
1

The MPE VFX Forth code generator
Stephen Pelc
MicroProcessor Engineering
133 Hill Lane
Southampton SO15 5AF
England

Tel: +44 1703 631441
Fax: +44 1703 339691
Net: sfp@mpeltd.demon.co.uk
Web: http://www.mpeltd.demon.co.uk

A new code generating system has been developed by MPE for Forth which produces
code similar in quality to that produced by many C compilers. This paper discusses
the reasons for accepting the additional complexity of native code generation and
optimisation, the portability of the code generator, and the results achieved.
Comparisons are made with a recently released commercial Forth that claims good
performance.

Introduction
Over the years, I have increasingly been told that interpreted languages are slow, and Java has
done nothing to reduce this impression. Forth is held to be an interpreted language, but it
would be truer to say that it is an interactive language. Rather than have to justify an
interpreted solution, MPE decided to produce a Forth system which can compile good quality
code, while retaining speed of compilation and full interactivity.

The results justify our investment. The new VFX compiler system is being incorporated into
ProForth/VF (the next version of ProForth for Windows) and MPE’s new VFX range of Forth
cross compilers.

Code generators have been produced or are in development for the following processors,
80386/486/Pentium, Hitachi H8/300H, Motorola 68xxx/Coldfire, and ARM. Other targets are
planned.

Several other code generators exist for Forth, but some suffer from being extremely CPU
specific, some are not yet finished, others have copyright or other commercial restrictions,
and others are not maintainable.

Objectives
The objectives are:
1) good code quality
2) low increase in code size over threaded code
3) portability of the code generator
4) maintainability of the code generator

Good code quality is necessary not only as a sales feature, but also because it reduces the
proportion of the Forth kernel that has to be written in assembler, so reducing porting costs.

2

The requirement for only a small increase in code size is created by customers with previous
versions of the MPE Forth cross compilers. They will not be pleased by significant increases
in code size. In addition, good code size is important with embedded RISC processors that
tend to have small caches.

Good portability of the code generator to new target processors reduces implementation cost,
both of the code generator itself, and in the reduction of target code that must be rewritten. In
addition it should be easy to update the code generator easily when new features are added.

Maintainability of the code generator affects code reliability, lifetime costs, and ongoing
development costs.

Complexity
Compared with the classical threaded Forth compiler, a code generating compiler is
completely different in scale. However, every time a new target is created, the conventional
code primitives have to be written, tested, and debugged. The tradeoffs are simply whether
the resulting additional performace will attract a good price, and will significant cost
reductions be available when writing a new target for a cross compiler.

After writing a number of targets, we can answer yes to both questions above.

The figures below show an order of magnitude improvement in PC applications, and about a
fourfold improvement over simple subroutine threading and inlining. In addition, the code
generation quality is very much better than is achievable with simple methods.

From the customer’s point of view, the code quality reduces the amount of assembler code
that is needed, and for the embedded system developer, the code quality is perfectly adequate
for all but the heaviest interrupt loads.

Portability
Compared to writing a naïve subroutine threaded cross compiler with simple inlining, the
MPE VFX code generator takes considerably longer to write, but this is balanced by the
portability of the target code.

The VFX code generator is largely CPU independent, but variations in CPU architecture do
affect it. Overall, the portability of the code generator is heavily dependent on how aggressive
the optimisations are.

Technology
This being a commercial product, the amount of hard information that will be released is
necessarily limited.

The code generator is designed as one of number of phases from source to binary code. This
topic is covered adequately in the compiler literature.

Although the results below show a considerable improvement over an equivalent commercial
offering, there is plenty of scope for further improvement.

3

Results
The code generation quality of ProForth/VF for Windows was compared with that of a
recently released commercial Forth for Windows.

Source:
: n>$ \ n -- char ; convert n to ASCII
 dup 9 >
 if 7 + endif
 $030 +
;

Threaded system – 8 cells + 3 lits + EXIT, 48 bytes

MPE ProForth/VFW – 4 instructions plus RET, 16 bytes
dasm n>$
(0043B8CD 83FB09) CMP EBX, 09
(0043B8D0 0F8E03000000) JLE/NG 0043B8D9
(0043B8D6 83C307) ADD EBX, 07
(0043B8D9 83C330) ADD EBX, 30
(0043B8DC C3) NEXT,

FI SwiftForth – 25 instructions + RET, 83 bytes
see n>$
BB51EB 4 # EBP SUB 83ED04
BB51EE EBX 0 [EBP] MOV 895D00
BB51F1 4 # EBP SUB 83ED04
BB51F4 EBX 0 [EBP] MOV 895D00
BB51F7 9 # EBX MOV BB09000000
BB51FC EBX 0 [EBP] CMP 395D00
BB51FF BB5208 JLE 7E07
BB5201 -1 # EBX MOV BBFFFFFFFF
BB5206 BB520A JMP EB02
BB5208 EBX EBX SUB 29DB
BB520A 4 # EBP ADD 83C504
BB520D EBX EBX OR 09DB
BB520F 0 [EBP] EBX MOV 8B5D00
BB5212 4 [EBP] EBP LEA 8D6D04
BB5215 BB522C JZ 0F8411000000
BB521B 4 # EBP SUB 83ED04
BB521E EBX 0 [EBP] MOV 895D00
BB5221 7 # EBX MOV BB07000000
BB5226 0 [EBP] EBX ADD 035D00
BB5229 4 # EBP ADD 83C504
BB522C 4 # EBP SUB 83ED04
BB522F EBX 0 [EBP] MOV 895D00
BB5232 30 # EBX MOV BB30000000
BB5237 0 [EBP] EBX ADD 035D00
BB523A 4 # EBP ADD 83C504
BB523D RET C3

4

In order to provide a better basis for comparison, the SwiftForth benchmark suite was
compiled for ProForth VFW, and following results were obtained. Note that the SwiftForth
compiler is a production compiler, and the VFX compiler is the alpha test release.

Test Swift 1 Swift 2 Swift 3 OptPFW3 1 OptPFW3 2 OptPFW3 3

Primitives
Do Loop 0.071 0.07 0.065 0.028 0.027 0.028
* 0.156 0.155 0.16 0.16 0.12 0.136
/ 0.405 0.404 0.406 0.544 0.684 0.664
+ 0.106 0.1 0.1 0.046 0.054 0.053
M* 0.15 0.15 0.155 0.173 0.255 0.235
M/ 0.65 0.65 0.65 0.644 0.574 0.59
M+ 0.405 0.415 0.405 0.299 0.229 0.223
/MOD 0.41 0.405 0.405 0.378 0.3 0.42
*/ 0.485 0.486 0.485 0.499 0.494 0.492
Benchmarks
Sieve 3.052 2.442 2.442 0.732 0.854 0.732
Fib Recurse 1.941 1.834 1.963 0.215 0.215 0.194
QSort 24 25 24 10 9 6

The results show that the effect of optimisation is to be found in the test of application code,
and not in the raw speed of primitives. The reduced improvement in the QuickSort test is
caused by inlining being turned off in the PFW code generator.

Conclusions
The MPE VFX code generator produces code that is between four and ten times faster than
the nearest equivalent commercial offering.

The code generator is portable and will be introduced in MPE’s ProForth/VF for Windows
and in the MPE VFX Forth cross compilers.

There is an increase in development costs which is balanced by the performance results and
the increased maintainability and portability of target code.

Acknowledgements
Some of this work has been done under ESPRIT project 25344 PRACTICAL

Papers by and conversations with the following people have been useful:
 Anton Ertl, Peter Knaggs, Paul Curtis, Thomas Worthington

Steven (“Harry”) Coul conducted the benchmarking and drove us to make this code generator
better than we had anticipated.

