
Galois Fields and Forth

Bill Stoddart and John Goldman

September 25, 2019

Abstract

Galois �elds are rich �nite algebraic structures with applications in

cryptography, error correcting codes, experimental design, constraint

programming and pattern recognition. We describe some of these �elds

and the structures related to them known as Latin Squares, which are

used in many applications. We describe and implement examples of

the polynomial arithmetic that underlies Galois Fields, we describe

the automorphisms between di�erent implementations of the "same"

�eld, and we give an implementation of the �eld used in the Advanced

Encryption Standard. As an example application we consider in detail

the construction of a pack for the children's card game Dobble, in

which there are cards marked with symbols such that any two cards

share exactly one symbol. We include mathematical appendices in

which we prove, or show how to prove by comprehensive validation,

various important properties satis�ed by these �elds.

1 Introduction

Galois �elds are named in honour of the French mathematician Evariste Ga-
lois, an inspiring but tragic �gure who died at 20 in a duel yet left a huge
legacy. He discovered them whilst investigating the properties of polynomials.
These �elds are rich �nite algebraic structures with applications in cryptog-
raphy, error correcting codes, experimental design, constraint programming
and pattern recognition. Each Galois �eld consist of values 0..p along with
two operations which are analogous to multiplication and addition. These
operations obey the axioms of a mathematical ��eld�, which are also shared
by real numbers, but not, totally, by integers, since every element in a Galois

�eld has an exact multiplicative inverse. Galois �elds also support operations
analogous to subtraction and division, and division is perfect, there is never
a remainder.

This paper is organised as follows. In section 2 we give the axiomatic prop-
erties of a Galois �eld. In section 3 we show how Galois �elds with a prime
number of elements are implemented. We de�ne Latin squares, and also what
it means for two Latin squares to be orthogonal. We show how orthogonal
Latin squares can be used to solve an old playing card puzzle. In section 4 we
look at �elds of size qn where q is prime, and in particular we implement the
�eld of size 8. We show there are di�erent implementations of this �eld which
are related by an automorphism. In section 5 we implement the Galois �eld
with 256 elements, which is mandated for use in the Advanced Encryption
Standard.

In section 6 we look at our main example problem, which is the allocation of
symbols to cards in Dobble packs. In section 7 we consider a Forth imple-
mentation for the construction of a Dobble pack. In section 8 we conclude.

In the mathematical appendices we prove that modular arithmetic does not
generally yield a Galois Field, and we prove the existence of the mutually
orthogonal Latin squares associated with each �eld. Finally we consider the
proof of �eld axioms by exhaustive veri�cation.

2 Galois Field Properties

A Galois �eld {F} of size p consists of two operations analogous to addi-
tion and multiplication, acting on a set of values 0..p and obeying certain
axioms. A Galois �eld will exist whenever p is the power of a prime., e.g.
2, 3, 4, 5, 7, 8, 9, 11, 13, 16, .. 256 ...

The addition and multiplication on a Galois �eld of size p=qn where q is
prime are those of �polynomial modular arithmetic", which we will explain
in due course. In the case where p is prime this reduces to addition and
multiplication modular p and we can de�ne the Galois �eld operations as:

: +0 + p MOD ; : *0 * p MOD ;

We will write the operations of a Galois �eld as +0 and *0 to distinguish
them from normal addition and multiplication. If considering more than one
implementation of the same �eld we will also use the names +1, *1, +_, and
*_. The �eld size will be clear from context.

The axioms of a Galois �eld are a set of rules that, with one exception, also
apply to integers. The exception is that every element has an inverse within

the �eld. The integer n can be said to have inverse 1/n, but this inverse is
not itself an integer. The inverses of Galois �eld elements are in the �eld.

2.1 Axioms

In the following u, v, w are arbitrary values in the �eld F .

Closure. If u, v are in the �eld so are u +0 v and u *0 v

Commutativity. u +0 v = v +0 u and u *0 v = v *0 u

Associativity. (u +0 v) +0 w = u +0 (v +0 w)

Distributivity u *0 (v +0 w) = (u *0 v) + (u *0 w)

Unit property u *0 1 = u

Zero properties u +0 0 = u and u *0 0 = 0

Inverses. If u is non-zero it has a multiplicative inverse u−1 in F such that
u *0 u

−1 = 1, and has an additive inverse ∼ u in F such that u +0 ∼ u = 0

The existence of inverses means division and subtraction may be de�ned,
with a /0 b =̂ a *0 b

−1 and a -0 b =̂ a +0 ∼ b

3 Latin Squares, orthogonality, and a combina-

torial playing card problem

A Latin square is an n× n array containing n di�erent elements with each of
these occurring once in each column and once in each row.

Two Latin squares are orthogonal if the pairs of elements formed from the
�rst and second square are all di�erent.

Here are two orthogonal Latin squares, together with the square of pairs
formed from them:

0 1 2 3 0 1 2 3 0, 0 1, 1 2, 2 3, 3
1 0 3 2 2 3 0 1 1, 2 0, 3 3, 0 2, 1
2 3 0 1 3 2 1 0 2, 3 3, 2 0, 1 1, 0
3 2 1 0 1 0 3 2 3, 1 2, 0 1, 3 0, 2

A Galois �eld of size n is associated with n-1 mutually orthogonal Latin
squares, with the element at the j,kth position the ith such square given by
i *0 j +0 k. A mathematical proof is given in the appendix.

As an example application of orthog-
onal Latin squares, and a justi�ca-
tion of the term �orthogonal�, con-
sider �nding a solution to the prob-
lem of arranging the 16 picture cards
from a pack in a 4 × 4 square such
that in each row and each column we
have one Ace, one King, one Queen,
one Jack, one Heart, one Diamond,
one Club, and one Spade. We can
use two orthogonal Latin squares to
split the program into two. We use
the �rst Latin square to allocate po-
sitions for aces, kings queens and
jacks, and the second to allocate po-
sitions to hearts diamonds clubs and
spades. Under this interpretation
the Latin squares above give the shown solution to our picture card problem.

4 Polynomial arithmetic and �elds of size 2n

To implement a Galois �eld of size qn where q is prime we use addition and
multiplication of polynomials with coe�cients taken from the �eld G(q). To
explain this fully we consider �elds of size 2n.

The Galois �eld G(2) has elements 0,1 with the multiplication:

0 *0 0 = 0 , 0 *0 1 = 0 , 1 *0 0 = 0 , 1 *0 1 = 1

so multiplication in this �eld is equivalent to logical AND. And with the
addition we have:

0 +0 0 = 0 , 0 +0 1 = 1 , 1 +0 0 = 1 , 1 +0 1 = 0

so addition in this �eld is equivalent to logical XOR. Also, subtraction modulo
2 is identical to addition modulo 2 so addition and subtraction in the �eld
are identical.

We now consider the polynomial arithmetic required to implement the �eld
G(8), whose elements are the polynomials of order 2 and below. Given that
the coe�cients of these polynomials are from G(2), i.e. take only the values
0 and 1, we have 8 such polynomials, which are:

0 , 1 , x , x +0 1 , x2 , x2 +0 1 , x2 +0 x , x2 +0 x +0 1

and these have coe�cients that can be encoded in 3 bits as:

000 , 001 , 010 , 011 , 100 , 101 , 110, 111

these polynomials, or more exactly the encoding of their coe�cients, will be
the members of our implementation of the �eld G(8). 1

An example of polynomial addition in this system is:

(x2 +0 1) +0 (x +0 1) = x2 +0 x +0 1 +0 1 = x2 +0 x

The bit encoded form of the same calculation, with ⊕ representing exclusive
or, is 101 ⊕ 011 = 110.

The Forth de�nition for addition in �eld G(8), or any �eld G(2n), will be

: +0 (n1 n2 -- n3 , n3 = n1 +0 n2) XOR ;

An example of polynomial multiplication is

(x2 +0 x +0 1) *0 (x
2 +0 x) = x

4 +0 x
3 +0 x

2 +0 x
3 +0 x

2 +0 x

= x4 +0 x

We note that the result x4 +0 x isn't one of the 8 polynomials of G(8), so
we can't use polynomial multiplication as the multiplication operator *0 of
our �eld. We have to reduce the result my taking its modulus relative to a
reduction polynomial. This is analogous to modular arithmetic where our
multiplication operator for modulus p arithmetic is de�ned as:

: *0 (n1 n2 -- n3, n3 = n1 *0 n2) * p MOD ;

1Mathematical note: we treat polynomials as mathematical objects, rather than as

expressions denoting mathematical objects. Considered as expressions, polynomials x

and x2 are identical, since with mod 2 arithmetic x = x2. Under the interpretation in

which polynomials are mathematical objects they correspond formally to sequences of

coe�cients 〈 0 , 1 , 0 〉 and 〈 1 , 0 , 0 〉 and polynomial arithmetic operations are de�ned on

such sequences of coe�cients. Representing such sequences of coe�cients as bit sequences

is an implementation technique.

Just as, for modular arithmetic to yield a �eld p must be prime, that is a
number without factors, our reduction polynomial must also not have factors.
It must also be higher order than the polynomials on the �eld. A suitable
polynomial is x3 +0 x +0 1.

The polynomial arithmetic we are performing is analogous to our numeric
arithmetic. Indeed, we write our numbers in an abbreviated polynomial form;
for example 406 is the value of 4x2 + 0x + 6 when x = 10. We might calculate
the quotient and modulus when dividing 406 by 123 as follows

3

123)406_
369 The calculation shows us that
37 406 = 123 * 3 + 37

Our division of x4 +0 1 by x3 +0 x +0 1 can be shown as follows (we explicitly
include the zero terms in x, x2 and x3)

x

x3 +0 x +0 1)x4 +0 0 +0 0 +0 0 +0 1

x4 +0 0 +0 x
2 +0 x

x2 +0 x +0 1

and shows us that x4 +0 1 = (x
3 +0 x +0 1) *0 x +0 x

2 +0 x +0 1

The term we are interested in here is the remainder x2 +0 x +0 1. this is the
result of our Galois �eld multiplication. In full:

(x2 +0 x +0 1) *0 (x
2 +0 x) =

((x2 +0 x +0 1) * (x
2 +0 x)) mod (x

3 +0 x +0 1) =
x2 +0 x +0 1

Multiplication in the �eld G(8) can be de�ned in Forth as:

: *0 (a b -- a *0 b, multiplication of elements from G(8))

(: a b :) 0 (the polynomial product a*b will be collected on the

stack, we note XOR being used for addition since we are using

modulo 2 arithmetic on our polynomial coefficients)

1 b AND IF a XOR THEN

a 2* to a

2 b AND IF a XOR THEN

a 2* to a

4 b AND IF a XOR THEN

(modulo 2 polynomial product now on stack, we now divide

it by our reduction polynomial x3+x+1)

DUP 16 AND IF 22 XOR THEN

DUP 8 AND IF 11 XOR THEN (11 ~ 10112 ~ x3+x+1) ;

The reduction polynomial is not unique (except in the case of G(4)). For
G(8) an alternative reduction polynomial is x3+x2+1, and we will use +1 and
*1 as the names for the corresponding �eld operations. We have the following
addition and multiplication tables.

+0 0 1 2 3 4 5 6 7 *0 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7 0 0 0 0 0 0 0 0 0

1 1 0 3 2 5 4 7 6 1 0 1 2 3 4 5 6 7

2 2 3 0 1 6 7 4 5 2 0 2 4 6 3 1 7 5

3 3 2 1 0 7 6 5 4 3 0 3 6 5 7 4 1 2

4 4 5 6 7 0 1 2 3 4 0 4 3 7 6 2 5 1

5 5 4 7 6 1 0 3 2 5 0 5 1 4 2 7 3 6

6 6 7 4 5 2 3 0 1 6 0 6 7 1 5 3 2 4

7 7 6 5 4 3 2 1 0 7 0 7 5 2 1 6 4 3

+1 0 1 2 3 4 5 6 7 *1 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7 0 0 0 0 0 0 0 0 0

1 1 0 3 2 5 4 7 6 1 0 1 2 3 4 5 6 7

2 2 3 0 1 6 7 4 5 2 0 2 4 6 5 7 1 3

3 3 2 1 0 7 6 5 4 3 0 3 6 5 1 2 7 4

4 4 5 6 7 0 1 2 3 4 0 4 5 1 7 3 2 6

5 5 4 7 6 1 0 3 2 5 0 5 7 2 3 6 4 1

6 6 7 4 5 2 3 0 1 6 0 6 1 7 2 4 3 5

7 7 6 5 4 3 2 1 0 7 0 7 3 4 6 1 5 2

Although it is accepted usage to refer, in the singular, of �the �eld G(8)�
we clearly have two di�erent Galois �eld multiplication operators. However,
they may be seen as acting on di�erent encodings of the abstract elements
of the �eld G(8) rather than being operations from two di�erent �elds. The
following permutation relates the encodings used with reduction polynomial
x3 +0 x +0 1 to those used with reduction polynomial x3 +0 x

2 +0 1

perm = { 0 7→ 0, 1 7→ 1, 2 7→ 3, 3 7→ 2, 4 7→ 5, 5 7→ 4, 6 7→ 6, 7 7→ 7 }

Now for any a , b ∈ 0 .. 7 we have the following �automorphism� relating +0
to +1

perm(a +0 b) = perm(a) +1 perm(b)

and a similar automorphism relating *0 to *1

perm(a *0 b) = perm(a) *1 perm(b)

In Forth we can implement this permutation function as:

HERE 0 C, 1 C, 3 C, 2 C, 5 C, 4 C, 6 C, 7 C,

: PERM (8b -- 8b) LITERAL + C@ ;

and the checks we must do to establish the automorphisms are that for
arbitrary I and J from the �eld

I J +0 PERM I PERM J PERM +1 =

I J *0 PERM I PERM J PERM *1 = AND

5 Galois �elds and encryption

All unary Galois �eld operations (add x, subtract x, multiply by x, divide
by x, additive inverse, multiplicative inverse) have inverses. Thus if such
operations are used to encode data, we can always rely on there being inverse
operations that can decode it. Also, there are unary operations to take any
point in the �eld to any other point in the �eld. These properties make
Galois �eld operations useful for scrambling bits during encryption.

The �eld G(256), with reduction polynomial x8 + x4 + x3 + x + 1 is mandated
for use in the Advanced Encryption Standard, which (Wikipedia tells us)
is �currently the only publicly accessible cipher approved by the National
Security Agency (NSA) for top secret information when used in an NSA
approved cryptographic module�.

An implementation of G(256) operations is given below. They follow the
same form of polynomial addition and multiplication as we saw for G(8).

(Our reduction polynomial x8+x4+x3+x+1 encodes to 1000110112)

2 BASE ! 100011011 CONSTANT poly HEX

: +_ XOR ;

: *_ (: a b :) 0

1 b AND IF a XOR THEN

a 2* to a

2 b AND IF a XOR THEN

a 2* to a

4 b AND IF a XOR THEN

a 2* to a

8 b AND IF a XOR THEN

a 2* to a

10 b AND IF a XOR THEN

a 2* to a

20 b AND IF a XOR THEN

a 2* to a

40 b AND IF a XOR THEN

a 2* to a

80 b AND IF a XOR THEN

(modulus 2 polynomial product now on stack, its

max possible value is < 8000 hex)

DUP 4000 AND IF [poly 40 *] LITERAL XOR THEN

DUP 2000 AND IF [poly 20 *] LITERAL XOR THEN

DUP 1000 AND IF [poly 10 *] LITERAL XOR THEN

DUP 800 AND IF [poly 8 *] LITERAL XOR THEN

DUP 400 AND IF [poly 4 *] LITERAL XOR THEN

DUP 200 AND IF [poly 2 *] LITERAL XOR THEN

DUP 100 AND IF poly XOR THEN ;

DECIMAL

6 Dobble

Dobble is a card game in which 8 symbols appear on each card, and any two
cards have exactly one symbol in common.

We can generalise this to n symbols per card, so long as n-1 is the power of a
prime. We illustrate the construction of a Dobble pack using 5 symbols per
card, represented by digits 0..9 and letters A , B .. K

We begin by writing down the cards that contain the symbol 0. To see how
many such cards there, it will help if we write down at the same time the
cards that contain 1. As we write down each 0 card we distribute its symbols
between the 1 cards. After we have added the card 0 5 6 7 8 we have the
following situation, which shows us we need 4 cards that contain 1 (but not

0) in order to distribute the symbols 5, 6 7 and 8 between them, and thus
avoid having a card with more than 1 symbol in common with 0 5 6 7 8

0 1 2 3 4

0 5 6 7 8 1 5 ? ? ?

1 6 ? ? ?

1 7 ? ? ?

1 8 ? ? ?

continuing in this way and adding blocks for cards containing 2, 3 and 4 we
arrive at.

0 1 2 3 4

0 5 6 7 8 1 5 9 D H 2 ? ? ? ? 3 ? ? ? ? 4 ? ? ? ?

0 9 A B C 1 6 A E I 2 ? ? ? ? 3 ? ? ? ? 4 ? ? ? ?

0 D E F G 1 7 B F J 2 ? ? ? ? 3 ? ? ? ? 4 ? ? ? ?

0 H I J K 1 8 C G K 2 ? ? ? ? 3 ? ? ? ? 4 ? ? ? ?

At this point we can see that for a pack with 5 symbols per card we need
21 di�erent symbols and that our pack will contain 5 + 4 * 4 = 21 cards. In
general a Dobble pack with N symbols per card will use N +(N-1)2 symbols
and have N +(N-1)2 cards.

The sub-matrices for the 0 and 1 blocks are complete, and the sub-matrix for
the 1 block is the transpose of that for the 0 block (rows of the 0 block have
become columns of the 1 block). Now we use the orthogonal Latin squares
of the Galois �eld G(4) to position the elements of the sub-matrix of block 1
in each of the remaining sub-matrices. These Latin squares are:

0 1 2 3 0 1 2 3 0 1 2 3

1 0 3 2 2 3 0 1 3 2 1 0

2 3 0 1 3 2 1 0 1 0 3 2

3 2 1 0 1 0 3 2 2 3 0 1

The top rows of these Latin squares tell us how to share the row 5 9 D H of
sub-matrix 1 between the sub-matrices 2, 3 and 4.

0 1 2 3 4

0 5 6 7 8 1 5 9 D H 2 5 ? ? ? 3 5 ? ? ? 4 5 ? ? ?

0 9 A B C 1 6 A E I 2 ? 9 ? ? 3 ? 9 ? ? 4 ? 9 ? ?

0 D E F G 1 7 B F J 2 ? ? D ? 3 ? ? D ? 4 ? ? D ?

0 H I J K 1 8 C G K 2 ? ? ? H 3 ? ? ? H 4 ? ? ? H

The second rows of the Latin squares tell us how to share the row 6 A E I.

0 1 2 3 4

0 5 6 7 8 1 5 9 D H 2 5 A ? ? 3 5 ? E ? 4 5 ? ? I

0 9 A B C 1 6 A E I 2 6 9 ? ? 3 ? 9 ? I 4 ? 9 E ?

0 D E F G 1 7 B F J 2 ? ? D I 3 6 ? D ? 4 ? A D ?

0 H I J K 1 8 C G K 2 ? ? E H 3 ? A ? H 4 6 ? ? H

the third and forth rows of the Latin squares tell us how to share the the
rows 7 B F J and 8 C G K. We have now shared the symbols 5 to K between the
rows of the 2 3 and 4 sub-matrices in such a way that we have one symbol in
common between any two rows, and because the 0 sub-matrix is the transpose
of the 1 sub-matrix, we also have one symbol in common between the rows
of the 0 sub-matrix and the rows of the 2 3 and 4 matrices, and we have
completed our solution:

0 1 2 3 4

0 5 6 7 8 1 5 9 D H 2 5 A F K 3 5 C E J 4 5 B G I

0 9 A B C 1 6 A E I 2 6 9 G J 3 8 9 F I 4 7 9 E K

0 D E F G 1 7 B F J 2 7 C D I 3 6 B D K 4 8 A D J

0 H I J K 1 8 C G K 2 8 B E H 3 7 A G H 4 6 C F H

7 Implementing the construction of a Dobble

pack in Forth

Given a Galois �eld G(p), we consider how to implement the construction a
Dobble pack with N=p+1 symbols per card, as outlined above. We allocate
space for the Dobble pack, with 1 byte used to represent each symbol. Each
run of p+1 bytes records the symbols on a particular card. Initially we �ll
the pack with a value that would print as to show an unassigned symbol. 2

2Though not shown here, for printing a pack we set BASE to 72, and character ∼,
which is the highest allocated ascii code, corresponds to 71 in this base. This can be

veri�ed with: 71 72 BASE ! . DECIMAL

p 1+ CONSTANT N (no. of symbols per card)

N N 1 - DUP * + CONSTANT #PACK (cards in pack,

and also no. of different symbols used in pack)

CREATE PACK #PACK N * ALLOT

PACK #PACK N * 71 FILL (fill with a value that will display as ~)

: CARD (n -- a, a is addr of card n in PACK) N * PACK + ;

On the same space we impose a di�erent interpretation which allows us to
easily access the column vectors and sub-matrices.

: V (i j -- addr) (: i j :) PACK N + N N 1- * i * + j N * + ;

: M (i j k -- addr,

addr is address of element (j,k) in matrix i of PACK)

(: i j k :) PACK N 1+ + N N 1- * i * + j N * + k + ;

We require an implementation of the Latin squares associated with the �eld.

: LAT (n i j -- k, k is i,jth element of fields nth Latin square)

>R *0 R> +0 ;

We de�ne operations to build the pack. These �ll in the �rst card, store the
elements 0 to p onto the cards (completing the constant column vectors),
�ll in sub-matrix 0, copy the transpose of sub-matrix 0 to matrix 1, and
complete the remaining sub matrices using their associated Latin squares.

: !CARD0 N 0 DO I PACK I + C! LOOP ;

: !0..p (store symbols 0 to p onto cards)

N 0 DO p 0 DO J J I V C! LOOP LOOP ;

: !M0 (--, Set elements of matrix 0 of pack) N

N 1- 0 DO N 1- 0 DO

DUP 0 J I M C! 1+

LOOP LOOP DROP ;

: M0_Trans_toM1 (assign transpose of M0 to M1)

N 1- 0 DO N 1- 0 DO

0 I J M C@ 1 J I M C!

LOOP LOOP ;

: LATINISE

N 1- 1 DO

N 1- 0 DO

N 1- 0 DO

1 I J M C@ K 1+ K I J LAT J M C!

LOOP

LOOP

LOOP ;

We now have everything we need to build a pack.

: BUILD-PACK !CARD0 !0..p !M0 M0_Trans_toM1 LATINISE ;

A quickly implemented debug aid that allows us to look at the memory
where the Dobble pack is being constructed is a �Dobble dump", i.e. a DUMP

modi�ed to use the number of symbols in the pack as its output base.

: DDUMP BASE @ >R #PACK BASE ! DUMP R> BASE ! ;

To verify our pack we �rst need an operation to check how many symbols
are shared by a pair of cards.

: SHARED (card1 card2 -- n, pre: card1 <> card2

post: n is no of symbols shared by card1 and card2 of pack)

(: card1 card2 :) 0

N 0 DO

N 0 DO card1 CARD I + C@ card2 CARD J + C@ =

IF 1+ THEN

LOOP

LOOP ;

To check the pack we look at every pair of cards and verify that they share
exactly one symbol.

: CHECK-PACK (--, report first pair of cards found to differ

by anything other than one symbol)

0 #PACK 0 DO #PACK 0 DO

I J > IF

I J SHARED 1 <> IF

CR ." Cards " I . J . ." differ in" I J SHARED . ." symbols"

CR ." Cards are " I .CARD ." and " J .CARD ABORT

ELSE

." ." 1+

THEN

THEN

LOOP LOOP CR . ." Checks, pack validated " ;

8 Conclusions

Galois �elds are rich �nite algebraic structures based on modular and polyno-
mial arithmetic and are useful in many applications. Here we have described
their properties and shown how they can be implemented. Mathematical
properties relating to the existence of such �elds and their associated sets of
orthogonal Latin squares are are proved in the appendix. We have looked in
detail at how the orthogonal Latin squares associated with each Galois �eld
can be used to construct a Dobble pack. Forth proved a versatile program-
ming tool, able to model the complexities of the Dobble pack by overlaying
alternative interpretations of the data in a block of memory in a transparent
and simple way. Forth's ability to work in a number of bases was made use
of: we used binary for representing encodings of polynomials with modulo 2
coe�cients, hexadecimal for the compact encoding higher order polynomials,
and base 72 output to print the symbols on our cards. This last was useful
as it allows us to print the symbols on our cards as numbers, with numbers
up to 71 appearing as 71 di�erent single output symbols. This allowed us to
concentrate on the theory underlying the implementation, and this is where
the beauty of this example lies, rather than in spending time making the
representation of cards more attractive. The 71 ascii symbols used were per-
fectly su�cient to verify our code. We would note, however, that using such
a high number base does not work well for input, since it produces con�icts
between numbers and the names of Forth operations.

Mathematical Appendix

Modulo p arithmetic where p is not prime.

Arithmetic modulo p yields a Galois Field if and only if p is prime. To see
why suppose (in order to obtain a contradiction) that modulo p arithmetic
does yield a Galois Field F when p is non-prime. When p is non-prime it
has factors, u and v say such that u, v ∈ F and u ∗0 v = p. Now recall that
u ∗0 v = (u ∗ v) mod p and since u ∗ v = p we have u ∗0 v = p mod p = 0:

But if u, v ∈ F they have inverses u−1 and v−1 and so:

(u ∗0 u−1) ∗0 (v ∗0 v−1) = 1 ∗0 1 = 1

But on the other hand:, by the commutativity and associativity laws of a
Galois Field:

(u ∗0 u−1) ∗0 (v ∗0 v−1) = �by comm and ass laws�
(u ∗0 v) ∗0 (u−1 ∗0 v−1) = �since u *0 v = 0�
0 ∗0 (u−1 ∗0 v−1) = �by multiplicative property of 0�
0

and the contradiction is established.

Latin square properties

Given a Galois �eld F of size n with elements 0 .. n − 1 there are n − 1

mutually orthogonal Latin squares of size n × n such that the value in row
j and column k of the ith such square is given by i ∗0 j +0 k where
i ∈ 1 .. n− 1 and j, k ∈ 0 .. n− 1 .

Proof that each square is a Latin square

By closure properties i ∗0 j +0 k ∈ F which leaves us to prove that for an
arbitrary square i the same element cannot occur twice in any row, or twice
in any column.

To show an element cannot occur twice in a row, note that the element at
row j column k of square i is i ∗0 j +0 k. Assume that the element at row
j′ in the same column has the same value, and assume j 6= j′. Then

i ∗0 j +0 k = i ∗0 j′ +0 k ≡ �subtracting k from both sides�
i ∗0 j = i ∗0 j′ ≡ �dividing both sides by i �
j = j′ �contradicting our assumption�

So the only way the element at row j and col k of an arbitrary square can
be equal to the element at row j and col k′ of that square is if j = j′, i.e. if
they are the same square.

To show an element cannot occur twice in a column, assume that the element
at row j and col k of square i is the same as that at rowj and col k′, and
assume k 6= k′. Then

i ∗0 j +0 k = i ∗0 j +0 k′ ≡ �subtracting i ∗0 j from both sides�
k = k′ �contradicting our assumption�

Proof that any two distinct squares are orthogonal.

For the squares i and i′ to be orthogonal we need the pair of values:

(i ∗0 j +0 k , i′ ∗0 j +0 k)

to be distinct from

(i ∗0 j′ +0 k′ , i′ ∗0 j′ +0 k′).

To obtain a contradiction we will assume these pairs of values are not distinct,
i.e.

i ∗0 j +0 k = i ∗0 j′ +0 k′ (1) and i′ ∗0 j +0 k = i′ ∗0 j′ +0 k′ (2).
Then from (1)

i ∗0 j +0 k −0 i ∗0 j′ −0 k′ = 0 ≡ �subtracting i ∗0 j′ +0 k′ from each side of (1)�
i ∗0 (j −0 j′) +0 k −0 k′ = 0 (3)

�also similarly from (2)�
i′ ∗0 (j −0 j′) +0 k −0 k′ = 0 (4)
�Now subtracting (4) from (3) and factorising�
(i −0 i′) ∗0 (j −0 j′) = 0 ≡ �since i 6= i′ �
j = j′

Now substituting j for j′ in (1) we obtain

i ∗0 j +0 k = i ∗0 j +0 k′ ≡ �subtracting i ∗0 j from each side
k = k′

Square Roots

In section 4 we give multiplication tables for possible implementations of
G(8), and it can be seen from these that every element has an exact square
root.

More generally this is true for any �eld G(2n), and this comes from the ob-
servation that since, in modulo 2 arithmetic, addition is synonymous with
subtraction, this property will also hold for polynomial arithmetic on poly-
nomials with modulo 2 coe�ecients.

To ensure that every element of such a �eld has a square root it is su�cient
to show that for any p, q in the �eld: p2 = q2 ⇒ p = q

Proof. We begin with the assumption that p2 = q2

p2 = q2 ≡ �subtracting q2 from each size�
p2 −0 q2 = 0 ≡ �factorising�
(p −0 q) ∗0 (p +0 q) = 0 ≡ �since p +0 q = p −0 q �
(p −0 q) ∗0 (p −0 q) = 0 ≡ �property of additive inverse�
p = q �

Proof of �eld properties

We don't attempt a mathematical proof that the polynomial arithmetic we
have described yields the operations of a Galois �eld. However, for any
particular �eld that we implement we can prove the axioms hold by verifying
them for all combinations of values in the �eld. The code for this veri�cation
just needs a single parameter, p, which gives the size of the �eld.

For these tests we use +_ and *_ as our operation names. The names of our
actual �eld operations might be +0 and *0 or +1 and *1, so we use these to
de�ne +_ and *_ before loading the �eld tests.

The most complex tests are to establish the existence and uniqueness of
inverses. Here is the code for checking the multiplicative inverse axiom.

: (*INV) (n -- f, pre: n ∈ 1 .. p-1

post: f true iff n has a unique multiplicative inverse)

(: n :) 0 (count of inverses)

p 1 DO I n *_ 1 = IF 1+ THEN LOOP 1 = ;

: *INV-TEST (-- f, true if every element of 1 .. p-1 has a unique

multiplicative inverse in arithmetic modular p)

TRUE p 1 DO

I (*INV) NOT IF DROP FALSE LEAVE THEN

LOOP ;

Given that we already know, from established mathematical results, that the
�eld axioms will hold, the real bene�t of verifying them is as a check that
our �eld operations have been correctly implemented.

