
Certification of High Integrity Software
Authors:

Paul E. Bennett
Transport Control Technology Ltd.

email: peb@transcontech.co.uk

Malcolm Bugler
 Malvatronics Ltd.

email: MalcolmB@compuserve.com

Abstract:
As software is employed in more and more applications for which Safety and/or security are
major concerns, there is a growing demand by Notified and Regulatory Bodies that such
software is certified for compliance with requirements, legislation, and standards. That
certification can easily be applied to Forth source in a manner that will stand the scrutiny
of close inspection and audit is to the benefit of the language.

This paper describes the method of applying certification to Forth source code and
describes some of the lessons learnt from its application to Forth software in a medical "life
support" product.

Introduction
Certification of Software is being demanded with increasing frequency by  regulatory bodies and
those customers who are seeking assurance of the continued correct operation of their mission
critical systems. Applying such certification is by no means easy for the vast majority of software as
the compilers used are far too complex to be fully verified for correct production of code. Only in
Assembler, Forth and similar simply structured compilers can such a feat be achieved easily.

Experience
The authors recently undertook the task of certifying a medical life support product [EF97MB] to
meet the CE requirements for programmable medical systems. The software was written in FORTH
and therefore lent itself readily to the certification approach outlined in this paper. The learning
experience from performing the certification was very valuable and several interesting issues came to
light during the process.

The Development Environment
The software development was performed as a sub-contract with one programmer working remote
from the customers site, and making weekly visits to the clients premises. This environment was very
productive and allowed close liaison between client and sub-contractor. This level of interaction
proved to be essential due to the lack of a detailed specification (covered below). FORTH allowed
rapid coding and testing of modules, and also provided a very portable development ‘workbench’,
which was brought to the clients premises on each weekly visit. The client, who had no previous
experience of software development, was put at ease by the relative simplicity of the development
environment.



Specifications
The major problem found here was the client did not really produce an adequate specification for the
system They had been used to the design of purely electromechanical devices with no
programmability, these being very simple to specify. This lack of a specification for the software
resulted in difficulty in communicating requirements and in proving the system performance. The
major learning point here is that it cost the client at least 50% more in software engineering because
the specification was inadequate. It also resulted in a great deal of frustration for the sub-contractor
who was designing and coding the software as many sections of code had to be re-worked. One
further area that was not sufficiently covered was that of risk management. Almost all regulatory
bodies prefer that software is designed and documented from the risk control viewpoint. A risk
management worksheet is therefore a necessary adjunct to the specification process.

Coding Standards
Another area which caused problems was that there were no laid down coding standards at the start
of the project. This resulted in several non-optimum practices being adopted during software
development, some of which were highlighted in the later verification phase, as follows:-

a.  A great deal of variables and constants were used which is not the best practice in FORTH based
systems

b.  Many definitions were greater than 16 lines of code. FORTH would usually be more factored

c.  Insufficient documentation of stack parameters and very terse glossary texts.

d.  A large number of ‘magic numbers’ used without sufficient descriptive explanation.

e.  Cross-reliance’s of modules weakening coherence and increasing coupling.

Specification Reviews
As the original specifications were inadequate, changes in the requirements were done ‘on the fly’
with no real formal reviews. This again resulted in more re-work when the real requirements were
finally made clear.

Verification & Validation
This part of the process did run very smoothly with no real problems except that with very loose
specifications, it took longer than really necessary to define and execute a final system test. Several
design problems did become apparent during this phase which required some remedial work, but for
the most part the code was proved to be very resilient. Some of the  issues raised are detailed below:-

a.  Year 2000 issues and calculation of leap years.

b.  Pointer ranges unchecked.

c.  Documentation errors in stack comments and glossary texts.

d.  Intricate dependencies of modules requiring almost complete compilation of the source.

e.  Three serious software problems.

3rd Party Software Issues
One issue was that the FORTH low level and nucleus code supplied by the vendor was un-certified
and did require certifying as part of the overall process. This increased the V&V time and resource
required, but of course, now certified, it can be treated as a validated programming surface and used
in other products with confidence. However, to have code supplied pre-certified would be
considered a great advantage, especially when porting code across different processor platforms.



Revision Control
Although the client had a very well controlled and detailed revision control system for drawings and
other documentation to ISO9001, there was no dedicated system for the control of software. As a
result, the sub-contractor actually performed the revision control. This was fine up to a point, but
effectively shielded the client from needing to address this issue until the regulatory requirements of
CE forced them to do so. Again, if this had been planned for at the outset, much of the panic would
have been avoided.

Documentation
Here it was a story of too much, too late. The entire issue was not thought about until right at the end
of the project, which resulted in a 2-3 month extension in the time scale. This was primarily caused
by the client not knowing the real requirements and not seeking help on them early enough in the
process. This made the last few weeks of the project very hectic and rushed in an attempt to ‘just get
it through’ CE.

The Lessons Learnt
A number of lessons arose out of this project. They are listed below:-

1.  Ensure a complete and signed off specification exists for the project before any design work is
commenced. If you are the software sub-contractor, do not even quote for a project without having
one unless production of a specification is a part of the project itself. Always review the
specifications and obtain a contractually binding agreement between client and supplier.

2.  Produce a risk management worksheet which lists all the identified hazards and details how these
hazards have been mitigated in the design cross referencing this to the software documentation.

3.  Before starting software design and coding, define and agree the coding standards to be used. These
could be based on an existing standard, (MPE, TCT, etc) or be ‘home grown’.

4.  Specification and code reviews should be mandatory to ensure all who have input to a product
design  process are consulted and to make specifications as complete as possible.

5.  Verification and Validation should be applied formally and a written report produced which is acted
on and reviewed. Reviews should be performed at the module level as soon as each module
completes coding..

6.  All 3rd Party Software should be fully verified and validated unless supplied in that state by the
vendor. Vendor applied production and certification processes should be audited as part of the
ISO9001 based assurance evaluations.

7.  An integrated software revision control system is not essential if you are attempting to control the
production,  issue and maintenance of mission critical software, however it does make the task much
easier.

8.  Start the documentation (and it’s control record) when you start the project. This will mean that you
can submit completed documentation to a regulatory body as soon as your testing is complete,
leading to an improved time to market and of course profit!

Doing the task right.

The Development Environment - ISO9000, TickIT, Def-Std 00-56
All software development requires some form of systematic process which is well defined and
controlled. Examples of such processes are ISO9000, TickIT and Def-Std 00-56. Although these
themselves provide good guidance, they are not essential. Many organisations posses excellent
processes even though they have not proceeded with full certification to a ‘standard’. The basic
essentials in a development process are as follows (see also [EF97PEB] and [SSS98PEB]):-

• Written procedures on how to perform the process
• Documentation standards on how information should be presented.
• Someone responsible for it being done.
• Visibility and support at senior management level.
• Some form of audit to verify the process continues to produce the desired results.
• Control of the documentation.



Specification of Requirements - Granularity
Every system or product needs a specification which completely describes its form, function,
integrity and environment. Major issues with specifications are granularity, technical content and
relevance. It is far better to break a complex project down into smaller, modular specifications than
to have to deal with a single ‘tome’. In this way a ‘complete’ specification would comprise separate
documents for such as System Requirements, Risk Assessment, System Architecture Description,
Software Requirements, Interface Design, Electronic Hardware and Test and Validation, although
this is not intended as an exhaustive list.

Traceability Issues
It is all very well detailing the requirements in the various specifications, but it has to be proven that
the requirements have been implemented correctly. In order to verify this a cross reference between
the implementation and the requirement it satisfies is required. This is either in the form of a table
(traceability matrix) or in document references and/or virtual links (hyperlinks). These cross
references would need to be checked during each of the review stages.

Review of Specification
One other vital requirement for a specification is that it is reviewed and agreed by those who have
interest in the product or system. Reviews should be formal and cover the following three aspects:-

• Completeness In that the product or system is fully described by the specification,
specifically its form, function, integrity and environment.

• Correctness That the original requirements are accurately represented at each
level in the specification to perform the desired functionality.

• Intention The original intention of the system and only that is represented in
the specification without other requirements being added or side
effects caused.

It is also important to review all levels of the specification as a separate activity. This is especially so
where different technologies are dealt with by separate documents.

Review of Code
So we now have code that has been written to meet the specification at all levels. Given a well
controlled development environment, the code should be accurate, well documented and laid out.
However, it requires further effort to ensure it meets the full system requirements. Consideration here
should be given to designing and validating to the component level. An example would be to take the
FORTH system itself as a core module and verify it as a programming surface compliant with
ISO/IEC 15145 [ISOstd1]. In this way when your application is built on top of a certified FORTH
kernel it would behave in exactly the same way regardless of underlying processor or technology.
This can be applied to every level in a system from device driver to icon!

In performing the review, the following tasks would be undertaken:-

• Comparison to Specification Ensuring that the code under review deals with the subject of
the specification from which it was created.

• Compliance of Specified Intent
- Code Inspection

Confirmation by inspection that the code under review calls
on only those elements that will support the intended
functionality described by the specification.

• Compliance of Execution
      - Function Test

Validation of the intentional behaviour of the function under
review.

• Behaviour in face of adversity
      - Limits Test

Verification that the code’s functional integrity is not
compromised by out of bounds values or unintentional stimuli.



Verification and Validation
A certain amount of confusion has often surrounded these two terms. We will endeavour to remove
some of this confusion.

• Verification An Inspection of the Code Structure, Layout,  Commenting, Stack Item Consistency,
Data Typing adherence (ie. not using @ on byte sized data items), Naming
Conventions followed, Adherence to Coding Standards, Initialisation of Data
Structures and Conformance to Specification.

• Validation A confirmation by test that operation is as described and expected,; that out of limit
conditions are either handled or ignored as appropriate; does not cause adverse
operation in the face of adverse stimuli (ie: unauthorised writing over data areas for
which the component has no reference).

Certification and Documentation.
In the process so far, the specification documents should fully define the “requirements”,
architecture, functionality, detailed design, interfaces etc. to the level that well laid out and formatted
source code would be the final component of the full system description. Validation and verification
of the resultant source code would then almost guarantee adherence to many recognised certification
standards [ENMedi1], [IECstd1], [Defstd].

More and more regulatory authorities are insisting on risk assessments being performed as an
integral part of the specification process. Specifications, themselves, are more and more structured in
terms of risk management than system functionality. A risk management work-sheet may almost be
the second point after a features list for a product or system. It is probably better to consider the
product a hazard until proved otherwise.

Creating the Certification
Certificate Creation is simplicity itself. Using the natural structure of a FORTH definition, and the
aspects included in the coding standard, a paper certificate can be created in a standard form. Space
is allowed on the form for the inspection and testing personnel (preferably not the author) to sign
acceptance of the code or enter comments about problems or potential problems (a form template is
included in the appendix to this paper). For the software author, certification is just a form filling
exercise.

The Form’s Anatomy
The anatomy of the form is listed below by the title in the box.

• Original Design The author of this particular word or module

• Organisation Identification of the organisation or company to which the author
belongs.

• Issue The issue identification of the word or module. This should be
incremented with each change made to the source code. A history
should be maintained in addition to this information.

• Date Date of source code submission for certification.

• Sht  of In multiple word modules this helps keep all document pages in
order and easier to find. A word, however should only occupy one
sheet.

• Word/Module
Requirements
Description
(concise)

Essentially the glossary entry for the word/module.

• Input Stack(s) A list of the input parameters for the word/module passed on the
parameter, return or any other stacks.



• Output Stack(s) A list of output parameters for the word/module passed on the
parameter, return or any other stacks.

• Word/Module
Definition

The source code of the word or module.

• Code Check The signature of the person conducting the static code inspection
who signs when he is satisfied that the code performs the action
described and declared in the Requirements Description box.

• Function Test The signature of the person conducting the functional performance
testing who signs when he is satisfied that the code performs the
action described and declared in the Requirements Description box.

• Limits Test The signature of the person conducting the adverse stimuli testing
who signs when he is satisfied that the code continues performs the
action described and declared in the Requirements Description box
and sensibly handles stimuli/values outside the range declared in the
Requirements Description box.

• Test Comments Any comments or observations by the inspection or testing team
relating to the code described above.

Whilst the form is useful for certification effort it does pose some management problems. It takes
time to fill out ready for the testing effort (not a great deal of time for the author of a single word but
over many words it adds up). It is therefore evident that an automation tool is required which can
produce the form in a suitable format for direct printing from the electronically held source code. For
this reason certain constructs were included in the coding standards [Fcoding] which aim to assist in
this production.

Programming Surfaces
Now we have a method of certifying the software, it is important to be able apply this logically to
any project or system. The principal outlined here is that of programming surfaces. A programming
surface is the interface to a software kernel or operating system that has a documented set of
functions that provide services for an application. An example of a programming surface is the
MSDOS operating system.

In order to be able to fully certify an application, then it is first required to certify the programming
surface. For example, any application built on an MSDOS platform that requires certification, will
first require that the MSDOS system be certified. Obviously, this would only be required to be done
once, with future applications only requiring their own code to be certified.

With a FORTH system, this means that a cross-compiler and it’s kernel would only need certifying
once, and then could be used as the platform for many products, only the new application code
requiring certification after that. Obviously, if any of the core cross compiler or kernel code is
modified in the future, the changed sections would need re-verification.

In this way, an application could be moved readily from one hardware platform to another, as long as
the two programming surfaces provided the same functions and were fully certified. The diagram in
Figure 1 details this approach.



Figure 1 - Programming Surfaces

 In the example in figure 1 there are 7 programming surfaces, the low level surfaces the FORTH
systems are built on may well be different, although the higher level surface is identical for both
systems as the application can sit on either of them.

Pre-Certification of Programming Surfaces
Due to the increased requirements for certification for regulatory approvals, the authors can foresee
an increasing need for ensuring that software components - such as cross-compiler cores and kernels,
are supplied as fully certified ‘objects’. This would allow application builders to concentrate on
certifying their own code without the additional effort and cost of certifying the compiler and kernel.

For cross-compilers and kernels it may be possible to provide a simpler certification process based
on testing the functions, presented at the programming surfaces, of the kernel words and not doing a
full code inspection of the compiler code. Such a technique could cite that the high level FORTH
code fully complies with the specified standard behaviour identical for every kernel, and the
underlying hidden layers remain  uncertified. Such a technique would be quite straightforward.

Summary
This paper has, through the example of a particular project in which the certification techniques were
applied (albeit late in the project), shown that certification for a Forth based system, although not
trivial, is relatively easy. It has also described the considerations needed at all levels of an
organisation involved in producing mission critical systems (especially safety critical ones). The
authors have especially highlighted the need for good specifications and early generation of
documentation for systems of this genre. They have also indicated the need for a risk-assessment
based approach to specification and system development.

That Forth is a system development environment for which certification is a releatively easy task to
accomplish (at almost at any stage) does not mean that the systematic issues can be forgotten until
the last minute of a project. Indeed, the authors highly recommend the earliest possible efforts in this
respect for any project. With an adequate means of software module identification, description and
certification to hand, the component library can become a more imminent reality.

Application

FORTH
system

FORTH
system

MSDOS Embedded
Drivers

PC Based System Embedded System

Programming Surfaces



Bibliographic References

[EF97MB] “Forth in Critical Care Environments” by Malcolm Bugler, Malvatronics Ltd., Proceedings of EuroForth 97
(Oxford).

[EF97PEB] “Forth in Safety Critical Systems Configuration and Certification” by Paul E Bennett Transport Control
Technology Ltd., Proceedings of EuroForth 97 (Oxford).

SSS98PEB “Small Modules as Configuration Items in Certified Safety Critical Systems” by Paul E. Bennett, Transport
Control technology Ltd. in “Industrial Perspectives of Safety-critical Systems; Proceedings of the Sixth Safety-
critical Systems Symposium, Birmingham 1998” published by Springer-Verlag. ISBN 3-540-76189-6.

[ISOstd1] ISO/IEC 15145:1997 “Information technology - Programming languages - Forth” published by International
Standards Organisation. (reference number  ISO/IEC 15145:1997(E))

[ENMedi1] EN550601-1-4 “Programmable Medical Devices”

[IECstd11] IEC61508 (formerly IEC1508) “Programmable Electronic Systems; Functional Safety”

[DefStd] Def-Std 00-56 “Hazard Analysis and Safety Classification of the Computer and Programmable Electronic
Elements of Defence Equipment.

[Fcoding] Forth Coding Standards by Paul E. Bennett. These coding standards have been given to the public domain and
are freely available at http://www.forth.org/.

Note: The following page contains a blank form that was used for the Forth based software certification
described in this paper. Two document pages were added as frontispeices for a group of such forms,
with each group of forms fully covering a clearly delineated software module (usually a source file).



Code Description
& Verification4th

Original Design

Organisation

Date

Sht   of

Code Issue

Word/Module Requirements Description (Concise Glossary Entry)

Input Stack(s) Output Stack(s)

Word/Module Definition

Code Inspection: Function Test: Limits Test:

Comments:


