
MUTEX (MUTual EXclusion) Mechanism in Hardware

Klaus Schleisiek - kschleisiek at freenet.de

Thanks to µCore's PAUSE signal, mutual exclusion processing can be completely realised in hardware. This
gets rid of a very popular source of hard to track errors in complex control systems.

What is mutual exclusion and why do we have to bother?

In complex control systems, there are usually several control loops, each of which is running in its own task.
For input signal acquisition, the same A/D converter (ADC) may be shared by several tasks. A/D conversion
usually takes several processor cycles and therefore, a MUTEX mechnisam is needed for two things:

a) To prevent any task to touch the ADC while it is converting another task's input signal.

b) To guarantee that a conversion result is actually read by the task that started the conversion previously.

For the sake of discussion I assume that we have an ADC with an integrated eight channel multiplexer. It is
connected to a hardware/software interface that allows to store a channel number into its memory mapped
ADC register (ADC_reg) initiating signal acquisition. When the A/D conversion has finished, ADC_reg can
be read returning the conversion result of the selected channel. In order to detect when the conversion has
finished, we also have flag bit #adc_ready in the FLAG register (FLAG_reg). In addition we can define
Semaphors with methods lock and unlock.

In the first part of the paper I will show how mutual exclusion is usually implemented in software.

In the second part I will show how the entire MUTEX mechanism can be realised in hardware using µCore's
PAUSE signal.

Conventional MUTEX in software
At first some informal word definitions of a typical co-operative multi tasking system:

pause (--) puts the current task to sleep and calls the scheduler in order to give another task the chance to
run. Please note that µCore's PAUSE signal input and the Forth word pause are completely different things!

Semaphor is a defining word that creates a semaphor. In priciple it is a variable that allows to store true and
false.

lock (addr --) as long as the semaphor at addr is true, pause is executed. When it is false, it is set to true
and execution of the task continues.

unlock (addr --) sets the semaphor at addr to false.
Semaphor sema_ADC

: sample (channel -- sample)
 sema_ADC lock ADC_reg !
 BEGIN pause FLAG_reg @ #adc_ready and UNTIL
 ADC_reg @ sema_ADC unlock
;

Variable Result

And now a task may acquire the analog data of channel 4 in a safe way using the following phrase:
... 4 sample Result ! ...

MUTEX (MUTual EXclusion) Mechanism in Hardware

MUTEX in hardware
As the Janus-faced side of interrupts, µCore has an additional hardware input signal pause, which, when
raised, aborts the current instruction, pushes the instruction's program memory address on the return stack,
and branches to the pause trap.

interrupt: An event did happen that was not expected by the software.

pause: An event did not happen that was expected by the software.

In a single task environment, the pause trap just holds an exit instruction. As a result, the processor
would continuously try to execute the instruction that raised the pause signal until some external event makes
the instruction executable.

In a multi tasking environment, the pause trap holds a branch to Forth's pause routine defined above and
therefore, the processor can do other things while waiting for the external event to happen.

As before, we need the flag bit #adc_ready. But this time, it is not only a flag that can be read by the
processor, it becomes the semaphor itself.

Here is some hardware pseudo code (simplified VHDL) that is needed for the MUTEX mechanism:

read_ADC_reg is true when the Forth phrase ADC_reg @ is executed.

write_ADC_reg is true when the Forth phrase ADC_reg ! is executed.

ADC_busy is true while the ADC is converting. Very often this is an output signal of the ADC chip.

The hardware implementation consists of a combinatorial part that feeds the pause input of µCore
pause <= true
 WHEN (read_ADC_reg = true AND ADC_busy = true) OR
 (write_ADC_reg = true AND FLAG_reg(#adc_ready) = false)
 ELSE false;

and a sequential part that controls the #adc_ready bit storing its result on the rising edge of a clock.
IF rising_edge(clk) THEN
 IF write_ADC_reg = true THEN
 FLAG_reg(#adc_ready) <= false;
 END IF;
 IF read_ADC_reg = true AND pause = false THEN
 FLAG_reg(#adc_ready) <= true;
 END IF;
 IF reset = true THEN
 FLAG_reg(#adc_ready) <= true;
 END IF;
END IF;

And now a task may acquire the analog data of channel 4 in a safe way using the following phrase:
... 4 ADC_reg ! ADC_reg @ Result ! ...

In essence, you can treat the ADC_reg similar to a variable without bothering about conversion time needed
or mutual exclusion on the software level any more.

