
Experience with dual words and recognisers EuroForth 2019

Stephen Pelc
MicroProcessor Engineering
133 Hill Lane
Southampton SO15 5AF
England
t: +44 (0)23 8063 1441
e: sfp@mpeforth.com
w: www.mpeforth.com

Abstract
The VFX Forthv5.1 kernel incorporates dual-behaviour words and recognisers. This paper
discusses our experience over the last year with these changes. Dual-behaviour words are a
standards-compliant solution to needing words that have separate interpretation and
compilation behaviour. Previous papers called these words NDCS words (non-default
compilation semantics). Recognisers are a fashionable solution to providing a user-extensible
text interpreter. Our experience converting two OOP packages to use recognisers is
discussed.

Introduction
VFX Forth v5.1 was the first VFX version to provide dual-behaviour words and recognisers.
An application of 1.34 million lines of Forth source code was converted to VFX 5.1 in 3.5
days and ran first time.

We adopted dual-behaviour words because they fix the problems previously solved by state-
smart words. As implemented in VFX, dual-behaviour words are standard-compliant. The
vast majority of the application conversion involved rewriting state-smart string-defining
words. The application is a commercial one, and uses a large number of string types.

We adopted recognisers because they are fashionable and have one technical possibility that is
important in large applications. It is currently impossible to persuade Forth programmers to
use just one OOP package. Thus, if we are to reuse library code, we must learn how to
manage multiple OOP packages. Recognisers provide a partial solution to this problem, but
considerable attention to wordlist and naming is also required.

Dual-behaviour words
The classical Forth interpreter loop below is replaced by a new loop whose essential change is
to distinguish between words with dual behaviour, defined in the ANS and Forth-2012
standards as “Non-Default Compilation Semantics” (NDCS for short). The term NDCS was
liked by nobody, and words with this behaviour are now referred to as dual-behaviour words.

1

Experience with dual words and recognisers EuroForth 2019

Traditional FIG-Forth interpreter

: process-xt \ i*x xt -- j*x
 state @ 0 = if
 execute
 else
 dup immediate?
 if execute else compile, then
 then
;
The classical Forth interpreter loop has been used to describe the operation of Forth for over
three decades now. It has been a useful model for many people. People regularly claim that
they need to write a custom interpreter and that not all Forth systems permit this in a portable
manner. We will see that a minor change to the loop and its associated structures brings it in
line with Forth 2012 and expands the interpreter’s facilities to take advantage of the Forth
2012 description of Forth words’ action or behaviour or semantics. What we now call DUAL
words are words such as IF that have separate interpretation and compilation behaviour,
referred to in the standard as “non-default compilation semantics”.

2

Illustration 1: Classical Forth interpreter loop

Experience with dual words and recognisers EuroForth 2019

Dual-behaviour loop

: process-xt \ i*x xt -- j*x
 state @ 0 = if
 execute
 else
 dup immediate? if
 execute
 else
 dual?
 if dual, else compile, then
 then
;
The picture illustrates a Forth interpreter/compiler loop that has been modified to cope with
separated interpretation and compilation actions.

We also need a small number of new words that enable the loop to be constructed portably:
IMMEDIATE? Xt -- flag ; return true if the word is immediate
DUAL? Xt -- flag ; return true if the word has non-default compilation semantics
DUAL, i*x xt -- j*x ; like COMPILE, but may parse.

In order to finish up, we need to understand what the word labelled DUAL, actually does. It
finds the word that performs the non-default compilation semantics and then EXECUTEs it.
The next picture shows the loop using the definition of IMMEDIATE words as having the
same interpretation and compilation semantics.

The significant change is the introduction of a dictionary header flag, DUAL, which indicates
that a word has non-default compilation semantics.

3

Experience with dual words and recognisers EuroForth 2019

Since IMMEDIATE words are dual-behaviour words by definition, the interpreter processing
of an xt can in theory be reduced to the one below

: process-xt \ i*x xt -- j*x
 state @ 0 = if
 execute
 else
 dup dual?
 if dual, else compile, then
 then
;

The immediate flag has disappeared because all immediate words have non-default
compilation semantics. They are immediate if the DUAL xt is the same as the for
interpretation xt. The definition of immediate is more complicated in standards-speak, but
comes to the same thing. An alternative implementation strategy may be to keep a separate
immediate flag, but we should not hide the basic idea that immediate words have non-default
compilation semantics.

The conventional immediate flag in a word’s header becomes the DUAL flag, set for all
words that have non-default compilation semantics. Comparison of the interpretation xt and
the DUAL xt gives us a basis for the word IMMEDIATE? The word DUAL, just hides the
system-specific action of obtaining the DUAL action from an xt.

Here’s a potential way of building DUAL words. They illustrate a conventional IF … THEN
pair. The word DUAL: modifies the previous word to have the following non-default
compilation semantics – it defines a nameless word and sets system-specific flags and data.

: IF \ C: -- orig ; Run: x --
\ This is the traditional interpretation behaviour
 NoInterp ;
dual: (-- orig) s_?br>, ; \ conditional forward branch

: THEN \ C: orig -- ; Run: --
\ This is the traditional interpretation behaviour
 NoInterp ;
dual: (orig --) s_res_br>, ; \ resolve forward branch

To produce an interpreted version, the interpretation behaviour is simply replaced by the new
version. The next example shows how a contentious notation such as S” and friends becomes
non-contentious.

: S" \ Comp: "ccc<quote>" -- ; Run: -- c-addr u
\ Describe a string. Text is taken up to the next double-quote
\ character. The address and length of the string are
\ returned.
 [char] " parse >syspad
;
dual: (--) postpone (s") ", ;

Dual-behaviour words are discussed in more detail in my EuroForth 2018 paper
“Implementing DUAL words”

4

Experience with dual words and recognisers EuroForth 2019

Experience
While building the VFX kernel and system, we had few problems because we knew what we
were looking for. When recompiling the CCS application, the majority of the conversion
effort went into converting the many, many string-type handling words to the new dual-
behaviour format. None of it was difficult, only tedious.

Recognisers
Recognisers are currently being promoted as a way to provide a user-extensible and user-
definable text interpreter. While this is a worthy goal, it isn’t enough on its own for systems
that already provide a good set of facilities. However, realising that software development
tools are not part of the tech industry but of the fashion industry, we bowed to the wind. The
recogniser proposals are fluid and not enough people have implemented a heavy application
using them.

Instead of treating an interpreter as a tool for finding words, numbers and undefined actions,
recognisers provide a list or table or chain of parsers that identify a particular type of element.
Once the type has been identified, type data is passed to one of three processing elements for
interpretation, compilation or postponing.

The parser may return more than one form of type data. For example, a word recogniser can
return separate type data for normal, immediate and dual-behaviour words. In the example
below the words starting with r: are three-element type tables holding the interpretation,
compilation and postpone xts.

: rec-find \ addr u -- xt r:word | r:fail
\ *G Searches a word in the search order (wordlist stack).
\ ** The xref utility code is contained inside the dictionary
\ ** search code.
 search-context dup 0= if
 drop r:fail
 else
 0< if \ -- xt
 dup ndcs?
 if r:ndcs else r:word then
 else
 r:immediate
 then
 then ;

Similarly, you can provide one or more parsers for numeric literals. It’s a matter of taste and
existing code. If the list of parsers is made extensible, additional word types and literal types
can be added at will, and just as importantly, can be removed at will. This facility, together
with disciplined use of wordlists and vocabularies is important to enable us to cope with
multiple OOP package.

The various recogniser proposals can be found at:
 http://amforth.sourceforge.net/pr/Recognizer-rfc-D.pdf
 http://amforth.sourceforge.net/pr/Recognizer-rfc-C.pdf
 http://amforth.sourceforge.net/pr/Recognizer-rfc-B.pdf
 http://amforth.sourceforge.net/pr/Recognizer-rfc.pdf

5

http://amforth.sourceforge.net/pr/Recognizer-rfc-B.pdf
http://amforth.sourceforge.net/pr/Recognizer-rfc-D.pdf
http://amforth.sourceforge.net/pr/Recognizer-rfc-C.pdf

Experience with dual words and recognisers EuroForth 2019

Experience
In the build of VFX Forth, the only issue was the partitioning of the returned type data.
Because we already had an integrated integer handler, we made no distinction between integer
types. However, the various floating point packages are installed separately.

We then converted two of the OOP packages supported by MPE. CIAO (C Inspired Active
Objects) was the MPE OOP package designed to ease integration with Windows and C++.
ClassVFX is the OOP package used by Construction Computer Software in their Candy
application:
 https://constructioncomputersoftware.com/solutions/solution-candy
The Candy application consists of 1.34 million lines of Forth source code.

The OOP ports revealed that I do not yet understand how to apply POSTPONE actions to the
result of the dotted notations used by both packages. The most recent set of proposals RFC-D
above proposes that the postpone action can be formalised so that the same action can be used
by all POSTPONE actions. It is just too early to believe that all compound parsers will be able
to work this way. One claim for this approach is that it saves memory. We tested this in the
VFX kernel and found that the unified action implementation saved 50 bytes in a system of
250k bytes and more. With base-level desktop systems starting with 1Gb of RAM, saving 50
bytes is not a good rationale for standardisation of implementation. We have not yet moved
recognisers into our embedded kernel.

The latest recogniser proposal depends on a “stack” proposal that crept in late. That proposal
is inadequate for MPE’s OOP requirements as we need to add new parsers at both ends of the
tables.

In our recogniser experience to date, recognisers have caused no problems at all and have
enabled us to remove a hook or two.

Conclusions
Dual-behaviour words have caused us no problems except for finally having to get rid of any
state-smart words in all applications. We have found the notation described in past papers to
be easy to use and understand.

Recognisers do enable user-extension of the text interpreter, but the proposals are not yet
ready for standardisation. The main reason for this is that although a considerable number of
systems have implemented what has been in the proposals, very few systems have pushed the
boundaries beyond words and numeric literals. A few string literal proposals have been made,
but these little more than handling address and length pairs.

Acknowledgements
Anton Ertl has tested my understanding of Forth standards for many years.

Bernd Paysan has confirmed my belief that the ingenuity of Forth programmers to break
common belief must never be underestimated.

My belief that all standards contain bugs has sustained me over many years.

Construction Computer Software encouraged and sponsored the Community edition of VFX
v5.

6

https://constructioncomputersoftware.com/solutions/solution-candy

	Introduction
	Dual-behaviour words
	Traditional FIG-Forth interpreter
	Dual-behaviour loop
	Experience

	Recognisers
	Experience

	Conclusions
	Acknowledgements

