
The new Gforth Header
Bernd Paysan

net2o
M. Anton Ertl∗

TU Wien

Abstract
The new Gforth header is designed to directly im-
plement the requirements of Forth-94 and Forth-
2012. Every header is an object with a fixed
set of fields (code, parameter, count, name,
link) and methods (execute, compile,, (to),
defer@, does, name>interpret, name>compile,
name>string, name>link). The implementation of
each method can be changed per-word (prototype-
based object-oriented programming). We demon-
strate how to use these features to implement opti-
mization of constants, fvalue, defer, immediate,
to and other dual-semantics words, and synonym.

1 Introduction
Forth started out with a word header (Fig. 1) that
satisfied several requirements. As additional re-
quirements arose, the header was adapted, result-
ing in the fig-Forth header and eventually the old
Gforth header. A number of requirements were
tacked onto the existing header design, resulting in
a maze of ifs when text-interpreting a word.
Yet more requirements came along that necessi-

tated extending the header again. At that point
Bernd Paysan decided to perform a major redesign
of the header, following [Bro84, Tip 8.13]: “Use de-
cision tables”. The present paper explains this new
design.
We start out by discussing header-related require-

ments in Standard Forth and in Gforth (Section 2);
in particular, we discuss the desire to use the ex-
ecution token as name token (Section 3). In Sec-
tion 4 we describe the fields and methods of the
new Gforth header, and related implementation is-
sues. Section 5 shows examples of using the header
features to implement words that the old header
does not support well, such as to or synonym. Sec-
tion 6 compares the performance of the old and new
header. Finally, we look at related work in Sec-
tion 7.
In this paper we use “Gforth 0.7” to represent

old Gforth and Gforth 1.0 to represent new Gforth.
Most of the statements about Gforth 0.7 are also
true for several older versions; Gforth 1.0 has not

∗anton@mips.complang.tuwien.ac.at

Figure 1: The original Forth word header [Moo74]

link
count

name

code field
does-code

parameter field

alias
immediate

mcompile-only

nt

xt

body

Figure 2: The Gforth 0.7 header

been released yet, but all the code presented here
works with Snapshot gforth-0.7.9_20190829.

We use the notation]] a b c [[instead
of postpone a postpone b postpone c for com-
pactness and readability. We also use find-name
(c-addr u -- nt). We embed nameless colon
definitions inside colon defintions with the syn-
tax [: ... ;]; this pushes the xt of the name-
less colon definition. The Forth-2012 locals syntax
{: ...-- ... :} defines the names before -- as locals
in stack effect order and treats the rest as comment.

2 Requirements
The old Gforth header (Fig. 2) is not that far
from the original Forth header; it has more flags, a
varible-length name field, a two-cell code field, and
the link field has moved, but it mostly still has the
same fields. It satisfies the following requirements:

https://www.complang.tuwien.ac.at/forth/gforth/Snapshots/0.7.9_20190829/gforth-0.7.9_20190829.tar.xz

Paysan, Ertl New Gforth Header

Execution semantics The code address in the
first cell of the code field determines which kind
(colon definition, constant, etc.) the word is;
for children of create...does> the does-code
part points to the code after the does>. The
body in the parameter field contains data (e.g.,
the value of a constant) or the threaded code
of a colon definition.

These fields are all that is necessary for
execute and compile,, so words defined with
:noname or noname have only these fields (in-
dicated by the thick line in Fig. 2).

immediate The immediate bit makes it possible
to differentiate between words with default
compilation semantics and immediate words
(where the compilation semantics is the exe-
cution semantics).

compile-only Setting the compile-only1 bit re-
moves the interpretation semantics of a word;
trying to interpret it produces an error on
Gforth 0.7.2

alias An alias is a word with a different name (or
in a different wordlist), but the same xt as an-
other word. They are marked by setting the
alias bit, and instead of a code field they con-
tain the xt of the word they alias to.

Traverse wordlist e.g., for words or for build-
ing the hash table; the link, count, and name
field are used for that. Words are usually
searched through the hash table (a separate
data structure), but locals are searched directly
by traversing the wordlist.

Colon definition visibility The name of a colon
definitions becomes visible only at the end.
Gforth inserts (reveals) the new header into
the current word list at that time, and therefore
does not need a smudge bit. We kept this ap-
proach in the new header, and therefore hardly
mention it in the rest of this paper.

A number of additional requirements were ad-
dressed without redesigning the header:

Compile, In primitive-centric threaded code
[Ert02] each word is compile,d to a prim-
itive, usually with an inline argument, e.g.,
call body for a colon definition. Different
word types have to be compiled to different
code. In Gforth 0.7 compile, contains a big
case control structure for this that looks at
the contents of the code field.

1aka restrict
2In Gforth 1.0 all words have interpretation semantics.

Dual-semantics words (aka NDCS words
[Pel17]) The compilation semantics of words
like s" and to are neither default nor imme-
diate. So these words have an interpretation
semantics represented by one xt and a com-
pilation semantics represented by a separate
xt. In Gforth 0.7 such words have a special
code field, and the two xts are stored in the
parameter field.

Gforth uses name>interpret and
name>compile3 to access interpretation
and compilation semantics. In Gforth 0.7
they abstract the following complexity: These
words check for this special code field and
produce the appropriate xt or ct (compilation
token) [Ert98]. Name>interpret also looks at
the compile-only bit. Name>compile also looks
at the immediate bit. Both words also look at
the alias bit.

To Consider to name : The action performed at
run-time depends on how name was defined
(e.g., with fvalue or as a (cell-sized) local).
Again, there is a big case that looks at the
code field of name to decide what to do.

As a consequence, in Gforth 0.7 text interpreta-
tion performs quite a bit of conditional control flow
for every interpreted word. The new header elimi-
nates most of this conditional control flow.

The following requirement is satisfied in the new
header, but not reliably in the old header:

>name Reliably get from “the” xt of a word to its nt;
this is useful in, e.g., a decompiler. Gforth 0.7
implements >name with a heuristic that usually
works, but can also produce wrong results.

3 XT and NT
Originally, every word had one name and one
semantics/action (the execution semantics) which
also served as interpretation semantics, and from
which either default or immediate compilation se-
mantics were derived. Representing such words
through a single address or token is a good idea.

Later, Forth acquired features that turn the rela-
tion between “named words” and “semantics” from
1:1 to m:n. Therefore, these separate concepts need
separate tokens: execution token (xt) for seman-
tics/actions; and name token (nt) for named words.
Yet there is a strong desire among Forthers for a
unified token, leading to repeated discussions about
the necessity of nts.

3Called name>int and name>comp in Gforth 0.7.

Paysan, Ertl New Gforth Header

3.1 New Gforth approach
This desire was also strong in the design of the new
Gforth header, leading to the following design goals:

• For many words, the nt and the xt represent-
ing the interpretation semantics are the same
address.

• You can pass an xt to a word that expects an
nt, and you will get a plausible result.

• You can pass an nt to a word that expects an
xt, and you will get a plausible result.

Most defining words produce words where
the interpretation xt=nt. Exceptions are
interpret/compile: (which defines a dual-
semantics word), synonym and alias. There are
other xts associated with a word, but they are
usually thought of as being “the xt” of a separate
word. E.g., name>compile returns “the xt” of
execute or compile, on the top-of-stack (and
another xt beneath it).
Words defined with :noname and noname can also

use the xt as nt. name>string produces an empty
string, and name>compile produces default compi-
lation semantics.
Note that, for some words, name>interpret is

not a noop, and >name does not get you back to the
nt where you came from. This demonstrates that
there is a conceptual difference between nt and xt.
This is documented in the stack effect of words:

name>interpret (nt -- xt|0)
name>compile (nt -- w xt)
immediate? (nt -- flag)
name>string (nt -- c-addr u)
execute (... xt -- ...)
compile, (xt --)
>body (xt -- a_addr)
>name (xt -- nt|0)
xt>name (xt -- nt)

Note that xt>name is a no-op; it documents that
there is an xt on the stack before, and an nt after-
wards.
In the following we present examples that demon-

strate the difference. First we define some words:

: b ." b" ;
: c ." c" ;
:noname ." d" ; alias d
’ b alias e immediate
synonym f b
’ b ’ c interpret/compile: g
create t
’ t alias u
synonym v t
’ t ’ c interpret/compile: w

In the examples, the input is shown in bold, while
the output is shown in blue.

Here, xt=nt.

s" b" find-name ’ b = . -1 ok
s" b" find-name execute b ok
’ b name>string type b ok

But in the following examples, xt 6=nt:

s" d" find-name ’ d = . 0 ok
s" f" find-name ’ f = . 0 ok
s" g" find-name ’ g = . 0 ok

Xts are usable as nts, but the nt is of a different
word:

’ d name>string type ok
’ e name>string type b ok
’ f name>string type b ok
’ g name>string type b ok

Execute and compile, exhibit the same be-
haviour for nts as for their interpretation xts:

s" d" find-name execute d ok
s" f" find-name execute b ok
s" g" find-name execute b ok
: d1 [s" d" find-name compile,] ; see d1
: d1

; ok
: f1 [s" f" find-name compile,] ; see f1
: f1

b ; ok
: g1 [s" g" find-name compile,] ; see g1
: g1

b ; ok

But >body does not maintain this illusion; we de-
cided to make it a simple field access word rather
than a method; if you want to get from the nt to the
body of the interpretation xt, use name>interpret
>body:

s" u" find-name >body u = . 0 ok
s" v" find-name >body v = . 0 ok
s" w" find-name >body w = . 0 ok

There are other xts associated with some words:

s" g" find-name name>compile ok 24

name>string type execute ok 1
name>string type c ok

In Gforth, immediacy is a property of a named
word, not of the xt:

4Gforth~1.0 shows the number of items on the stack af-
ter ok unless the stack is empty.

Paysan, Ertl New Gforth Header

s" e" find-name immediate? . -1 ok
s" b" find-name immediate? . 0 ok
: h1 e ; b ok
h1 ok
: h2 b ; ok
h2 b ok

For some words, there is a difference between
compilation semantics and compile,ing the inter-
pretation semantics:

e \ interpretation semantics b ok
: j1 e ; \ compilation semantics b ok
j1 ok
: j2 [’ e compile,] ; ok
j2 b ok
g b ok
: i1 g ; c ok
i1 ok
: i2 [’ g compile,] ; ok
i2 b ok

3.2 Alternatives
The new Gforth approach is not for every Forth
system, but every system has to deal with tokens
for named words and tokens for semantics/actions.
The difference between these concepts is most pro-
nounced for separated-header systems where the
name field and link field of a word are separated
in memory from the code field and parameter field
(e.g., to make it easy to produce headerless code).
Here we explore the options for implementing nt
and xt (for interpretation semantics) in this set-
ting; we do not discuss implementing, e.g., dual-
semantics words.

XT 6=NT

The most straightforward approach is to let nt point
to the name field or link field, and let the xt point
to the code field or parameter field. You don’t get
a unified token, and you can only use xts for words
that take xts, and only use nts for words that take
nts. Getting from the xt to the nt is either slow5 or
requires adding a back pointer to every code field.

NFA as XT=NT

This approach works, but has several disadvantages:

• The name field part is needed whenever an xt is
used (e.g., for execute), and therefore leaving

5If the separated headers were stored in an array and if
we had the same order in memory for the separated headers
and for the separated bodies (and code fields), we could use
binary search for the body address in the headers. However,
a straightforward implementation of synonym means that a
header may point to an out-of-order body, so binary search
cannot be used.

name

count
link
vt

code field
parameter field

mcompile-only

xt=nt
body

padding compile,
(to)

defer@
does/extra

name>interpret
name>compile
name>string
name>link

Figure 3: The new Gforth header. The thick lines
surround fields present in nameless words.

the name headers away is either much harder
or can be used only for applications that don’t
use xts (e.g., no execute, is, or >body).

• Words that consume an xt, in particular
execute and >body, perform an extra indirec-
tion.

Other properties: A synonym has a different xt
than its original; the code field can be stored with
the name and link fields and separate from the pa-
rameter field.

CFA as XT=NT

This does not work with the most obvious way
to implement this separated-header concept: If
a synonym is implemented as a name that has
the same code field as the original, both words
have the same nt=xt, and name>string will pro-
duce the same name. Implementing words with
traverse-wordlist and name>string will not
show the name of the synonym, but show the name
of the original for every synonym. E.g., with the
definitions above we would get

s" f" find-name name>string type b ok

One can complexify the implementation to avoid
these problems, but the result is probably less at-
tractive than the alternatives above.

4 The New Header
4.1 Organization and Fields
Figure 3 shows the new header. The xt/nt points
to the code field, and the header structure grows
in both directions from there, with variable-length
fields (name field and parameter field) at both ends.
The fields are:

code field This field contains the code address of
native code that implements the execution se-
mentics of the word (see also the execute
method in Section 4.2).6 The xt directly points
to this field.

6Note that while NEXT and the threaded code in a colon
definition use direct-threaded dispatch, execute (and other

Paysan, Ertl New Gforth Header

vt This virtual table field points to a table of im-
plementations for the various methods (see Sec-
tion 4.2). All method implementations are rep-
resented by xts. You can get to this field with
>namevt (xt -- addr).

parameter field This field serves the same pur-
pose as it has since the dawn of Forth: It con-
tains additional data or code, depending on the
word type, e.g., the value of a constant, or the
threaded code of a colon definition. You can
get to this field with >body (xt -- addr).

Unnamed words have only the fields above (in-
dicated by the thick line in Fig. 3). Named words
have the following fields in addition:

count field This (almost) cell-sized field contains
the length of the name in bytes. You can get
to it with >f+c (nt -- addr), but it is bet-
ter to get the count with name>string (nt
-- c-addr u) which also works on nameless
words.

name field This field contains the name of the
word. The arrangement is unusual in hav-
ing the name before the count field; this is
due to the variable-length nature of the name
field, and because we already have the variable-
length parameter-field at the end of the word
header. The actual name starts count bytes
before the count field; before the actual name,
there is padding that ensures that the parame-
ter field is maximally aligned (and, as a conse-
quence, the other fields are cell-aligned). You
can access the name with name>string.

compile-only flag While most flags have been
eliminated by using methods, we kept the
compile-only (aka restrict) flag with a much-
reduced role: Gforth now has interpreta-
tion semantics for all words, but warns in
some cases when the interpretation seman-
tics of compile-only words are used. You
can use compile-only? (nt -- flag) to
check whether a word is compile-only.

link field This field is just like the link field since
the dawn of Forth: it contains the nt of
the previous word in the same wordlist, or 0
if there is none. You can get to this field
with >link (nt -- addr), but the method
name>link (nt1 -- nt2) works even on
nameless words.

Variations

A possible variation of this organization is to move
the code field into the virtual table. This would
words going through the code field) use indirect-threaded
code dispatch [Ert02].

mean that a word header would be one cell smaller,
and, for a fixed virtual table (as for closures
[EP18]) would be cheaper to create. The disadvan-
tages would be: Each execute and other dispatch
through the code field would incur an additional in-
direction. And we would need an additional virtual
table for every primitive (each primitive has a dif-
ferent code address); with 413 primitives in Gforth,
this would mean 3717 cells for virtual tables, i.e.,
3717 words to break even; Gforth on AMD64 has
3922 named words, and a number of unnamed ones,
so, before loading user code, the benefit of this size
optimization is small.

To avoid the additional indirection, instead of
storing the code address in the virtual table, a copy
of the code itself could be stored there. Another way
to look at this would be that the virtual table would
be prepended to the code; the code would need to
be duplicated for different virtual tables. With this
variation, the vt field would again become a code
field.

4.2 Methods

There are various words that take an nt or xt; the
behaviour of many of these words depends on the
nt/xt. In the old header conditional/case code de-
cided what to do by looking at header flags or at
the contents of the code field.

The new header uses an object-oriented design7:
These words are method selectors, and the method
implementations are determined when the word is
defined. This section describes the methods; defin-
ing them is covered in Section 4.5. Apart from the
execute method which is implemented in native
code and represented by a native-code address, all
methods are implemented as Forth code represented
by an xt.

Execute (... xt -- ...)

Execute takes an xt and performs the semantics
represented by that xt. This has been treated as
a method since the dawn of Forth: Different word
types have different (native) code addresses in their
code field;8 for some word types (colon definitions,
does>-defined words), this (native) code then calls
threaded code that allows varying the behaviour of
the word by writing Forth code.

7The design is for a fixed set of methods, not for general
object-oriented programming. Mini-OOF is a general object-
oriented Forth extension with similar features.

8In indirect-threaded code; direct-threaded and native
code systems have some differences in details, but they also
execute some native code when executeing an xt.

https://bernd-paysan.de/mini-oof.html

Paysan, Ertl New Gforth Header

applicable to generated code set-optimizer by executed Aarch64 instructions
all words lit <xt> execute set-execute 14
does> words does-xt <xt> set-does> 11
constants lit <value> constant 2

Figure 4: Different correct implementations of compile, for a word defined with constant as shown in
Section 5.1

does (... body-addr -- ...)

For a word defined with set-does> or does>, the
native code pushes the body of the word body-addr
on the stack, and then executes the xt passed to
set-does> (or the xt representing the code follow-
ing the does>. This xt is the does method of the
word.
The does method is only used by words defined

with set-does>/does>. Its slot can be used for
other purposes by other word types; it is then called
extra.

Compile, (xt --)

A classic indirect-threaded Forth system uses , to
compile, an xt. But Gforth (since version 0.6) uses
primitive-centric threaded code [Ert02], where dif-
ferent words have to be compiled differently (“intel-
ligent compile,”); e.g., a colon definition is com-
piled to the primitive call followed by the body
address of the called word.
The significance of compile, is that 98.8% of the

dynamically executed primitives9 are in threaded
code produced by compile,, while only 1.2% of the
primitives10 are invoked through execute or a de-
ferred word, which use the execute method above.
So improving the code generated with compile, for
a word has a much greater effect than improving its
executed code.
In Gforth 0.7, compile, is implemented as a case

control structure that looks at the code address in
the code field. In Gforth 1.0, compile, is a method,
so new word types and their code generators can be
added without changing existing code.
Note that compile, has to be equivalent to

: compile, (xt --)
]] literal execute [[;

Many uses of compile, rely on this relation be-
tween execute and compile,. Every implemen-
tation of the compile, method has to satisfy this
equivalence, and therefore words like set-does>
that change what execute does for a word also
change what compile, does for a word. To get
an optimizing compile, implementation, you have
to call set-optimizer afterwards.

9in https://www.complang.tuwien.ac.at/forth/peep/
sorted

101% calls, 0.2% other primitives

There have been attempts to define the compile,
for some words in a way that does not satisfy this
equivalence, as a shortcut to implementing dual-
semantics words, but this does not work correctly in
all cases. To implement dual-semantics words, set
name>compile and/or name>interpret (see Sec-
tion 5.5 and 5.6).

Figure 4 shows the effects that different compile,
implementations have for compiling a constant as
defined in Section 5.1, corresponding to different
levels of specialization, resulting in fewer executed
instructions for the more specialized code.

Name>interpret (nt -- xt)

The Forth-2012 word name>interpret has been in
Gforth since 1996 under the name name>int, but it
used a number of ifs that looked at various flags
and fields to produce the correct xt. In Gforth 1.0,
it is a method. For normal words (where nt=xt), it
just performs a no-op.

Name>compile (nt -- xt1 xt2)

The Forth-2012 word name>compile has been in
Gforth since 1996 under the name name>comp, and
it also used a number of ifs to do its work. In
Gforth 1.0 it is a method; for normal words, it just
pushes the xt of compile,; for ordinary immediate
words, it pushes the xt of execute. Examples of
other implementations will be shown below.

(to) (val xt --)

Words defined with, e.g., value or fvalue can be
used with to. What to do then depends on how the
word was defined.

In Gforth 1.0, to and is are synonyms, so to can
also be used for words defined with defer.
In Gforth 0.7 to name looks at the code field of

name, and has a case structure for all the types
of words known to it. Adding a new type requires
changing the code of to.
In Gforth 1.0, we have a method (to) that per-

forms the actual storing of the value val (of any
type) into the word specified by xt. E.g., for a word
defined with fvalue the implementation of (to) is
(simplified):
: fvalue-to (r xt --)

>body f! ;

https://www.complang.tuwien.ac.at/forth/peep/sorted
https://www.complang.tuwien.ac.at/forth/peep/sorted

Paysan, Ertl New Gforth Header

One can see this method as the implementation
equivalent to the approach used to specify to in the
Forth-2012 document11: There, to first performs
the generic part of to, and then the word-type-
specific to name semantics; and these semantics are
specified at each defining word.

Defer@ (xt1 -- xt2)

Gforth 1.0 also has several defer-like defining
words, e.g., the standard defer and the per-task
udefer. Words defined with these words all behave
like words defined with defer: Running such a word
executes the xt stored in it; that xt can be read with
defer@ or action-of, and it can be written with
defer! or is.
Gforth 1.0 defines defer@ as a method, which

allows different ways of accessing the xt for the dif-
ferent word types. Action-of uses defer@. Is is
a synonym for to, which makes Defer! a synonym
of (to) (see above). Therefore we do not need a
separate defer! method.

Name>string (nt -- c-addr u)

In Gforth words defined with :noname and noname
have no name field. Therefore name>string is a
method:

• For named words, it just returns the address of
the name field and the number of characters.

• For unnamed words, it returns an empty string.

Name>link (nt1 -- nt2|0)

Name>link is a method that provides the function-
ality of a link field even for (unnamed) words which
have no link field.

Grouping

These methods can be divided into the following
groups12:

• Name>string and name>link each have only
two implementations: One for named words
and one for noname words. They are otherwise
independent of the other methods. Instead of
implementing them as methods, one could also
use a noname bit in the header, and implement
these words with if.

• Name>interpret and name>compile define the
semantics of named words. They make sense
only for named words.

11http://forth-standard.org/standard/core/TO
12These groups could be considered as interfaces or traits

in object-oriented programming languages.

• Execute, does, compile,, defer@ and (to)
(in its role of defer!) define the behaviour of
an xt, and are relevant for unnamed as well as
named words.

These differences are also visible in the stack ef-
fect: The first two groups take nts, the last group
an xt (or body).

Factoring

For the most part, these words were not introduced
for this header design, but already existed earlier,
and we just turned them into methods:
word year origin
execute 1970s early Forth [Moo74]
does 1970s early Forth
compile, 1994 Forth-94
name>interpret 1996 Gforth 0.2
name>compile 1996 Gforth 0.2
defer@ 2005 Forth 200x
name>string 1996 Gforth 0.2
(To) corresponds to the “to name run-time”

semantics factoring in Forth 200x introduced in
200913.

Only name>link was introduced with this header
design.

So most of these words have proven their worth as
factors of other words for a long time, but are they
also good interfaces for method implementations?
In our experience they are, and you can judge for
yourself by reading Section 5.

One word that has been questioned is
name>compile, because it represents compila-
tion semantics with two xts instead of just one.
The benefit is that name>compile is cheaper to
implement for normal words and immediate words
(i.e., the vast majority of words). Dual-semantics
words require an extra layer (see Section 5.5),
but that can be done once for all such words
(Section 5.6).

4.3 Find

While the new header design does not change our
implementation of find (we already implemented
find based on name>interpret and name>compile
in the old header), this is a related topic, and may
be of interest to the reader. It also is relevant by
showing why we do not want to exploit all the flex-
ibility that the two xts returned by name>compile
offer.

On success, find returns an xt and either 1
(immediate14) or −1 (otherwise). Find-based

13http://www.forth200x.org/documents/forth09-3.pdf
14Actually, assuming that find should be usable for user-

defined text interpreters, we need a different notion of imme-
diate than “compilation semantics = execution semantics”:
If find returns an xt in compile state that the user-defined

http://forth-standard.org/standard/core/TO

Paysan, Ertl New Gforth Header

user-defined text interpreters either execute or
compile, the xt, depending on state and the num-
ber returned by find.
If name>compile (name -- xt1 xt2) returns

either execute or compile, as xt2, find can be
implemented in a way that allows such text inter-
preters:

: find {: c-addr -- c-addr 0 | xt 1/-1 :}
c-addr count find-name dup if

dup name>compile >r swap name>interpret
state @ if drop else nip then
r> [’] execute = if 1 else -1 then

else
drop c-addr 0

then ;

The state-dependent part caters for dual-
semantics words where the xt returned by
name>interpret is different from the xt1 returned
by name>compile. The part afterwards extracts the
1/−1 from the xt2 returned by name>compile.
Our implementations of name>compile all heed

the restriction mentioned above, and that is prob-
ably a good idea for all systems that implement
find.

4.4 To optimization and locals
A simple way to compile to name is to compile a
literal for the xt of name, followed by (to). But
what we actually do is to resolve the method dis-
patch already at compile time, and compile the im-
plementation of (to) for that xt.

But optimization does not stop there. E.g., in the
fvalue-to case above, we want to resolve the >body
during compilation, resulting in compiling the body
(instead of the xt) as literal, and compiling f!, elim-
inating the colon definition overhead and the >body
at run-time. We first define the compile, imple-
mentation for fvalue-to as follows (simplified):

: fvalue-to-compile, (xt --)
drop]] >body f! [[;

We can use this word with set-optimizer (see
Section 4.5):

: fvalue-to (r xt --)
>body f! ;

’ fvalue-to-compile, set-optimizer

Another syntax that does not require a name for
the compile, implementation is to use opt::

: fvalue-to (r xt --)
>body f! ;

opt: drop]] >body f! [[;

text interpreter should execute, find should also return 1.

We have also implemented Mecrisp’s constant
folding mechanism [Koc15] in Gforth [Pay19]15:
Compiling a literal pushes it on a compile-time lit-
eral stack; compile, implementations can access
the literal stack to perform operations on the con-
stants at compile time. In the present case, com-
piling >body takes name’s xt from the literal stack
and pushes name’s body. Before generating actual
code, the remaining contents of the literal stack are
compiled as literals. In the present case, the body
is compiled as literal before compiling f!. The end
result is that to name (where name is an fvalue) is
compiled to the same code as

[’ name >body] literal f!

In most cases the optimization is just nice to
have. But there is one case where optimizing
to name is essential: locals. Gforth does not keep
the headers of locals around until run-time, so us-
ing the xt of a local at run-time would not work.
The (to) implementation of a (cell-sized value-
flavoured) local is called to-w:. The compile, im-
plementation of to-w: is (simplified):

: to-w:-opt (xt-to-w: --)
?fold-to >body @ lp-offset (offset)
]] laddr# [[,]] ! [[;

Compile, passes the xt of to-w: to to-w:-opt.
?fold-to (xt-to -- xt-name) drops this xt
and moves xt-name from the literal stack to the
data stack.16 The rest of to-w:-opt computes
the offset of the local from the locals-stack pointer
(first line), and then (second line) compiles code
for generating the run-time address of the local
(]] laddr# [[,), and for storing the value there
(]] ! [[).

Similar optimizations are also used for the defer@
method (and, based on that, action-of).

Alternatives to the scheme above are:

• Keep the headers of locals around for the whole
session. Then you can just use an unopti-
mized or minimally optimized implementation
of to name .

• Have additional methods equivalent to]]
literal (to) [[and]] literal defer@
[[. Then you do not need constant folding
to avoid having to deal with the xts of locals
at run-time. We used this approach in Gforth
before we implemented constant folding.

15For a description in English, see news:<2019Aug5.
121829@mips.complang.tuwien.ac.at>

16The other case (no literal) does not happen when the
source code is to name , but is also handled correctly: it just
compiles to-w: without optimization and exits to-w:-opt
without performing the words after ?fold-to.

http://al.howardknight.net/msgid.cgi?ID=156684047400
http://al.howardknight.net/msgid.cgi?ID=156684047400

Paysan, Ertl New Gforth Header

4.5 Setting method implementations

By setting the method implementations appropri-
ately, we can define words with capabilities that
are not properly supported by the old header for-
mat (see Section 5), but how do we set them?

The basic approach is that of an object-oriented
system based on prototypes [Bor86] rather than
classes. A new word is created by building a new
header, copying the methods of an existing one, and
then changing individual method implementations.

In practice, the usual approach is to call an ex-
isting defining word (which at bottom level works
by copying and then changing the behaviour of a
pre-existing word, which in turn was created by the
cross-compiler), and then modifying the behaviour
of the resulting word.

You can change individual method implementa-
tions of the most recently defined word with the
following words:
setter stack effect sets
set-execute (addr --) code field

compile,
set-does> (xt --) code field

does
compile,

set-optimizer (xt --) compile,
set->int (xt --) name>interpret
set->comp (xt --) name>compile
set-to (xt --) (to)/defer!
set-defer@ (xt --) defer@
set->string (xt --) name>string
set->link (xt --) name>link

In order to preserve the relation between execute
and compile,, every word that changes what
execute does also has to change what compile,
does. Set-execute changes the compile, im-
plementation to the default code generator for
all words. Set-does> changes the compile, im-
plementation to the default code generator for
create...does> words. Afterwards, you can change
the compile, implementation with set-optimizer
to one that generates faster code. Using
set-optimizer before set-execute or set-does>
(or does>) will not have an effect that survives the
set-execute/set-does>.

If you want to change a method of an older word,
you can make the older word take the place of the
most recently defined word with

make-latest (nt --)

To avoid confusing mixups of behaviours, the be-
haviour of a word should not be changed after it has
been used; the implementations of the behaviour
can still be changed (e.g., for optimization).

five
4

link
vt

docon
5

constant,
no-to

no-defer@
empty
noop

default-name>comp
named>string
named>link

5 constant five
6 constant six

six
3

link
vt

docon
6

Figure 5: Two words with a shared (deduplicated)
virtual table

4.6 Deduplication
Implementing this prototype-based approach is
easy if each word has its own vt (virtual table):
just copy the vt of the original, and then change it
as you please. If you go that way, you can put the
virtual table directly into the header instead of in
a separate structure.

However, we want to avoid the memory costs
of this approach.17 Therefore we deduplicate the
virtual tables: Just before the definition of the
next word starts, Gforth checks whether the cur-
rent word’s virtual table is equal to one of the vir-
tual tables that existed before (for words defined
earlier). If so, the address of the earlier copy of the
virtual table is stored in the current word’s vt field,
and the current virtual table’s memory is reclaimed
(see Fig. 5). As a result, we currently only have 117
vts in the Gforth image (for ≈ 4000 words).

You can keep virtual tables in the main dictio-
nary with this scheme (we have done so for a while),
but it causes complications in some places. An ap-
proach that avoids these complications is to keep
the virtual tables in a separate section [Ert16].

Gforth performs deduplication and its rever-
sal (duplication) automatically: If you change a
method of a word with a deduplicated vt, Gforth
duplicates the vt first. When switching to a new
word by defining a new word or with make-latest,
Gforth deduplicates the vt.

4.7 Create-from

Creating a word by starting out with some word,
modifying it, and finally deduplicating the vt is

17≈28 000 cells for the Gforth image alone. The memory
cost can become a problem even on large machines for code
that uses the dictionary for lookup tables, or otherwise cre-
ates many words at run-time).

Paysan, Ertl New Gforth Header

somewhat expensive. This is especially relevant
when defining a huge number of words for using
a wordlist as a lookup table for data.
A part of that expense could be reduced by using

a hash table for deduplication rather than the lin-
ear search we use now, but we did not pursue this
direction for now. Instead, we introduced

create-from (nt "name" --)

This creates a hidden18 word with an empty body
that has the same method implementations as nt.
Implementationwise, this means that we just copy
the vt address instead of duplicating and later dedu-
plicating the vt.
Gforth uses create-from to implement all the

common definition words (such as constant). But
if a word is modified after that (with immediate,
does> or one of the set-... words), it incurs the
cost of duplication and, later, deduplication.
In combination with noname19, our current im-

plementation still duplicates the vt, changes the
name>string and name>link implementation and
eventually deduplicates the vt; we plan to optimize
this case in the future.

4.8 Out-of-band data
Gforth keeps some header-related data in other
places than the header.

Hash table

Gforth uses a hash table to speed up dictionary
searches. This hash table is in allocated mem-
ory; it is built on system startup by inserting all
the words from the linked-list representation of the
wordlists, and is rebuilt in the same way when nec-
essary (e.g., to increase the number of buckets).
The hash table is also needed with the new header

design (linear search in a linked list does not be-
come faster with the new header), and our imple-
mentation is actually hardly affected by the header
change.

Location information

Gforth 1.0 keeps a lot of source code location infor-
mation around, but it is all out-of-band. In partic-
ular, there is an array that contains a location for
every dictionary cell. If a dictionary cell is the nt of
a word, the corresponding location indicates where
the word is defined. If a dictionary cell is some
threaded-code cell, the corresponding location indi-
cates the source code for which this threaded-code
cell was generated.

18You have to reveal the word to make it visible.
19The next defining word after noname produces a nameless

word.

4.9 +TO, ADDR

Many Forth systems, including Gforth, also sup-
port +to name (for incrementing name) and, in
some cases, addr name (for taking the address of
name20). We will only look at +to in the following,
but the issue is similar for addr.
The most straightforward way to implement +to

is to have another method (+to) and implement
+to similar to to. This leads to similar code at the
+to definition, but also the various (+to) imple-
mentations would look very similar to their respec-
tive (to) implementations; e.g., for fvalue they
would look as follows:

: fvalue-to (r xt-fvalue --)
>body f! ;

opt: drop]] >body f! [[;

: fvalue-+to (r xt-fvalue --)
>body f+! ;

opt: drop]] >body f+! [[;

To avoid this code duplication, Gforth employs
the following approach: At the start of TO/+TO
text interpretation, the variable to-style# is set
to indicate which of the two is currently being text-
interpreted, then the same code is executed for both
words, and in the end, this variable is used to pick
the right xt (f! or f+! in this case) from a table,
and then execute or compile, it. The correspond-
ing code for fvalue looks as follows:

Create f!-table ’ f! , ’ f+! ,

: fvalue-to (r xt-fvalue --) \ gforth
>body f!-table to-!exec ;

opt: drop]] >body [[f!-table to-!, ;

While using a global variable makes the code
smell, variants of this approach have been used in
Forth systems for decades, without known prob-
lems; in contrast to the state-smartness problem
[Ert98], the consumer of the value in to-style# is
not separated from the producer if the to-like words
parse (as they do in Gforth).21

For simplicity of exposition, we ignore this par-
ticular twist in the rest of this paper.

20Addr destroys one of the advantages of value-flavoured
words: That they have no aliases and can therefore be al-
located to registers, or their accesses reordered wrt memory
accesses and accesses to other value-flavoured words. Addr
exerts this destructive effect already when it can be applied
to a word, even when it is not actually applied, because there
is no guarantee that it will not be applied later. One way
to deal with this would be to make it explicit at word defi-
nition whether addr can be applied to this word, and report
an error if addr is applied to a word to which it cannot not
be applied.

21Some other systems have non-parsing variable-setting
to implementations, and one can produce funny effects
with them <news:2017Jan7.150224@mips.complang.tuwien.
ac.at>.

http://al.howardknight.net/msgid.cgi?ID=156182935900
http://al.howardknight.net/msgid.cgi?ID=156182935900

Paysan, Ertl New Gforth Header

5 Examples
This section shows examples of using the set-...
words to perform things that were much less elegant
with the old header. The shown code is usually sim-
plified: It does not show some of the complications
for extra features of Gforth that are not the focus
of the present work, e.g., +to.

5.1 Constant

: constant (x "name" --)
create ,
[’] @ set-does>
[: >body @]] literal [[;] set-optimizer

;

This first defines constant as a create...does>
word with the does> action @. The program-
mer is not allowed to change constants, so our
compile, implementation (the quotation before
set-optimizer) compiles the constant’s value x as
a literal, which has the same effect, but is cheaper
than the code that would be produced without the
set-optimizer part (2 Aarch64 instructions in-
stead of 11).
The actual Gforth implementation of constant

uses a native-code docon. This docon has been
there since Gforth’s inception, and was important
for performance before we switched to primitive-
centric threaded code (it takes 5 Aarch64 instruc-
tions, compared to 10 for the does>-based definition
above).

5.2 Fvalue

: fvalue-to (r xt-fvalue --)
>body f! ;

opt: drop]] >body f! [[;

: fvalue (r "name" --) \ float-ext
fconstant
[: >body]] Literal f@ [[;] set-optimizer
[’] fvalue-to set-to ;

Fconstant is defined analogously to constant;
Fvalue reuses the execute/does part of
fconstant, but defines a different optimizer
that accesses the body at run-time in order to
treat changing values correctly; the resulting code
performs 3 Aarch64 instructions.
The to implementation is set to fvalue-to. Its

definition and its optimizer are quite straightfor-
ward. One non-obvious thing that happens when
compiling to name is that name’s xt is compiled
as a literal, followed by >body f!; constant folding
performs the >body at compile-time rather than at
run-time, so the final code generated when compil-
ing to name is a literal followed by f! (4 Aarch64

instructions, compared to 20 without this opti-
mizer).

5.3 defer

: value-to (x xt --)
>body ! ;

opt: (xt --) \ run-time: (x --)
drop]] >body ! [[;

: defer-defer@ (xt1 -- xt2)
>body @ ;

opt: (xt --)
drop]] >body @ [[;

: perform @ execute ;

: defer ("name" --)
create [’] abort ,
[’] perform set-does>
[: >body]] lit-perform [[, ;]

set-optimizer
[’] value-to set-to
[’] defer-defer@ set-defer@ ;

This example shows setting the execute/does>,
compile,, to and defer@ methods, with to and
defer@ having optimizers.

5.4 Default and immediate compila-
tion semantics

: default-name>comp (nt -- xt1 xt2)
name>int [’] compile, ;

: imm>comp (nt -- xt1 xt2)
name>int [’] execute ;

: immediate (--) \ core
[’] imm>comp set->comp ;

: immediate? (nt -- flag)
name>compile nip [’] execute = ;

The default compilation semantics are to com-
pile the execution semantics, i.e. (in Gforth 1.0)
the interpretation semantics. Default-name>comp
implements the default compilation semantics.
Most defining words (e.g., create and :) use
default-name>comp as implementation of the
name>compile method.

Immediate changes the compilation semantics
to be the same as the execution/interpretation
semantics. So this implementation changes the
name>compile implementation to produce the xt of
execute (instead of compile,) as xt2; so when you
execute the result, it eventually executes the xt of
the word.

Paysan, Ertl New Gforth Header

Immediate? shows how one can determine the
immediacy of a word based on name>compile. But
there is actually rarely a need to check for im-
mediacy. Instead, you can use name>compile di-
rectly. E.g., a text interpreter in compile state
can just perform name>compile execute to per-
form the compilation semantics of a word, without
worrying about immediacy. Postpone can also be
implemented without worrying about immediacy:

: postpone ("name" --)
parse-name find-name dup 0= -13 and throw
name>compile swap]] literal [[compile,

; immediate

5.5 To

To is an example of a word that has neither default
compilation semantics nor immediate compilation
semantics.22 We first show how to implement to
directly:

: to-int (v "name" --)
parse-name find-name dup 0= -13 and throw
(to) ;

: to-comp (compilation: "name" --)
(run-time: v --)

parse-name find-name dup 0= -13 and throw
]] literal (to) [[; immediate

: to-name>comp (nt -- xt1 xt2)
drop [’] to-comp [’] execute ;

synonym to to-int
’ to-name>comp set->comp

To-int has the same interpretation semantics as
to, and to-comp (explained below) the same com-
pilation semantics. We then define to-name>comp,
which later serves as the name>compile implemen-
tation for to. Finally, to is defined as synonym for
to-int, copying (among others) the interpretation
semantics of to-int. The compilation semantics is
then overwritten with set->comp.

Note that to-comp resolves the (to) method at
compile time through the optimizer of (to) (not
shown here).

5.6 Interpret/compile:

Directly defining a word like to is cumbersome,
so Gforth has two more convenient ways to define
them. First, there is interpret/compile:, which

22Standard programs must not tick or postpone to, mak-
ing an immediate state-smart implementation possible.
Other standard words (e.g., s") do not have this restriction.
We demonstrate a to that works even without this restric-
tion, as an example for this whole class of words, because it
also shows the usage of (to).

has been in Gforth since 1996. You can use it to
define to as follows:

’ to-int ’ to-comp interpret/compile: to

The interface interpret/compile: has been de-
signed for the previous header implementation, but
can be implemented with the new header implemen-
tation relatively straightforwardly:

: i/c>comp (nt -- xt1 xt2)
>body cell+ @ [’] execute ;

: interpret/compile: (i-xt c-xt "name" --)
defer , lastxt defer!
[’] defer-defer@ set->int
[’] i/c>comp set->comp
[’] no-to set-to
[’] no-defer@ set-defer@ ;

The interpretive behaviour of name is
like for a deferred word, so we implement
interpret/compile: as inheriting from defer.
It stores i-xt to the first cell of the body with
lastxt defer!. The name>interpret imple-
mentation fetches i-xt by reusing defer-defer@;
note that unlike most words, for name xt 6=nt, so
name>interpret is not a noop here.
In addition, it stores the c-xt in the second cell

of the body (with ,). The compilation semantics is
to execute c-xt, and the name>compile implemen-
tation i/c>comp implements this behaviour.

We inherit from defer, so we inherit the (to)
and defer@ implementations for defer (i.e., is,
defer!, action-of and defer@ would work). We
do not want that, so we override these methods
with no-to and no-defer@, which report an error if
these words are used on name. Note that the inter-
pretation semantics explicitly uses defer-defer@
rather than the generic defer@, because the latter
no longer works after the set-defer@.

Interpret/compile: has been criticized on aes-
thetic grounds, so Gforth also has code for
compsem:, which is used like opt:. The implemen-
tation of compsem: is short23, but would require
explaining Gforth features beyond the scope of this
paper, so we skip it here.

23http://git.savannah.gnu.org/cgit/gforth.git/
tree/set-compsem.fs

http://git.savannah.gnu.org/cgit/gforth.git/tree/set-compsem.fs
http://git.savannah.gnu.org/cgit/gforth.git/tree/set-compsem.fs

Paysan, Ertl New Gforth Header

x
...
vt

dodoes
5e

...
(to)
...

does
...

f@

fvalue-to
...
vt

docol
>body

f!
;s

compile,
...

vt
docol

drop]] >body f! [[;

y
...
vt

dodoes
x

...
(to)
...

does
...

perform

s-to
...
vt

docol
>body

@
(to)
;s

compile,
...

vt
docol

?fold-to >body @
]] literal (to) [[;

to-comp
...
vt

docol
...

]] literal (to) [[;

to
...
vt

dodoes
to-int

...

name>compile
...

to-name>comp
...
vt

docol
drop

[’] to-comp
[’] execute ;

Figure 6: Data structures for the example

5.7 Synonym

: s-to (val nt --)
>body @ (to) ;

opt: (xt --)
?fold-to >body @]] literal (to) [[;

: s-defer@ (xt1 -- xt2)
>body @ defer@ ;

opt: (xt --)
?fold-to >body @]] literal defer@ [[;

: synonym ("name" "oldname" --)
defer
parse-name find-name dup 0= -13 and throw
dup lastxt defer!
compile-only? if compile-only then
[: >body @ compile, ;] set-optimizer
[: >body @ name>interpret ;] set->int
[: >body @ name>compile ;] set->comp
[’] s-to set-to
[’] s-defer@ set-defer@ ;

Synonym stores the nt of oldname in the body
of name. The normal way to deal with name is
through words that use the nt. name>interpret
gets the nt of oldname and gets its xt; likewise
for name>compile. Text interpretation, ticking and
postpone work through these words.

The implementation of (to) also gets the nt of
oldname and performs its (to) implementation; if
oldname has to oldname semantics, they will be

performed; if not, oldname’s (to) implementation
reports an error. The (to) implementation also has
an optimizer that computes oldname’s nt and com-
piles its (to) implementation (which in turn trig-
gers oldname’s (to) optimizer). The implementa-
tion of defer@ is analogous.
Note that these things work for arbitrarily deep

chains of synonyms, always delegating to implemen-
tation of the same method at the next level.

In order to make name’s nt also work as xt,
synonym inherits from defer. So, if you execute
the nt of name, this will execute the nt of old-
name; eventually a word with nt=xt is performed.
Synonym also has an optimizer for compile,ing the
nt, which optimizes away the indirection.

5.8 Example
This example presents these words in action. Fig-
ure 6 shows the data structures involved in the ex-
ample.

5e fvalue x
synonym y x
: foo to y ;

In this code, to y performs the compilation se-
mantics of to by performing the name>compile
method and its implementation to-name>comp. As
a result, the text interpreter executes to-comp,
which first parses y and produces its nt, and then
compiles the nt as a literal followed by (to). (to)

Paysan, Ertl New Gforth Header

has an optimizer that takes the preceding literal (y’s
nt) into account and then compile,s s-to. This
calls the optimizer of s-to, which in this case con-
sumes the preceding literal (still y’s nt), then fetches
the body of y (giving x’s nt), and compiles that as
literal, followed by (to). Again, (to)’s optimizer
resolves this, this time to compile,ing fvalue-to.
This calls the optimizer of fvalue-to, which com-
piles >body f!. >Body’s optimizer consumes the
preceding literal (x’s nt), and compiles x’s body as
literal. The following f! is compiled as-is. As a
result, the code for foo is the same as produced by
directly writing

: foo [’ x >body] literal f! ;

6 Empirical Results
The goal of this work has been design cleanli-
ness and flexibility, not performance. But here we
demonstrate that performance does not suffer (and
actually benefits a little).
Unfortunately, since the work on the new headers

began in 2012, a lot of other changes have been
made in Gforth (> 3000 commits), and the header-
related changes cannot be isolated with reasonable
effort.
Nevertheless, we take various measures to isolate

the performance effects: We compiled the last old-
header Gforth24 and a recent new-header Gforth25

with gcc-4.7.2, a compiler version where both the
old and the new version use all the performance
features of Gforth. We use --ss-number=14 to en-
sure that both versions use almost the same static
superinstructions. And finally, instead of measur-
ing a task such as compilation of a complete file,
where other features (in particular, IDE features
like locate and where) impact the performance,
we look at individual operations.
In the following results, we do not use the sim-

plified implementations shown above, but the more
complex implementations in Gforth.
All results are in cycles of user time on a Core

i7-4790K (Haswell).

6.1 Find-name

Gforth uses an out-of-band hash table that does not
use the link field of the header during find-name,
so the new header structure should have little effect
on find-name performance. Nevertheless, the text
interpreter calls find-name once for every word it
interprets or compiles, so we present performance
numbers here. The following table shows the av-
erage run-time of one invocation of find-name on

24commit 617d4a8deccf5f4eefeb236f972171d6f65bb685
25commit 045ff553a7c6304015be66533ead115c93866882

one word out of a set of 1602 words (all present in
the search order):

cycles old new
find-name 3184 3855
Apparently the other changes between these ver-

sion have slowed down find-name a little.

6.2 Name>interpret and name>compile

When text interpreting, the nt produced by
find-name is then usually processed either
by name>interpret (when interpreting) or
by name>compile (when compiling). For
the old header, normal words, aliases26, and
interpret/compile: words are treated in dif-
ferent paths of a cascade of ifs spread across
a number of words. For the new header, differ-
ent method implementations are called. So for
different word types, the performance may be
different; we therefore measure the performance of
name>interpret and name>compile for different
word types:

cycles old new
name>interpret normal 123.8 15.0

name>interpret alias 123.3 24.6
name>interpret i/c 124.2 24.7

name>compile normal 136.4 32.1
name>compile alias 138.8 47.4

name>compile i/c 143.2 30.1
This part of text interpretation is quite a bit

faster with the new header thanks to not having
to perform a lot of tests, but in the overall scheme
of things, this speedup vanishes in the noise.

6.3 Compile,

When compiling, Gforth eventually compile,s
some xt (e.g., because name>compile produced the
xt of compile, as xt2, and the text interpreter
executes that), and that compile, eventually com-
piles a primitive. The path from entering compile,
to compiling a primitive has changed a lot: With
the old header, compile, uses an if-cascade to
decide the word type and what code to generate;
the new header uses method dispatch instead. De-
pending on where in the if-cascade a word type
is, the performance can vary; in particular, does>-
defined and value-defined words are early in the
if-cascade; by contrast, the old compile, recog-
nizes primitives by excluding all other word types,
so the old compile, performs the the longest chain
of ifs for them.
In the following, we present the run-time of the

whole compile,, as well as a number without code
generation. The latter number does not include the
actual code generation of the primitive, nor (in the

26Aliases are similar to synonyms; synonyms are not sup-
ported in the old header.

617d4a8deccf5f4eefeb236f972171d6f65bb685
045ff553a7c6304015be66533ead115c93866882

Paysan, Ertl New Gforth Header

new system only) recording which threaded-code lo-
cation corresponds to which source code location; it
does include the time spent on laying down the in-
line parameters of the primitives that execute the
does and value words.

cycles old new
compile, does 1074 1156

without code generation 153 51
compile, value 963 1103

without code generation 151 49
compile, primitive 1013 985

without code generation 235 12
In the without code generation lines, we can see

that the overhead of selecting what to compile has
become much smaller. However, that overhead is
just a small part of the costs of compile,, and the
additional work of recording the source/threaded-
code correspondence has more than made up for
these savings.

6.4 >Name

Sometimes it is useful to get back from that xt of a
word to the nt; e.g., the decompiler does it in order
to print the name of a word. Gforth has a word
>name (xt -- nt|0) that does this or returns 0
if its argument is not an xt. With the new header,
the conversion from xt to nt is a noop (but if you
want to make it explicit, you can use xt>name). But
>name also does the checking, and Gforth 1.0 uses
relatively reliable, but costly heuristics to do that.
Gforth 0.7 uses heuristics for both conversion and
checking.

cycles old new
’ create >name 1281 2280

’ noop >name 51971 2314
For the old scheme, >name is particularly expen-

sive for primitives like noop, while for normal words
like create, it is not so extreme. For the new head-
ers, the heuristics for non-primitives are more ex-
pensive than for the old headers. But these costs
have not been a performance bottleneck yet, and
we can think of some ways to improve these costs if
they ever prove to be a problem.

6.5 Header creation

As mentioned in Section 4.7, creating words is more
expensive in Gforth 1.0 if the overhead of dupli-
cation and deduplication is incurred, but is fast if
that is avoided with create-from. We measured
this with a benchmark that defines 1,000,000 con-
stants in a wordlist, using different implementa-
tions of constant. The numbers reported are cy-
cles per created word; for the new results, we use
snapshot gforth-0.7.9_20190829 compiled with
gcc-4.9.2.

new
cycles old deduplicated create-from

constant 2168 9477 1742
This performance difference is not just relevant

for applications that use wordlists as a data struc-
ture. Loading programs is also affected: We saw
a speedup by 30% when loading the OpenGL and
Xlib libraries.

7 Related work
In the beginning, Forth stored the length and 3 let-
ters of the name [Moo74]. Fig-Forth supported full-
length names, optionally shortened to the length
stored in width [Tin81]. As a result, it was expen-
sive to get from the name field to the link field (as
required repeatedly during name search) and other
fields. Smith proposed [Smi80] to reduce this cost
by moving the name characters before the count
byte, with the link field still pointing to the count
byte; In Smith’s scheme, the name characters are
stored in reverse order, because thanks to width
they system may store only a part of the name, and
that part should be the start of the name. Our
new header is similar in putting the variable-length
name string before the rest of the header, at a nega-
tive offset from the nt address that we use for header
accesses; however, we store the name characters in
conventional order, because we can use the count to
get at the start of the name.

Shaw [Sha88] puts multiple code fields in head-
ers. In addition to the ordinary code field, a word
can have a to code field, which corresponds to our
(to) method, but uses a different execution mecha-
nism. Shaw also uses the multiple code field mech-
anism to get rid of state-smart words, by having
an optional code field for the compilation semantics
(the ordinary code field implements interpretation
semantics); it uses the same code field for that as
for to, using flags to decide if that code field is used
for compilation semantics. While there are signifi-
cant differences from the new Gforth header, Shaw’s
work is conceptually still closer than all others.

CmForth27 by Charles Moore and Pygmy28 by
Frank Sergeant implement dual-semantics words by
putting a word for the interpretation semantics in
the FORTH vocabulary and a word for the compi-
lation semantics in the COMPILER vocabulary, with
the text interpreter searching the appropriate vo-
cabulary for the current use. Mark Humphries
also implements dual-semantics words with multi-
ple headers, but he puts them in the same wordlist,
with flags that indicate whether the word should be
found when looking for a certain semantics.

27https://raw.githubusercontent.com/ForthHub/
cmFORTH/combined/cmforth.fth

28http://pygmy.utoh.org/pygmyforthmanual.html#
h1id47

https://raw.githubusercontent.com/ForthHub/cmFORTH/combined/cmforth.fth
https://raw.githubusercontent.com/ForthHub/cmFORTH/combined/cmforth.fth
http://pygmy.utoh.org/pygmyforthmanual.html#h1id47
http://pygmy.utoh.org/pygmyforthmanual.html#h1id47

Paysan, Ertl New Gforth Header

MPE’s VFX Forth has set-compiler that works
like Gforth’s set-optimizer: It changes what
compile, does for the preceding word [MPE16,
Chapter 19.7.3]. This suggests that VFX imple-
ments the intelligent compile, in a similar way as
the new Gforth header, but to the best of our knowl-
edge this has not been published.
In 2004, Ertl sketched29 a header structure with

an additional field for the intelligent compile,, and,
for named words, an xt2 field for implementing com-
pilation semantics: for normal words, the xt2 field
would contain the xt of compile,; for immediate
words, the xt of execute; and for other words, it
would contain something else. However, it requires
some additional complexity to implement find in a
way that supports user-defined text interpreters.
The new Gforth header differs from the 2004

header ideas in that it implements compilation se-
mantics by defining what name>compile does for a
word. This means that unlike in the 2004 ideas, the
xt1 of a compilation token can be different from the
xt representing the interpretation semantics, thus
making it simpler to implement find. In addition,
the new Gforth header allows changing what sev-
eral other words do for the present header, which
supports defining value-like words, synonyms, etc.
And it stores the xts for all these method implemen-
tations in a separate structure (vt) that is dedupli-
cated.

8 Conclusion

Gforth’s old header (based on the original Forth
header) leads to complex and inflexible implemen-
tations of words like compile,, name>interpret,
name>compile,, and to; it supports dual-semantics
words through an ugly hack; we did not even im-
plement synonym, because that would have required
adding more special cases.
By contrast, the new Gforth header has a

prototype-based object-oriented design that allows
extending the behaviour of words like compile,,
name>interpret, name>compile, and to for indi-
vidual words. This flexibility makes it relatively
easy and compact to implement, e.g., synonym such
that the created synonyms also work with to if the
original worked with to.

Acknowledgments

We thank the reviewers for their comments, which
helped to improve the paper.

29https://www.complang.tuwien.ac.at/forth/
header-ideas.html

References
[Bor86] Alan Borning. Classes versus proto-

types in object-oriented languages. In
ACM/IEEE Fall Joint Computer Confer-
ence, pages 36–40, 1986. 4.5

[Bro84] Leo Brodie. Thinking Forth. Fig Leaf
Press (Forth Interest Group), 100 Dolores
St, Suite 183, Carmel, CA 93923, USA,
1984. 1

[EP18] M. Anton Ertl and Bernd Paysan. Clo-
sures — the Forth way. In 34th EuroForth
Conference, pages 17–30, 2018. 4.1

[Ert98] M. Anton Ertl. State-smartness — why
it is evil and how to exorcise it. In Euro-
Forth’98 Conference Proceedings, Schloß
Dagstuhl, 1998. 2, 4.9

[Ert02] M. Anton Ertl. Threaded code varia-
tions and optimizations (extended ver-
sion). In Forth-Tagung 2002, Garmisch-
Partenkirchen, 2002. 2, 6, 4.2

[Ert16] M. Anton Ertl. Sections. In 32nd Euro-
Forth Conference, pages 55–57, 2016. 4.6

[Koc15] Matthias Koch. Flags, Konstantenfaltung
und Optimierungen. Vierte Dimension,
31(arm):16–18, 2015. 4.4

[Moo74] Charles H. Moore. Forth: A new way to
program a mini-computer. Astron. Astro-
phys. Suppl., 15:497–511, 1974. 1, 4.2, 7

[MPE16] Microprocessor Engineering. VFX Forth
for x86/x86 64 Linux, 4.72 edition, 2016.
7

[Pay19] Bernd Paysan. Constant Folding für
Gforth. Vierte Dimension, 35(2):17,
2019. 4.4

[Pel17] Stephen Pelc. Special words in Forth. In
33rd EuroForth Conference, pages 37–45,
2017. 2

[Sha88] George W. Shaw. Forth shifts gears.
Computer Language, pages 67–75 (May),
61–65 (June), 1988. 7

[Smi80] Robert L. Smith. A modest proposal for
dictionary headers. Forth Dimensions,
I(5):49, 1980. 7

[Tin81] C. H. Ting. Systems Guide to fig-Forth.
Offete Enterprises, Inc., San Mateo, CA
94402, 1981. 7

https://www.complang.tuwien.ac.at/forth/header-ideas.html
https://www.complang.tuwien.ac.at/forth/header-ideas.html

	Introduction
	Requirements
	XT and NT
	New Gforth approach
	Alternatives
	XT=NT
	NFA as XT=NT
	CFA as XT=NT

	The New Header
	Organization and Fields
	Variations

	Methods
	Execute (... xt -- ...)
	does (... body-addr -- ...)
	Compile, (xt --)
	Name>interpret (nt -- xt)
	Name>compile (nt -- xt1 xt2)
	(to) (val xt --)
	Defer@ (xt1 -- xt2)
	Name>string (nt -- c-addr u)
	Name>link (nt1 -- nt2|0)
	Grouping
	Factoring

	Find
	To optimization and locals
	Setting method implementations
	Deduplication
	Create-from
	Out-of-band data
	Hash table
	Location information

	+TO, ADDR

	Examples
	Constant
	Fvalue
	defer
	Default and immediate compilation semantics
	To
	Interpret/compile:
	Synonym
	Example

	Empirical Results
	Find-name
	Name>interpret and name>compile
	Compile,
	>Name
	Header creation

	Related work
	Conclusion

