
MINO�—System Integration

Bernd Paysan

August 29, 1998

Abstract

This paper presents the integration of MINO�—
a toolkit for rapid application development of
graphical user interfaces (GUI RAD) in Forth—
into the system. Two main areas of interrest
are data base query via SQL and integration
of OpenGL. Other improvements of MINO� are
also covered. This text blatantly contains parts
that were already presented last time and on the
last Forth Tagung in Moers.

1 Introduction

Last year, I presented MINO� here. It could just
create a simple calculator. Since then many im-
provements have happend.

But step by step:

1.1 What’s MINO�?

MINO� is the answer to the question “Is there
something like Visual BASIC (Microsoft) or Del-
phi (Imprise) in Forth?” Basically, these GUI
RADs contain two components: a library with
a wide variety of elements for a graphical user
interface; e.g. windows, buttons, edit–controls,
drawing areas, etc.; and an editor to combine
the elements with the mouse by drag&drop or
click&point actions. Missing code then is in-
serted to add actions when buttons are pressed.

Typical applications are often related to data
base access. Therefore, many of these systems
already contain a data base engine or at least
a standardized interface to a data base, such as
ODBC.

Another aspect are complex components.
With some of these toolkits, you can create a
web browser with some mouse clicks and a few

keystrokes. However, these components hide
their details, a shrink wrapped web browser ap-
plication is not necessarily worse.

The interactivity of these tools usually is not
very high. You create your form, write your ac-
tions as code and compile it more (Delphi) or less
(Visual Age for C++) fast. Trying it usually isn’t
possible before the compiler run.

1.2 Why Visual?

It isn’t really necessary to brush graphical user
interfaces together, as it isn’t to edit texts WYSI-
WYG. Many typesetting functions are more se-
mantically than visual, e.g. a text is a head-
line or emphasized instead of written in bold 18
point Garamond or 11 point Roman italics. All
this is true for user interfaces, to some extend
much more. It’s not the programmer that de-
cides which font and size to use for the UI —
that’s up to the user. As is color of buttons and
texts.

Also to layout individual widgets, more ab-
straction than defining position, width and
height makes sense. Typically buttons are ar-
ranged horizontally or vertically, perhaps with a
bit distance between them. The size of buttons
must follow the containing strings, and should
conform to aesthetics (e.g. each button in a row
has the same width).

Such an abstract model, related to TEX’s
boxes&glues, programs quite good even without
a visual editor. The programmer isn’t respon-
sible for “typesetting” the buttons and boxes.
This approach is quite usual in Unix. Motif and
Tcl/Tk use neighborhood relations, Interviews
uses boxes&glues. I decided for boxes&glues,
since it’s a fast and intuitive solution, although
it needs more objects to get the same result.

1

1 INTRODUCTION 2

These concepts contradict somehow with a
graphical editing process, since the editors I
know don’t provide abstract concepts (“place left
of an object” or “place in a row”), but positions.

1.3 Visual Forth?

One point makes me think: the packets that al-
low real visual form programming have many
years of programming invested in. Microsoft,
Borland, and IBM may hire hundreds of pro-
grammers just for one such project. This man–
power isn’t available for any Forth project. But
stop:

� Forth claims that good programmers can
work much more efficient with Forth

� A team of 300 (wo)men blocks itself. If the
boss partitions the work, the programmers
need to document functions, and to read
documents from other programmer related
to other functions and must understand
them, or ask questions to figure things out.
Everybody knows that documenting takes
much longer than writing the code, and ex-
plaining is even worse. Thus at a certain
project complexity level, no time is left for
the programming task; all time is used to
specify planned functions and read the spec-
ification from other programmers. Or the
programmers just chat before the door holes
of the much too small and noisy cubicles.

� A good programmer reportedly works 20
times as fast as a bad, even though he
can’t type in more key strokes per time.
The resulting program is either up to 20
times shorter or has 20 times less bugs (or
both) — with more functionality at the same
time. Teamwork however prevents good
programmers from work, since they are
frustrated by bad programmers surround-
ing them, from their inability to produce re-
quired information in time; and the bad pro-
grammers are frustrated by the good ones,
which makes them even worse.

� Therefore, even in large projects, the real
work is (or should be) done by a small “core
team”. Then the Dilbert rule applies: what

can be done with two people, can be done
with one at half of the costs.

Furthermore, bigFORTH–DOS already contains
a “Text-GUI”, without graphical editor, but
with an abstract boxes&glue concept, which, as
claimed above, hinders the use of such an editor.

Finally I wanted to get rid of DOS, and port
bigFORTH to a real operating system (Linux).
In contrast to Windows and OS/2, user interface
and screen access are separated there. Drawing
on the screen uses the X Window System (short
X), the actual user interface is implemented in
a library. This is the reason, why there is no
common interface, but a lot of different libraries,
such as Athena Widgets, Motif, Tcl/Tk, xforms,
Qt, gtk, and others. The “look and feel” from
Motif-like buttons is quite common, even Win-
dows and MacOS resemble it.

All these libraries have disadvantages. The
Athena Widgets are hopelessly outdated. Mo-
tif is commercial, even if a free clone (Lesstif) is
in creation. It’s slow and a memory hog. Tcl/Tk
consumes less memory, but it’s even slower. How
do you explain your users that drawing a win-
dow takes seconds, while Quake renders ani-
mated 3D-graphic on the same machine? Qt is
fast, but it’s written in C++ and doesn’t have a
foreign language interface now. gtk, the GIMP
toolkit, has more foreign language interfaces,
and it’s free, but it wasn’t available until re-
cently.

Therefore I decided to port the widget classes
from bigFORTH–DOS to X, and write an editor
for it. Such classes written in Forth naturally fit
in an development environment an are — from
the Forth point of view — easier to maintain.
There are not such many widget libraries in C,
because it’s a task written in an afternoon, but
because the available didn’t fit the requests, and
a modification looked desperate.

1.4 The Name — Why MINO�?

“Visual XXX” is an all day’s name, and it’s too
much of a microsoftism for me. “Forth” is a no-
word, especially since the future market con-
sists of one billion Chinese, and for them four is
a number of unluck (because “se” (four) sounds
much like “se” (death)). However, even Borland

3 NEWS 3

doesn’t call their system “Visual TurboPascal”,
but “Delphi”.

Greek is good, anyway, since this library re-
lates to the boxes&glues model of TEX, which is
pronounced Greek, too. Compared with Motif,
the library is quite copact (MINimal), and since
it’s mainly for Linux, the phonetic distance is
small. . . I pronounce it Greek: “menoz”.

1.5 Port to Windows

I ported MINO� to Windows 95/NT, on the de-
mand of some potential users. It doesn’t run
near as stable as under Linux/X, since there
are a hideous number of subtle bugs in Win-
dows, and I don’t have the time to work around
all of them. Drawing polygons doesn’t work
as well as on X, and all the bugs that are in
the memory drawing device can drive me nuts.
The Windows port of MINO� looks more like
the “modern Forth” Claus Vogt portrayed in
de.comp.lang.forth : it shows random gen-
eral protection faults. Well, just like any other
Windows program.

2 Widget Classes: Display,
Widget, Actor

The principle of the class hierarchy was fixed
with the given library for DOS. This library dis-
tinguishes between widgets (“window gadgets”)
and displays. Displays are widgets that also
can paint, such as windows, viewports, backing
stores and double buffers. They are responsi-
ble for translating the abstract interface to the
actual graphic library, and for event handling
(mouse clicks, key strokes, redraws, etc.).

The widgets themselves are divided into boxes
(horizontal and vertical), buttons, toggles, la-
bels, icons, text input fields, sliders, scalers, can-
vas. . . alltogether currently 88 classes.

Originally, all the actions that are invoked at
clicks where simple Forth words. It has shown
that this wasn’t suitable. Objects manipulate
data representations, and it’s useful to have the
action tied to the data. Therefore, the actions
now are translated using “action” objects. E.g. a
toggle button may set a variable to “on” or “off”,

and retrieve its state from the variable. Or some
radio buttons change the number in a variable.
Therefore a number of different action classes
provides interfaces of object actions for simple
things to complex things as showing tool tips.
This solves the problem of varying reactions on
events with simple means, without making the
default path more complicated.

One further class is related to displays: the re-
sources. This class contains screen specific data,
such as display, screen, font, colors, color-map,
cursors, and the graphic context.

A class hierarchy comprises a common inter-
face, thus methods and variables, which are un-
derstood by all subclasses. The main elements of
the widget protocol (Figure 1) and displays (Fig-
ure 2) are presented here.

Derived classes certainly have additional vari-
ables, object pointers, and eventually additional
methods.

The display class is derived from the widget
class. Therefore it understands all messages of a
widget class. Some displays as viewports, back-
ing store, and double buffer can be used as nor-
mal widgets as part of a dialog or a window.

2.1 Composed Objects

More complex objects such as sliders, scalers,
and text fields are composed out of simpler ob-
jects (especially glues). This was inspired by gtk,
which composes even simple objects. I imple-
mented sliders and scalers as one object before,
and the result was quite lengthy code, difficult to
debug. The composed objects require only half of
the code, and where written in one day. Com-
posed objects take more memory at run-time,
and are presumed to redraw slightly slower. I
plan to split up further objects, especially toggle
buttons.

3 News

3.1 New Platforms

MINO� runs now under Windows 95/NT.
Jens Wilke sponsored a MSDN1-CD, and since
MINO� relies only on some few X functions and

1Micro$oft Documents Nothing

3 NEWS 4

Method Purpose

PARENT points to the parent object
WIDGETS points to the next object
DPY the display of this widget
INIT initializes the object
DISPOSE deletes the object
HGLUE horizontal glue
VGLUE vertical glue
XINC horizontal size increment
YINC vertical size increment
XYWH bounding box
RESIZE changes size
REPOS changes position
RESIZED recomputes size
!RESIZED more detailed recomputation
CLOSE closes the window
DRAW draws itself
ASSIGN assigns a new contents
CLICKED click event handling
KEYED keystroke handling
INSIDE? is this point inside the object?
HANDLE-KEY? does it handle keystrokes?
FOCUS object got focus
DEFOCUS object looses focus
SHOW the object is visible
HIDE the object is invisible
MOVED pointer over the object
LEAVE pointer leaves object
DELETE remove object from list
APPEND add object to list
SHOW-YOU object should show itself
FIRST-ACTIVE set active object to the first
NEXT-ACTIVE next object becomes active
PREV-ACTIVE previous object becomes active

Figure 1: Widget messages

Method Purpose

XRC resource
LINE line between two points
TEXT paint text
IMAGE draw pixmap
BOX draw rectangle
MASK paint icon
FILL fill polygon
STROKE draw polygon outline
DRAWER call drawing routine
DRAWABLE resources for drawing
SYNC end update
MAP map window
UNMAP unmap window
MOUSE mouse position
SCREENPOS screen position of display
TRANS coordinate transformation
TRANS’ reverse transformation
TRANSBACK transformation to GET–WIN
GET–DPY get outer display
GET–WIN get containing window
SET–FONT set font
SET–COLOR set color
SET–CURSOR set mouse cursor
TXY! set tile offset
CLIP–RECT set clipping rectangle
GET–EVENT get event
HANDLE–EVENT handle events
SCHEDULE–EVENT schedule events
CHILD–MOVED distributes mouse moves
CLICK wait for mouse click
CLICK? query mouse click
MOVED? query mouse move
MOVED! set mouse as moved
SHOW–ME show object at (x,y)
SCROLL scroll to (x,y)
CLIPX horizontal clipping
CLIPY vertical clipping
GEOMETRY resize in object coordinates
>EXPOSED wait until visible

Figure 2: Display messages

3 NEWS 5

does all the rest itself, it shouldn’t have been too
difficult. Unfortunately, deadline pressure and
mismanagement at Microsoft efficiently pre-
vents a quality control that’s worth the name2.
Furthermore, X has 10 years advance of matu-
rity than Win32.

With one sentence: while you fight your own
bugs under X, you fight against bugs in the sys-
tem, and imprecise and partly incorrect docu-
mentation. Since I don’t use Windows much (ex-
cept at work, as expensive X Terminal), there is
no big pressure to work around the bugs.

The whole porting took about a month. This at
least shows that the concept of MINO� is pretty
portable. Smaller programs don’t pose too much
difficulties, more demanding like Theseus has
problems (crashes under Windows 95, and has
serious problems under NT). OpenGL-Widgets
don’t work at all, since Windows prevents
me drawing OpenGL operations into a bitmap
(though the documentation says it should work).

3.2 New Widgets: OpenGL Canvas

Apart from some small additions, there is now
an OpenGL widget (glcanvas). Similarly to the
canvas widget you can execute painting opera-
tions, in this case OpenGL operations.

OpenGL is a language to describe 3D ele-
ments, created from Silicon Graphics derived
from a formerly proprietary language (Iris GL).
Although Microsoft tried to invent their own
“standard” (Direct3D), OpenGL is widely ac-
cepted as cross-platform standard. Even some
Windows games use an OpenGL subset instead
of Direct3D, that is supported for the popularly
Voodoo 3D cards (GLIDE).

Both under Windows and under Linux,
OpenGL libraries are freely available (oglfix for
old Windows 95 versions, included in newer ver-
sions, and MESA as well for Linux and Win-
dows).

From a guiding example, I will show how you
program an OpenGL widget using MINO� (see
Figure 3).

2In fact there are only very few companies that can’t get
a demo running which doesn’t crash when given to the CEO.
Windows 98 is after Windows NT 4.0 the second Windows
personally blue screened by Bill Gates in public.

Figure 3: GL-Widget “gears”

3 NEWS 6

But first a look at the code. Since MINO�

doesn’t yet provide special comfort, I first define
a cylinder coordinate system:
: r,phi (r angle -- x y)

fsincos f>r fover f* fswap fr> f*
f>fs f>fs ;

OpenGL expects the parameter on the data
stack (C calling conventions), therefore f>fs
converts the values to “single float” (on the data
stack). I store the front view of a cogwheel’s
tooth in an array:
: array Create cells allot

DOES> swap cells + ;

$E array points

: >points (r0 r1 r2 angle --)
f>r
2 fpick f>fs 0 $0 points 2!
fover f>fs 0 $2 points 2!
fdup fr@ r,phi $4 points 2!
fr@ f2* r,phi $6 points 2!
fdup fr@ 3 fm* r,phi $8 points 2!
fr@ 4 fm* r,phi $A points 2!
fr> 4 fm* r,phi $C points 2! ;

As next step the whole tooth is created. First,
front and back surfaces are described as “trian-
gle fan”. OpenGL is a state machine, just like
Postscript you create paths, but 3D now. There-
fore OpenGL and Forth fit together quite well.
A triangle fan starts with one point, you de-
fine a second point, and from the third point,
each point describes a triangle consisting of the
starting point, the current point and the previ-
ous point. The shading model here is “flat”, thus
there are rough edges.
: tooth (teeth r0 r1 r2 rw --)

GL FLAT glShadeModel drop
f2/ f>fs >r pi fm/ f2/ >points r>
\ front and back side
#1 0 0 glNormal3f drop
GL TRIANGLE FAN glBegin drop

$0 $C DO
dup I points 2@
glVertex3f drop -2 +LOOP

glEnd drop fsneg
[!-1 f>fs] Literal 0 0

glNormal3f drop
GL TRIANGLE FAN glBegin drop

$E $0 DO dup I points 2@
glVertex3f drop 2 +LOOP

glEnd drop fsneg

I create the outside as “quad strip”. Here you
create rectangles using a zig zag pattern, going

from front to bag and left to right over the rect-
angles. Remember: all OpenGL surfaces must
be oriented clockwise.
\ outer side

GL QUADSTRIP glBegin drop
$C $2 DO

fsneg dup I points 2@
glVertex3f drop

fsneg dup I points 2@
glVertex3f drop

I 3 and 0= IF
0 #1 0

ELSE
0 I 2+ points 2@ fs>f
I points 2@ fs>f f-
fs>f fs>f f- f>fs f>fs swap

THEN
glNormal3f drop

2 +LOOP
glEnd drop

The inner side should look round and smooth,
and therefore the colors need interpolation. The
shading model therefore is “smooth”. I use a
quad strip here, too, but since there aren’t flat
planes, additional normal vectors are required.
These are valid for both left and right borders,
and point right into the center.
\ inner side

GL SMOOTH glShadeModel drop
GL QUADSTRIP glBegin drop fsneg

0 $0 points 2@ swap fsneg
swap fsneg glNormal3f drop
fsneg dup $0 points 2@

glVertex3f drop
fsneg dup $0 points 2@

glVertex3f drop
0 $C points 2@ swap fsneg
swap fsneg glNormal3f drop
fsneg dup $C points 2@

glVertex3f drop
fsneg dup $C points 2@

glVertex3f drop
glEnd 2drop ;

OpenGL doesn’t require to repeat complex
computations necessary for the creation of a
3D surface each time anew. There are “dis-
play lists”, and they remember coordinates quite
well. You can draw these lists with the current
coordinate transformations, and store them on
the display server (when OpenGL is used over
the net, i.e. with an X server with GLX exten-
sions). Just like a metafile for Windows or Ma-
cOS, you only change the drawing mode, and all
OpenGL instructions are compiled to that list.
: create-tooth (teeth r0 r1 r2 rw -- n)

1 glGenLists
GL COMPILE over glNewList drop

3 NEWS 7

swap tooth glEndList drop ;

I use such a tooth to create the complete cog-
wheel. The current transformation matrix ro-
tates by 360=n degrees, a tooth draws itself by
calling the display list, and rotation continues.
Transformation matrixes have their own stack,
and push/pop operations. I compile the whole
cogwheel into a display list, too.
: cogwheel (tooth teeth --)

glPushMatrix drop
0 ?DO

#1 0 0 !&360 i’ fm/
f>fs glRotatef drop
dup glCallList drop

LOOP drop

glPopMatrix drop ;

: create-cogwheel (list teeth -- cogwheel)
1 glGenLists
>r GL COMPILE r@ glNewList drop
cogwheel glEndList drop r> ;

Now we need just a few colors and the position
of the light source, then we are ready to start.
Create .pos !&5 f>fs , !&5 f>fs ,

!&10 f>fs , !0 f>fs ,
Create .red !&.8 f>fs , !&.1 f>fs ,

!&0 f>fs , !1 f>fs ,
Create .green !&0 f>fs , !&.8 f>fs ,

!&.2 f>fs , !1 f>fs ,
Create .blue !&.2 f>fs , !&.2 f>fs ,

!&1 f>fs , !1 f>fs ,

Create textures 0 , 0 , 0 ,

The picture should contain three cogwheels.
So first, we initialize OpenGL, and create the
three different cogwheels.
: create-gears (-- cogwheel0 cogwheel1
cogwheel2)

.pos GL POSITION GL LIGHT0
glLightfv drop

GL CULL FACE
GL LIGHTING
GL LIGHT0
GL DEPTHTEST
GL NORMALIZE
5 0 DO glEnable drop LOOP

&20 !&.2 !&.73 !&.87 !&.2
create-tooth &20 create-cogwheel

&10 !&.10 !&.33 !&.47 !&.4
create-tooth &10 create-cogwheel

&10 !&.26 !&.33 !&.47 !&.1
create-tooth &10 create-cogwheel ;

The cogwheels should rotate, depending on
the number of teeth, and time. Certainly inde-
pendent of the frame rate.
: rotation (teeth -- fn)

&86400 swap / timer@ * &360 um*
d>f !$.00000001 f* ;

Since the cogwheels are stored as list, with-
out color and position, they must be colored and
positioned.
: call-cogwheel (n r+ tx ty tz color --)

GL AMBIENTANDDIFFUSE GL FRONT
glMaterialfv drop
glPushMatrix drop
f>fs f>fs f>fs glTranslatef drop
>r #1 0 0 r> glRotatef drop
glCallList drop
glPopMatrix drop ;

The final drawing routine gets some parame-
ters: all those you can set with the sliders, the
display lists, and the glcanvas object. I set pro-
jection and drawing mode, clear the pixmap, and
perform all the rotations. Finally I draw the cog-
wheels, and that’s it.
: draw-cogwheel (o g0 g1 g2 alx aly alz pitch
bend roll zoom --)
f g0 g1 g2 alx aly alz alp alb alr zoom |

glcanvas with
h @ w @ 0 0 glViewport drop

GL PROJECTION glMatrixMode drop
glLoadIdentity drop

!&60 f>fd !&5 f>fd
w @ h @ >
IF

w @ s>f h @ fm/
!1 f>fd !-1 f>fd
fdup f>fd fnegate f>fd

ELSE
h @ s>f w @ fm/
fdup f>fd fnegate f>fd
!1 f>fd !-1 f>fd

THEN
glFrustum drop

GL MODELVIEW glMatrixMode drop
glLoadIdentity drop
zoom 100 + negate s>f
!0.08 f* f>fs 0 0 glTranslatef
drop
GL COLORBUFFERBIT
GL DEPTHBUFFERBIT
or glClear drop

0 0 #1 alx s>f f>fs glRotatef drop
0 #1 0 aly s>f f>fs glRotatef drop
#1 0 0 alz s>f f>fs glRotatef drop
0 0 #1 alp s>f f>fs glRotatef drop
0 #1 0 alb s>f f>fs glRotatef drop
#1 0 0 alr s>f f>fs glRotatef drop

!&9 -&5 rotation f+ f>fs >r
!-&9 -&5 rotation f+ f>fs >r
!0 &10 rotation f+ f>fs >r

3 NEWS 8

Figure 4: SQL query dialog

!-&.6 !-&.4 !0 g0 r>
.red call-cogwheel

!&.62 !-&.4 !0 g1 r>
.green call-cogwheel

!-&.6 !&.84 !0 g2 r>
.blue call-cogwheel

endwith g ;

3.2.1 Future

I’m not fully satisfied with the OpenGL inter-
face. An abstract interface, some sort of “turtle
graphics”, but 3D, is what I have in mind. Es-
pecially when using textures, automatisms are
useful. It should be possible to create 3D objects
and perform other operations aside from the dis-
play operations. Collision detection or inverse
kinematic comes in mind.

3.3 Data Bases: an SQL3 Interface

Data base interfaces are a very typical applica-
tion for GUI designers. Input form creation, and
queries require only some few GUI elements.
Since data bases depend very much on the cus-
tomer’s wishes, you must provide simple tools to
create input and query forms. Figure 4 shows a
very simple data base query.

Certainly I haven’t written a SQL data base.
There are quite a few SQL data bases for Linux,
commercials like Adabas-D, and recently an-
nounced, Informix, Oracly, Sybase, and rumored
DB/2. And free ones like mySQL, mSQL and
PostgreSQL. MINO� uses a SQL class to in-
terface the (unfortunately not standardized) ac-
cess to the data bases. I wrote that class using

3Structured Query Language

Figure 5: SQL input form

the PostgreSQL library, other libraries includ-
ing ODBC could be written to replace this class.

But let’s look at the details first. We need
a query function. The field db contains the
name of the data base, the field query the query
string. The results are presented in a viewport.
Since Theseus4 doesn’t provide names for view-
ports yet, but names it automatically, I help me
with an internal detail of Theseus, to get to the
viewport.
: do-query

db get database new >r
querys get r@ database with exec endwith
(vviewport-00) self
r@ database with entry-box endwith
(vviewport-00) with assign resized endwith
r> with dispose endwith ;

The query itself is quite simple. First, create
a connection to the data base. A data base ob-
ject holds the state of this connection. I send
the query string right to the data base. Then
I transform the result into a table created from
MINO� widgets, and put them into the view-
port. Finally, I close the connection to the data
base.

Now you must insert data into the data base.
Assume we have a table product , and must cre-
ate an input form. Figure5 shows such an input
form. Similar to the query form, we create the
input fields first, and then need a word, that per-
forms the insertion.
: do-insert

db get database new >r
s" max(id)" r@ database with select endwith
table get r@ database with from) endwith
0 0 r@ database with tuple@ s>number clear

endwith

4the GUI editor of MINO�

4 FUTURE 9

Figure 6: MIDI Player

table get r@ database with insert(endwith
drop 1+ r@ database with int, endwith
#name get r@ database with string, endwith
#version get r@ database with string,

endwith
#price get drop r@ database with int,

endwith
r@ database with) endwith
r> with dispose endwith ;

First, the user should not need to select the ID
of the entry. We ask the data base for the maxi-
mal ID. This number, incremented by one, is the
new ID. The data base object provides methods
that simplify the creation of a query string. We
use them here for both the SELECT query as for
the INSERT query.

Note that this is not a perfect transaction.
A multi-user data base might have two users
query for the max ID at the same time (return-
ing the same result), which would result in two
entries with the same ID. But proper data base
use is another topic.

3.4 MIDI Interface

Modern systems don’t just provide colorful sur-
faces, sound is also quite important. Writing a
simple application like a MIDI player with MI-
NOS is a matter of a few keystrokes (see Figure
6).

So we desing a dialog box with a text widget
and four buttons. We define two variables
midi-player ptr player
cell var midi-path

in the Variable section. Furthermore, we need
a word that creates the player, just in case it is
not there:
: ?player (--)

player self 0= IF
midi-player new bind player THEN

filename get player file ;

Furthermore, the player has to be destroyed,
when the dialog is closed:
: dispose (--)

midi-path @ IF midi-path [also memory]
HandleOff [previous] THEN

super dispose ;

So, let’s define the actions bound to the but-
tons:

First, we need a file to load from; that’s the
most complicated part.
ˆˆ S[filename assign >r 2dup midi-path r>
?player]S
screen self file-selector new >r
s" MIDI" s" " midi-path @
IF midi-path $@ ELSE S" *.mid" THEN
r> file-selector with assign
dpy xywh 2/ nip 1 swap resize map endwith

Then, we need a button to start playing:
?player player start

Further, a button to stop playing
?player player stop

And finally, a button to close the whole dialog
close

That all looks quite simple, and it is. You just
must call the dialog “midi ”, Theseus then in-
serts the loading functions for the MIDI player
class.

4 Future

MINO� now has a sufficient set of features.
Theseus stabilized lately, but still doesn’t sup-
port all of the features. It would be nice to create
3D objects more user-friendly (point&click or at
least import from other programs). Data base
input forms can be partly created automatically,
since you can ask the data base about the tables’
structure. On the other side, it is possible to cre-
ate tables and relations pointing and clicking.

But most important: MINO� needs documen-
tation, documentation, documentation.

I want to point out that MINO� is available
under the General Public License (GPL). Since
it is a library, and part of an incremental com-
piler, modifications (and applications are modi-
fications!) may only given away under GPL, or
as separate code (source only then). For those
who don’t like that, there is a commercial li-
cense, which includes printed documentation.
This will take some time, since the documenta-
tion isn’t written yet.

You can find MINO� on the web. Jens Wilke
donated space on his web server, the URL is
http://www.jwdt.com/˜paysan/bigforth.html

