Static Stack Effect Analysis

Ulrich Hoffmann

Institut fiir Informatik und Praktische Mathematik
der Christian-Albrechts-Universitat zu Kiel

Preuflerstrafie 1-9
24105 Kiel

Germany

email: uho@informatik.uni-kiel.de

October 1, 1993

Abstract

It is best to develop Forth programs interactively. Its rigorose in-
cremental bottom up strategy leads to rebust and reliable applications.

Many remaining Forth program errors result from improper stack
usage, i. e. mismatch of intended and actual stack behaviour of words.
Checking consistency of stack comments and actual stack effects pro-
vides a way to further ensure application quality.

Static stack effect analysis determines the actual runtime stack ef-
fect of a word at compile time. Starting from a root set of words with
known stack effects, the presented algorithm calculates stack effects of
newly defined words by using inference rules. The described analysis
focuses only on stack depths and not on types of stack items. It is thus
only a restricted stack effect analysis but nevertheless has proven to
be powerful enough to detect many of the remaining program errors.

The current implementation uses the ANS-Forth core word set as
its root set and has the ability to add additional words by simply
declaring their stack effects.

Static Stack Effect Analysis U. Hoffmann euroFORTH’93 2

1 Introduction

Forth encourages an interactive and incremental development style. This
has lots of advantages which we will not discuss here. However at some time
the development of an application is more or less stable. This is the time to
perform consistency checks on the application (for a classical example see
[Har86]) to further ensure its reliability. Many errors in Forth programs are
caused by stack mistakes, where the actual stack effect and the intended
stack effect do not match. This paper presents an algdrithm to calculate
stack effects of words by statically examining their definitions at compile
time. This opens the opportunity to statically check the consistency of stack
comments and the calculated stack effects, and thus enhance application
quality. The approach taken here restricts itself to examine stack depths
only and not types of stack items. For more general approaches see [P§2] or

[SK92].

2 Stack Depths

Modelling the depth of the data stack at a given time of execution is the first
think we have to cope with. We cannot expect to have enough information
to give a precise depth everywhere. This makes it reasonable to distinguish
between different levels of exactness for stack depth information:

1. exact

The depth of the data stack is known to be exactly a certain number of
stack items. Exact stack depths can be modelled by natural numbers.

2. range
The depth of the data stack is known to lie between two bounds. This
can happen if two different pathes to the current point of execution
change the stack in different ways. Range stack depths can be modelled
by an intervall of natural numbers.

3. unknown
No information about the stack depth can be obtained, when the

changes in stack depth depend on solely on the run time data and
not on the control flow.

Since a specific natural number can be regarded as a natural interval where
both, the lower and the upper bound, are equal, the set of stack depths D

Static Stack Effect Analysis U. Hoffmann euroFORTH’93 3

can be defined as:
D =4; {(m,n) € N x N |m<n}uU{?}

? represents the unknown stack depth. Instead of (m,n) we write m .. n to
point out the intended meaning, representing an interval by a pair of natural
numbers. For exact natural numbers, i. e. intervalls with same upper and
lower bound, we write numerals in italics, e.g.: 1 instead of 1 .. 1. If d € D
then the lower and upper bound of d will be written as d, and d, respectively.

2.1 Operations on Stack Depths
Next, we need to define some operations on stack depths for later use.

1. Addition
The additon of stack depths describes what happens if we put items
on the stack. If at a certain point of execution the stack has the depth
d € D and the next step will put e € D items on the stack, the resulting
depth is d + e. If both stack depths are exact, then this is equivalent
to adding both integers. The definition of 4, however, will have to
take care of intervals and the unknown value ?. This leads to:

+_:DxD-—-7D

_ d1+€1..d2+€2 lfd,eeNXN
d+e=ay { ? otherwise

When we add two intervals, the resulting interval is shifted and is
wider than (or as wide as') both of the original intervals. Note, that
D is closed under +, so applying + to any two stack depths in D will
result in another stack depth in D.

2. Subtraction
The subtraction of stack depths describes what happens if we remove
items from the stack. If at a certain point of execution the stack has
the depth d € D and the next step will remove ¢ € D items from
the stack, the resulting depth is d — e. Trying to remove more items
from the stack than are already on it can be considered an error.
Here we decided to leave the resulting stack depth as unknown (?)

'We will use wider to express wider or equal and strictly wider if we want to exclude
equalness.

Static Stack Effect Analysis U. Hoffmann euroFORTH’93 4

for the sake of simplicity. A possible refinement of this analysis can
introduce another special stack depth to handle this error situation.
For exact stack depths — will be equivalent to the subtraction on
natural numbers.

—:DxD—-=7D

de o= di—ey..dy—e; ifdie€ N andd; > e, and dy > e
AR I otherwise

As with addition, if d and e are intervals, the resulting interval is
shifted and is wider than both, d and e. D is closed under subtraction,
because all calculation which would result in a value not in D are
mapped to ? by the otherwise clause.

3. Union :
The union of stack depths describes what happens if the stack depth
at a certain point of execution results from two or more pathes to this
point. Since the actual path taken at runtime normally depends on
data, all pathes must be considered possible. The resulting depth must
be as weak as is necessary to satisfy stack changes on any path to this
point. Note that the actual data may ensure that certain pathes will

not be taken, but a static analysis cannot predict this behaviour. We
define:

U:DxD—->1D

dle— min(dy,e;) .. max(dy,e;) ifd,e€ Nx N
I B¢ otherwise

As with addition and subtraction, D is close under union. If both
arguments are the same exact number than so is the result. If at least
one of them specifies a range then the result is a range, which is wider

than both of the arguments. Any ? argument causes the result also to
be 7.

4. Comparison To compare two stack depths we look at their lower
bounds. We define:

<_CDxD

d<e&isdiec NxNandd, <e

Static Stack Effect Analysis U. Hoffmann euroFORTH’93 5

5. Equivalence Two stack depths will be considered equivalent if they
have the same lower bound. We define:

_=_CDxD

d=e&gpdiee NxNandd, =¢

= is an equivalance relation on D.

3 Stack Effects

After knowing how to characterize stack depths, we consider stack effects
next. We define stack effects as pairs of stack depths, describing the stack
depth before and after execution of (a sequence of) words:

g:defDXD

where (m,n) € &£ is written as (m —— n). This tries to resemble the
traditional notation of stack effects.

The inference rules from section 4 describe how to combine stack effects of
word compositions from their components. This process starts by knowing
the stack effects of primitive (system defined) words. The set of primitive
words with known stack effects is called root set.

The following table gives some stack effects for primitive words:

DUP (1 -- 2)
SWAP (2 -- 2)
DROP (1 -- 0)
OVER (2 —— 3)
CELL+ (1 —- 1)
@ (1 --1)
i (2 --1)
0= (1 --1)
0 (0 —- 1)

4 Inference Rules

The inference rules will cover most combination of words with the exception
of non local control transfers. They will be discussed in section 4.4. The

Static Stack Effect Analysis U. Hoffmann euroFORTH’93 6

rules have the form

conclusion

(name) premise

where both, the premise and the conclusions are either stack effects or com-
positions of stack effects. Let for all rules be m,n,0,p € € and d € D.

4.1 Sequential Composition

The first three rules handle the case of sequential composition, i. e. what
happens to the stack if two (sequences of) words are executed one after the
other.

Two of them describe what happens if executing the first word leaves a
different number of items on stack than the second word needs as arguments.
The stack effect of either the first or the second word is adjusted so their
interface match. After that the third rule can be applied.

1. Executing the first word leaves more items on the stack than the second
word needs as arguments. We adjust the stack effect of the second
word:

(m == n)o+d -= p+d)
(m —— n){o —= p)

(seqs) o<n

where d =n; — 0, .. n; — 05.

2. Executing the first word leaves lessitems on the stack than the second
word needs as arguments. We adjust the stack effect of the first word:

(m+d —— n+d)o —— p)
(m —— n)o —- p)

(seq,) n<o

where d =0y — ny .. 0, — 1.

3. Executing the first word produces a stack depth which is equivalent
to the stack depth the second word expects. Both stack effects can be
combined then:

(m —— n+p-o)
(m —~ n)(o -~ p)

(seqs) n=oorn=7?oro="?

Static Stack Effect Analysis U. Hoffmann euroFORTH’93 7

4.2 Conditionals

Conditionals have the form IF words THEN or IF words ELSE words THEN.
They are handled in the following rules:

The first rule for conditionals transforms a one way IF THEN conditional to
a two way IF ELSE THEN conditional by inserting an empty ELSE-branch.

IF (m —- n)ELSE (0 —— 0) THEN
IF (m —-- n) THEN

(ifo)

The next two minor cases handle mismatches of the stack effects in both
branches similar to the sequential composition from section 4.1. Here,
the aim is to transform the conditional so the initial stack depths of both
branches are equivalent. If the words in one branch need more stack items
than those in the other branch, the stack effect in the latter is adjusted
accordingly.

(if,) IF (m —— n)ELSE (o+d —— p+d) THEN m
b IF (m ——- n)ELSE (0 — - p) THEN
where d = m; — 0, .. m; — 04,
. IF (m+d —— n+d)ELSE (0 - - p) THEN
(if2) IF (m —— 7m) ELSE (0 —— p) THEN m<o

where d = 0y — m; .. 0; — m;.
Applying these rules will result in a conditional which the next rule can
handle. Both branches expect an equivalent stack depth.

(mUo +1 —— nUup)
IF (m —— n) ELSE (0 —— p) THEN

(ifs) m=oorm="?orn="

The resulting stack effect is to take this amount of items and to produce a
stack depth as weak as necessary to satisfy both branches.

Using the rules seen so far the stack effect of ?DUP can be infered by its
definition:

?DUP DUP 1IF DUP THEN ;
Inserting the stack effect of DUP leads to:

?DUP (I —— 2) IF (I —— 2) THEN ;

Static Stack Effect Analysis U. Hoffmann euroFORTH’93 8

Rule if, extends this to:
?DUP (1 —— 2)IF (1 —— 2)ELSE (0 —- 0) THEN ;
The stack effect of the ELSE-clause must be adjusted according to rule if;:
?DUP (1 —— 2)IF (I ~— 2)ELSE (I —— 1) THEN ;
Now, rule if; can be applied:
7DUP (1 - - 2)(2 - - 1..2);
Finally, the rule seq, gives the result:
?DUP (1 —— 1..2);

Thus 7DUP takes one argument and depending on its value leaves one or two
items on the stack.

4.3 Repetitions

Repetitions cover the constructs:
e BEGIN words UNTIL
¢ BEGIN words WHILE words REPEAT
e DO words LOOP
e DO words +L0O0P

We will restrict ourself to present only the rules for the BEGIN UNTIL-loop
in this paper. The rules for the other repetitions are similar in spirit.
Three minor cases can be distinguished for BEGIN UNTIL-loops:

1. The stack depth is an invariant of the loop. Most of the loops in
practise have this property. In this case we will not lose any exactness.

(m —— m)
BEGIN (m = n) UNTIL

(until,) n=m+41

Static Stack Effect Analysis U. Hoffmann euroFORTH’93 9

2. Running through the loop puts items on the stack. In this case we
can at least keep the number of items that have to be on the stack for
the very first loop iteration. Unfortunately we do not know how many
items will be on the stack when the loop terminates, so the resulting
stack depth is unknown.

(m —=-17)
BEGIN (m - - n) UNTIL

(until,) m+1<n or m+1l=n

3. Running through the loop removes items from the stack, or the stack
effect of the loop body is unknown. In this case we neither no how
many items have to be on the stack when the loop is entered nor do
we know how many there will be on exit.

) (? —-17) 5 o
(until,) BEGIN (m — = n) UNTIL n<m+1orm=7orn="

Using these UNTIL-rules the following loop, which traverses a linked list and
sums up its elements, can be analysed:

0 SWAP
BEGIN
SWAP OVER CELL+ @ +
SWAP @ DUP 0=
UNTIL
DROP

First, the stack effects for the primitive words from the root set will be
inserted:

(0 -- 1) —- 2)

BEGIN
(2 -- 22 -~ 31 —- B —- 12 -~ 1)
(2 —- (1 —— D1 -~ (1 - 1)

UNTIL

2 -- 1)

Next, according to the first two rules of sequential composition, the stack
effects are adjusted, so their interfaces match:

Static Stack Effect Analysis U. Hoffmann euroFORTH’93 10

1--2)2 -- 2)

BEGIN
(2 -- 2)(2 - 33 -- 3)(3 -~ 3)(3 -~ 2)
(2 --2)2 --2)(2 -- 3)(3 -- 3)

UNTIL

(2 -- 1)

Now, rule seq, can be applied and leads to:
(1--2)

BEGIN

(2 -- 3)
UNTIL
2--1

The rule until; simplifies the BEGIN UNTIL-loop:
G--2C--29¢--1
Finally seq, again gives the final result:

1 --1.
Thus the loop will consume exactly one argument and will leave exactly one
result on the stack.

4.4 Non local Control Transfers

The inference rules described in the last section cover many of the constructs
that appear in Forth programs. There are however words left, which the
inference rules do not cover:

¢ Abortions
These words terminate the program execution. Examples are ABORT,
ABORT" or QUIT. For a stack depth analysis they can be treated as
Jokers, since the stack effect of a word only describes what happens if
the word terminates normally.

¢ Escapes
These words prematurely leave the current executed word or loop.
Examples are EXIT or LEAVE. For a stack depth analysis they can be
handled similar to conditionals. At a conditional the flow of control

Static Stack Effect Analysis U. Hoffmann euroFORTH’93 11

is split into several execution pathes. When these pathes join again,
their stack effects have to be combined as can be seen in rule ifs.
Escapes change the current execution path to continue at the end of
the definition or enclosing loop. Thus the stack effects leading to these
points have to be combined in a similar way for proper handling of
escapes. Unfortunately inference rules make it difficult to express non
local control transfers, so they are not described in this framework.

5 Conclusion

We presented a way to model stack depths and stack effects in an abstract
way. Starting from known stack effects of primitive words we calculated
stack effects of defined words by using inference rules. Using the algorithm
presented in this paper the author has implemented a static stack effect
analysis which is able to obtain stack effects of Forth programs based in
the ANS-Forth core word set. This analysis can be extended to become a
convenient consistency checker for Forth applications.

References

[Har86] Kim Harris. Analyzing large Forth programs by using the
STRUCTURE-TOOL program. In FORML’85 conferece proceedings,
San Jose, California, 1986. Forth Interest Group.

[P92] Jaanus Péial. Multiple stack effects of FORTH programs. In euro-
FORML’91 conference proceedings, Oakland, California, 1992. Forth
Interest Group.

[SK92] Bill Stoddart and Peter Knaggs. Type inference in stack based lan-
guages. In euroFORML’91 conference proceedings, Oakland, Califor-
nia, 1992. Forth Interest Group.

