of the Global Market. Prentice Hall, 1994.

[Tay92] Taylor, Dave. Global Software: Developing Applications for the International Market.
New York: Springer-Verlag, 1992.

[UHP93] Uren, Emmanuel, Robert Howard, and Tiziana Perinotti. Software Internationalization
and Localization: An Introduction. New York: Van Nostrand Reinhold, 1993.

Microsoft Locale ID codes
Primary ID Language Secondary ID Country

00 Neutral
01 Arabic 04 Saudi Arabia

08 Iraq
0C Egypt
10 Libya
14 Algeria
18 Morocco
1C Tunisia
20 Oman
24 Yemen
28 Syria
2C Jordan
30 Lebanon
34 Kuwait
38 United Arab Emirates
3C Bahrain
40 Qatar

02 Bulgarian 04
03 Catalan 04
04 Chinese 04 Taiwan

08 People's Republic of China
0C Hong Kong
10 Singapore

05 Czech 04
06 Danish 04
07 German 04 Standard

08 Switzerland
0C Austria
10 Luxembourg
14 Liechtenstein

08 Greek 04
09 English 04 United States

08 Britain
0C Australia
10 Canada
14 New Zealand
18 Ireland
1C South Africa
20 Jamaica
24 Carribean

0A Spanish 04 Traditional Sort
08 Mexican
0C Modern Sort
10 Guatemala
14 Costa Rica
18 Panama

1C Dominican Republic
20 Venezuela
24 Colombia
28 Peru
2C Argentina
30 Ecuador
34 Chile
38 Uruguay
3C Paraguay
40 Bolivia

0B Finnish 04
0C French 04 Standard

08 Belgium
0C Canada
10 Switzerland
14 Luxembourg

0D Hebrew 04
0E Hungarian 04
0F Icelandic 04

10 Italian 04 Standard
08 Switzerland

11 Japanese 04
12 Korean 04 Standard

08 Johab
13 Dutch 04 Standard

08 Belgium
14 Norwegian 04 Bokmål

08 Nynorsk
15 Polish 04
16 Portuguese 04 Brazilian

08 Standard
17 Rhaeto-Romanic 04
18 Romanian 04 Standard

08 Moldavia
19 Russian 04 Standard

08 Moldavia
1A Serbo-Croatian 04 Croatan

08 Serbian
1B Slovak 04
1C Albanian 04
1D Swedish 04
1E Thai 04
1F Turkish 04

20 Urdu 04
21 Indonesian 04
22 Ukrainian 04
23 Byelorussian 04
24 Slovenian 04
25 Estonian 04
26 Latvian 04
27 Lithuanian 04
28 Maori
29 Farsi 04
2A Vietnamese
2B Laotian
2C Kampuchean
2D Basque 04
2E Sorbian 04
2F Macedonian 04

30 Sutu 04
31 Tsonga 04
32 Tswana 04
33 Venda 04
34 Xhosa 04
35 Zulu 04
36 Afrikaans 04
37
38 Faeroese 04
39 Hindi 04
3A Maltese 04
3B Sami 04
3C Scots Gaelic 04 Gaidhilge
3D
3E
3F

Contributers’ comments
Willem Botha
I have a problem with the user locale word set to indicate if the required string is counted or zero
terminated. I propose that locale strings by default have a count for dictionary navigation, and a zero
terminator for API calls. The user word set can be extended to give access to the counted string address
or the first character of the zero terminated string. The count will exclude the null terminator and the
dictionary navigation words will account for the extra byte or bytes, depending on implementation. If a
double zero termination is implemented, then zero terminated string arrays can also be handled by the
locale string implmentation.

Peter Knaggs

Locale Wordset
Although I can see why the "locale" wordset would be of use to an application developer, I do not
believe it should be incorporated in the standard. The standard should, however, provide a sufficient
basis for such a wordset to be defined in a standard, or system independent, manner. The standard
should not make all applications automatically multi-lingual but should allow developers the freedom
to develop multi-lingual applications. I see the "locale" wordset as being at too high a level of
abstraction for inclusion in the standard.

Character navigation
I was thinking of a single word CHAR++ (addr -- addr) which simply moved the pointer on to the
next character. One could implement C@++ and C!++ in terms of CHAR++ with ease. I would agree
with CONCAT as well, this would allow people to build the output string in a transient buffer before
sending it to the output device.

I very much agree with the need for TOUPPER and TOLOWER, although I would name them
>UPPER and >LOWER. The traditional method of converting a letter from upper case to lowercase,
the addition of 32 is only valid in standard 7-Bit ASCII systems. For example the uppercase for the
Greek letter η (eta) is H, this is not obvious from the character sets.

If you are going to advocate >UPPER and >LOWER, you should also include the >BASE, (a letter
without diacritical mark). Given these conversion words we may as well provide the set of conditional
functions provided by the character handling packages of other languages (such as ADA [ISO94] and C
[ISO90]):

ALPHA? UPPER? BASIC? PUNCT?
DIGIT? LOWER? CNTRL? SPACE?

Bytes and Characters
I don't see any need for BMOVE or BMOVE>, given that we already have CMOVE and CMOVE>
which works on a byte by byte basis. The only problem is with the name, although I believe CMOVE
is acceptable given our interpretation of COUNT.

The standard does not actually allow for single byte access. Anyone wanting to use single byte access
will probably be accessing memory mapped I/O, any such code can not be standard. Thus although I
would agree that B! and B@ should be in the standard, there should also be a note stating that standard
applications can not use them. This is similar to EKEY.

Nick Nelson
I can live with this.

Stephen Pelc

Terminology
The term locale structure is used to refer to a locale sensitive string. The present terminology is based
on the implementation techniques. Perhaps we should refer to a “locale string identifier” instead,
indicated by lsid.

Counted strings
Counted strings are deeply ingrained in Forth. However, the way COUNT is currently defined makes it
impossible to make their layout system dependent. This is because some users (even now) insist on
abusing COUNT to step through memory on the assumption that a character is a byte. If the structure
of a counted string is implementation dependent, then compatibility with many character sets becomes
easier to implement.

For example, the Windows definition(s) of a counted string includes a 32 bit count (four bytes) of
bytes, followed by that many bytes in Unicode, i.e. the character count is half the byte count.

Perhaps we should define a new type, the international string, which has these attributes.

Change History
17 Aug 1998 – PK
A number of minor formatting changes.
Added bibliography.
Revised discussion of country codes (primary/secondary codes).
Added "Locale" wordset discussion to personal contribution.

12 Aug 1998 - SFP
Incorporated and modified many of Peter Knaggs comments.
Moved discussion comments to a separate contributers section.
Changed LINGOxxx to LOCALExxx because it sounds more official and less offensive.
Added justification for L".

