
 Milendorf, M., CATCH and THROW

 CATCH and THROW
 Michael Milendorf, Sun Microsystems, Inc.

 Michael.Milendorf@Sun.Com

Abstract
The CATCH and THROW exception handling mechanism (non-local or multilevel exit) is one of

the most abstruse fundamental concepts to have been added to the Forth programming language as
originally defined by C. Moore. At the same time the idea behind, and implementation of this
mechanism is very elegant, and intrinsic to Forth. This mechanism is also easy to use if properly
understood. This paper describes the history behind the discovery of CATCH and THROW, their
implementation, syntax, semantics, and innovative methods to use them effectively in complex multi-
layered Forth systems such as OpenFirmware.

Acknowledgments

Special thanks go to William Mitch Bradley of FirmWorks for sharing the story of his
involvement in CATCH and THROW, and for allowing its inclusion in this papers. Also
thanks to Paul Thomas of Sun Microsystems for his feedback and interpretation of ANS Forth
definitions of ABORT and ABORT” and to Robert Houk of Sun Microsystems for thorough
technical review of the paper.

1 History

When Forth was invented, the handling of exceptions was out of the scope of the
programming language. The exception handling mechanism as defined by ANS Forth was
suggested by William Mitch Bradley in 1990. At that time Bradley led an OpenBoot firmware
development effort at Sun Microsystems, Inc. and also served as a vice chairman of the X3J14
ANS Forth Technical Committee.

Before he came up with the idea, Bradley studied all the other Forth exception handling
schemes that had been published at the time. He also studied schemes from several other
languages (C, Modula, Cedar, LISP, and PostScript). The other-language exception handling
was stylistically consistent with those languages. For example, Cedar's exception handling was
tied in with the language syntax, and required a fair amount of compiler support, while C's
setjmp()/longjmp() required no additional support from the compiler from a syntax point of
view, but depended on the linker to resolve the jump buffer address, which was effectively a
global variable. Both of these were consistent with the overall flavor of those languages.

 Milendorf, M., CATCH and THROW

Bradley wrote, that it finally occurred to him that the problem with all of the other Forth
exception-handling schemes was, that they weren't very Forth-like. They tended to depend on
some combination of syntactic elements (prefix operators, defining words, built-in control
structures) or data structures. He realized that the ideal solution would be to build the
mechanism around an exposed primitive that was basically just an ordinary non-immediate,
non-defining, stack-based Forth word.

Bradley well remembered that the place where the concept finally crystallized in his mind
was the bathtub in a hotel room. It was on the morning of an ANS Forth technical committee
meeting that was being held at the NASA Goddard facility at College Park, Maryland in 1990.
Later that day Bradley broached the subject of exception handling, which was one of the
committee's sore spots at the time. Everybody knew that the standard needed to address the
issue, but nobody really liked any specific proposal well enough to get behind it and push. The
problem with complicated schemes, which always surfaces in committee discussion, was that
they tend to have problematic interactions with other aspects of Forth. In such cases, the
discussions tend to get off the track and eventually stall.

 Later on Bradley worked out the details of the implementation and was gratified at how
simple it turned out. He started using it in various places in the OpenBoot source base, and
found out through experience that it worked really well. He was especially pleased at how
flexible and scalable the CATCH and THROW scheme turned out to be, but he was pretty
much expecting it to turn out that way, because that is the key to Forth - avoiding syntactic
complexity results in maximum flexibility. After the positive experiences using CATCH and
THROW in OpenBoot, which is a large wide-ranging application that must be reliable, Bradley
proposed his CATCH and THROW model to the ANS Forth committee. As he recalls, it was
accepted fairly easily, as such things go, with less that the usual amount of bickering, wailing,
and gnashing of teeth. About the only change to Bradley original scheme that they made in the
committee was to add the 0 THROW is a noop stipulation. That was done when the committee
considered the use of THROW after words that return an ior (implementation-defined I/O
result code). Phrases like OPEN-FILE THROW are very satisfying. Quite a while later, the
committee finally got around to assigning some specific throw values for standard error
conditions.

Bradley borrowed the names CATCH and THROW from LISP, which is the language
whose exception handling is the most similar to the ANS Forth CATCH and THROW. LISP's
catch and throw are tagged, which means that if you say (throw foo), it will only trigger a
catch that specifies the same tag foo. Bradley contemplated doing something like this with
CATCH and THROW in Forth, in which a given CATCH would only respond to particular
throw values, but he decided against it. He wrote some example code sequences using the
different semantics, and found that the “catch everything and re-throw if needed” semantics
yielded cleaner code in nearly every case, especially in conjunction with CASE. Since then,
CATCH and THROW have been continued to be extensively used across OpenBoot source
base. OpenBoot uses the same original definitions of CATCH and THROW as Bradley wrote in
1990. CATCH and THROW are also standard FCodes. These FCodes are being increasingly
used to code firmware diagnostic solutions for I/O devices and FCode drivers for Sun
Microsystems platforms.

 Milendorf, M., CATCH and THROW

2 Syntax and Semantics

In essence, THROW is an abort (multilevel exit) and CATCH is an “abort-proof” version of
EXECUTE. If a word is executed with CATCH, and a THROW occurs during the execution of
that word, the return stack is unwound, the data stack is cleaned up, and controls returns to
the CATCH point. If CATCH had not been used, the THROW would have unwound all the
way to the top level, and the program would have been blown away without getting a chance
to participate in the recovery process. ANS Forth presents CATCH and THROW as a part of
THE OPTIONAL EXCEPTION WORD SET:

9.6.1.0875 CATCH (i*x xt -- j*x 0 | i*x n)

Casual definition: Execute command indicated by xt. Return throw result n.

ANS Forth: Push an exception frame on the exception stack and then execute the execution token
xt (as with EXECUTE) in such a way that control can be transferred to a point just after CATCH if
THROW is executed during the execution of xt.

9.6.1.2275 THROW (k*x n -- k*x | i*x n)

Casual definition: Transfer back to CATCH routine if return code n is non-zero.

ANS Forth definition: If any bits of n are non-zero, pop the topmost exception frame from the
exception stack, along with everything on the return stack above that frame. Then restore the input
source specification in use before the corresponding CATCH and adjust the depths of all stacks defined
by the standard so that they are the same as the depths saved in the exception frame (i is the same
number as the i in the input arguments to the corresponding CATCH), put n on top of the data stack,
and transfer control to a point just after the CATCH that pushed that exception frame. If the top of the
stack is non-zero and there is no exception frame on the exception stack, the behavior is as follows: If n
is minus-one (-1), perform the function of ABORT. If n is minus-two (-2), perform the function of
ABORT”. Otherwise the system may display an implementation-dependent message giving information
about the condition associated with the throw code n. Subsequently the system shall perform the
function of ABORT.

3 Implementation of CATCH and THROW

Bradley’s implementation of CATCH and THROW is very simple when understood.

CATCH saves the data stack pointer, the address of the nearest enclosing other CATCH
frame on the return stack, and saves the address of the return stack frame it just created in the
global variable handler. It then executes the word denoted by it’s execution token argument. If
that word completes normally (without THROWing), control returns to CATCH via the
normal Forth unnesting mechanism, CATCH removes the stuff that it put on the return stack,
restores the handler variable to its previous contents, pushes a zero on the data stack, and
returns to its caller.

If, on the other hand, THROW is executed (with a non-zero argument), THROW locates
the nearest enclosing CATCH frame (whose address is in handler), cleans off the return stack
down to and including that CATCH frame, restores the data stack pointer to the value saved in
that frame, pushes the throw value on the stack, and returns to CATCH’s caller.

 Milendorf, M., CATCH and THROW

When CATCH returns zero (meaning that 0 THROW was executed, or that no THROW
was executed at all), the state of the stack underneath that zero is exactly as it would have been
had CATCH’s argument been executed with EXECUTE. When CATCH returns a non-zero
value (meaning that THROW was executed with a non-zero value), the depth of the stack, not
counting the throw value itself, is the same as it was just before CATCH’s argument word was
executed. It should be emphasized that it is only the depth of the stack that is preserved, not
the contents of the stack (more literally, the data stack pointer itself is “restored” without
regard to the contents of the stack).

While ANS Forth doesn’t require use of the return stack for implementation of CATCH
and THROW, the use of the return stack comes naturally and implemented in most systems.
The suggested implementation of CATH and THROW was originally written by Mitch Bradley
and currently used in all FirmWorks’ OpenFirmware and Sun Microsystems’ OpenBoot
systems. The implementation uses the set of non-standard words described below. These
words or their equivalents are available in many systems:

sp@ (-- addr) returns the address corresponding to the top of data stack.
rp@ (-- addr) returns the address corresponding to the top of return stack.
sp! (addr --) sets the stack pointer to addr , thus restoring the stack depth to
 the same depth that existed just before addr was acquired by
 executing sp@.
rp! (addr --) sets the return stack pointer to addr. thus restoring the return
 stack depth to the same depth that existed just before addr was
 acquired by executing rp@.

 variable handler \ Most recent exception handler

: CATCH (xt -- exception# | 0) \ Return address is already on the stack
 sp@ >r (xt) \ Save data stack pointer
 handler @ >r (xt) \ Save previous handler
 rp@ handler ! (xt) \ Set current handler to this one
 execute () \ Execute the word passed in on the stack
 r> handler ! () \ Restore previous handler
 r> drop () \ Discard saved stack pointer
 0 (0) \ Signify normal completion
;

: THROW (??? exception# -- ??? exception#) \ Returns in saved context
 dup 0= if drop exit then \ Don't throw 0
 handler @ rp! (exc#) \ Return to saved return stack context
 r> handler ! (exc#) \ Restore previous handler
 (exc#) \ Remember exc# on return stack
 (exc#) \ before changing data stack pointer
 r> swap >r (saved-sp) \ exc# is on return stack
 sp! drop r> (exc#) \ Change stack pointer
 \ This return will return to the caller of CATCH, because the return
 \ stack has been restored to the state that existed when CATCH began
 \ execution.
;

 Milendorf, M., CATCH and THROW

4 Throw Values

Throw values must only be selected from ranges as defined by ANS Forth to avoid
conflicts between the Forth system and application programs. Throw values {-255 ... -1} shall be
used only as assigned by ANS Forth. The values {-4095 ... -256} shall be used only as assigned
by a system. Application programs shall not define values for use with THROW in the range
{-4095 ... -1}. ANS Forth provides (Table 9.2, page 71) throw values in the range {-58 ... -1}
assigned to different error or exception events (-1 is reserved to the ABORT function, -2 is
reserved to ABORT”, -3 to stack overflow, -4 to stack underflow, etc.).

5 ABORT and ABORT”

ABORT and ABORT” are words which existed in the Forth programming language before
the CATCH and THROW mechanism was discovered in 1990. ABORT can be casually
described as a multilevel exit, while ABORT” is a multilevel exit with an associated message.
The syntax and semantics for those ANS Forth CORE words are defined as:

6.1.0670 ABORT (i*x --) (R: j*x --)

ANS Forth: Empty the data stack and perform the function of QUIT, which includes emptying the
return stack, without displaying a message.

6.1.0680 ABORT” (i*x flag -- | i*x) (R: j*x -- |j*x) Compilation: (“ ccc” --)

ANS Forth: Remove flag from the stack. If any bit of flag is non-zero, display ccc string and
perform an implementation-defined abort sequence that includes the function of ABORT.

In addition, ANS Forth defines two other versions of ABORT and ABORT” for systems
who choose to include the CATCH and THROW functions in their implementation. Those
“more powerful” versions of ABORT and ABORT” are presented as a part of the OPTIONAL
EXCEPTION WORDS SET:

9.6.2.0670 ABORT (i*x --) (R: j*x --)

ANS Forth: Extend the semantics of 6.1.0670 ABORT to be: Perform the function of -1 THROW.

We must admit, that ANS Forth is not being very clear in definition of 9.6.2.0670 ABORT.
What is really meant is that 9.6.2.0670 ABORT replaces, not extends the semantics of 6.1.0670
ABORT to -1 THROW. ANS Forth defines 9.6.2.0670 ABORT to simplify error recovery. Using
CATCH and THROW allows the program to make more intelligent decisions as to how to
proceed when an error is encountered. It also allows different behaviors depending on whether
or not the ABORT has a CATCHer.

9.6.2.0680 ABORT” (i*x flag -- | i*x) (R: j*x -- |j*x) Compilation: (“ ccc” --)

ANS Forth: Remove flag from the stack. If any bit of flag is not zero, perform the function of -2
THROW, displaying ccc string if there is no exception frame on the exception stack.

ANS Forth defines 9.6.2.0680 ABORT” because programmers want to use ABORT” but do
not always want the text to be displayed, especially for embedded applications where there is
not always a display present. For debugging or larger systems, the message could come out. Or
the message could be saved to a log. Or it could be displayed at a later time. Or it could be

 Milendorf, M., CATCH and THROW

translated into another language and then displayed. The ANS Forth committee decided that
using CATCH and THROW would allow intervention in the display of the message, and liked
the idea.

 In regards to the 9.6.2.0680 ABORT” function, three distinct behaviors of the function
could be observed, depending on the implementation of ABORT” itself and on the CATCHer:
(1) ABORT” displays the text first, then executes -2 THROW; (2) ABORT” saves the message
in the buffer, then executes -2 THROW; CATCHer displays the text; (3) ABORT” saves the
message in the buffer, then executes -2 THROW; CATCHer doesn’t display the text.

6 Effective use of CATCH and THROW in a program

As was mentioned earlier, Bradley contemplated making CATCH only respond to
particular throw values, but he decided against it. He found that the “catch everything and re-
throw if needed” semantics yielded cleaner code in nearly every case, especially in conjunction
with the CASE statement. These semantics must be clearly understood. Remember that
CATCH is always catching all THROWs, initiated by an application program as well as by the
Forth system. Therefore, catching and not re-throwing a “system” throw value may alter the
intended execution flow of a Forth system, in case of a failure or exception. In addition,
interception of “system” THROWs (or ABORT”s) will make some Forth systems not display
an intended error message:

 : foo (--) ... 10 THROW ; \ Somewhere in the application
 [‘] foo CATCH ?dup if ... then \ “sloppy” CATCHer

While this example may look correct, in reality it is not a foolproof coding. The assumption
is being made that the only THROW which will be CATCHed is the one originating in the foo
definition, and throwing value 10. With this assumption, the program just checks if the throw
value is non-zero, and assumes that if it’s non-zero, it is the 10 value thrown from within foo.
Wrong! What if, during execution of foo, the Forth system generates a “system” throw with
one of “reserved” throw codes? In such case, a “system” THROW initiated by the system (for
example, a stack overflow or -3 throw code) will be intercepted (CATCHed) in the application
program, and the program execution will continue from the point of CATCH (with a possibly
corrupted data stack), instead of exiting to the top level and printing an error message, as was
originally meant by the Forth system executing a “system” THROW.

Taking this into consideration, the correct solution would be to check the throw value
CATCHed explicitly against every throw value known to the application program. Then re-
THROW (propagate) any unknown to the application program (system) codes, to let the Forth
system take proper care of any “system” throws at the top level:

 [‘] foo CATCH dup 10 = if (10|n) \ check the throw code = 10
 ... (10) \ known code, proceed
 else (n) \ otherwise

THROW () \ re-THROW unknow “system” code;
 then \ 0 THROW executes noop

If more than one error code must be handled, the best way is to use the CASE statement in
the following way:

 Milendorf, M., CATCH and THROW

 [‘] foo CATCH
 case
 10 of endof \ respond to THROW CODE = 10
 20 of endof \ respond to THROW CODE = 20
 40 of endof \ respond to THROW CODE = 40
 dup THROW \ re-THROW unknown “system” ;
 endcase \ 0 THROW executes noop

With this suggested programming technique, the use of CATCH in the application
program will never affect the intended behavior of the Forth system, in case a “system”
THROW (or ABORT) is executed.

Another requirement for the effective use of CATCH and THROW is to never use, in an
application program, throw values reserved for system use. In most cases an application
program shall use only small positive numbers for throw values, exactly as specified by ANS
Forth.

An interesting variation for using THROW is to employ a memory address as a throw
value. This memory address may contain a packed string (text message) corresponding to the
error, triggered by the THROW:

ok : foo (--) ... p” XXX” THROW ;
ok [‘] foo CATCH (paddr) .error
ok XXX

In this example, the throw value returned by CATCH (paddr) is the address of the packed
string, containing the message “XXX”. The .error word determines if the throw value could be
interpreted as a valid memory address, and executes COUNT TYPE which effectively prints
the XXX message on the console.

A number of different types of throw values can be used in a Forth program: (1) positive
error codes; (2) positive error codes to be selected by the CASE statement; (3) small positive
contiguous number range used as an idex in a dispatch (or message) table; (4) memory
addresses, containing packed strings of error messages, which can be displayed by a
CATCHer; (5) xt or any other memory addresses.

Another observation is that because CATCH and THROW adjust both return and data
stacks in most systems, it is not necessary to clean data and return stacks prior to execution of
THROW:

 ok : foo (--) 1 >r 2 >r 3 4 5 THROW ; ()
ok [‘] foo CATCH (5)

It’s often an assumption that the CATCH and THROW mechanism could only be used for
error handling cases. While surely error handling is the primary application of the exception
handling mechanism, CATCH and THROW could be also used for effective programming
solutions, when multilevel exit makes programs simpler.

 Milendorf, M., CATCH and THROW

7 Summary

While numerous exception handling mechanisms were suggested before and after
discovery of CATCH and THROW, it is our belief that this mechanism is of a fundamental
nature to the Forth engine. CATCH and THROW have proven effective in a variety of Forth
systems and applications (such as OpenFirmware and OpenBoot and FCode drivers). It is
important to follow ANS Forth when picking throw values in a program, and code every
CATCH statement properly, remembering that “system” throws along with application
program throws may be CATCHed by almost any CATCH in the program.

In regards to aborting a program, ANS Forth defines two sets of ABORT and ABORT”
functions: One is a part of THE CORE WORD SET (which doesn’t use THROW) and another
one is a part of THE OPTIONAL EXCEPTION WORD SET (which does use THROW). The last
set allow powerful and flexible error handing by using CATCH to control the behavior of
ABORT and ABORT”.

8 References

[1] ANSI X3.215-1994 ANS for Information Systems - Programming Languages - Forth

[2] IEEE Standard 1275-1994; Standard for Boot Firmware: Core Requirements & Practices

[3] Gassanenko, M.L., Extension of the Exception Handling Mechanism, Euroforth95

[4] Rodriguez, B.J., A Forth Extension Handler, SIGForth, Vol. 1, Summer’89, p. 11-13

[5] Wejgaard, W., TRY: A Simple Exception Handler, EuroFORML ‘91, p.4

[6] Clifton, G., Terry, R., Exception Handling in Forth, Rochester Forth Conference ‘85

[7] Woehr, J., Forth: The New Model, M&T Books, 1992

OpenBoot is a registered trademark of Sun Microsystems, Inc.

OpenFirmware is a registered trademark of Firmworks, Inc.

