
Forth Projectional Editing

Ulrich Hoffmann <uh@fh-wedel.de>

Abstract

Projectional editing is an alternative way to handle programs and data. Instead of
starting with text based source code it is centered around internal program/data struc-
tures and so called projections create editable representations that allow to modify the
internal structures. In the Forth context memory seems to be the appropriate internal
data structure. Different editors interpret memory content in specific ways and allow the
user to modify it in an appropriate fashion. A hex and a stack editor are described and
other editors are proposed. The idea of Forth projectional editing gives a general view
to program and data handling that allows to classify techniques used in different Forth
systems.

1 Introduction

Projectional editing [1] is an approach to edit
programs in a programming language that does
not rely on manipulating source code and then
scan, parse, translate it to object code. Instead
a projectional editor presents a pleasantly ed-
itable representation of some internal structure
(often an abstract syntax tree). Editing this
representation results in appropriate modifica-
tion of the internal data structure, see figure
1. Instead of source code, the internal abstract
representation is the original artifact and all
other representations are produced from it: To
persist a storage representation, to run an exe-
cutable representation is generated. For editing

appropriate editable representations are cre-
ated.

The process of building editable representa-
tions from internal data is called projection
as it might only extract some important as-
pects of the internal data structure while leav-
ing others untouched. Different projections for
the same structure can exist, allowing to edit
it in different ways. As an example, a decision
table could be edited in a textual representa-
tion as an array initialization or it could be
presented to the user in tabular form visualiz-
ing a decision table similar to those used in a
design document.

Projectional editing can be used with great
benefit when using domain specific languages

generate

project

internal data structure
abstract representation

editable representation

object
code

executable representation

code
store

storage representationstore/
retrieve

project

editor

editor

Figure 1: Projectional Editing

(DSLs). They often deal with specific aspects
of a problem domain that might have special
visual representations. Projectional editing can
provide familiar visualization for (parts of) the
DSL.

2 Forth Projectional

Editing

Forth is especially strong when creating DSLs.
Its approach however is not the traditional one
building an abstract syntax tree for the inter-
nal representation of programs and generate
code from this. Instead code generation — even
native code generation — typically takes place
in a single pass directly starting from Forth
source code. This is to support the Forth’s in-
teractive nature.

In order to apply projectional editing ideas
to Forth a suitable internal representation has
to be identified. As Forth is strongly memory
oriented (@ ! , ALLOT MOVE . . .) it seems to
be reasonable to use memory as the internal
data structure and start different projections
from there. Forth programmers are used to
take some memory area, represent their data
structures in this memory and later on inter-
pret (project) the memory area in this specific
way by using only suitable operators on it.1

The classical Forth block editor already inter-
prets memory in a specific way: BLOCK returns
a memory address of a typically 1 KB large

memory area that is interpreted as 16 lines of
64 characters without line breaks. Forth pro-
grammers edit their source code in these blocks
using the block editor and the system inter-
prets and compiles that program by means of
the LOAD operator. (The block/buffer subsys-
tem transparently handles storing and retriev-
ing blocks.)

2.1 Hex editor

The first projection to look at is a very gen-
eral one that interprets data in memory as just
bytes. This leads to a hex editor. This editor is
similar to the DUMP utility that can be found in
many systems but in addition memory is not
just displayed but the hex dump becomes ed-
itable. The hex editor and dump utility have
the same interface (c-addr u --) and the
editor is just a Forth word that can be invoked
both interactively and also from within a run-
ning program. It returns to the calling word
when the editor is exited. Figure 2 shows a
sample hex editor session: The editor view is
split into two main parts: the hex dump and
the character dump. The TAB key switches be-
tween the two. The cursor is initially placed in
the hex dump and can move by means of the
cursor keys. Appropriate data can be entered
and directly modifies the represented memory.

A binary editor for Forth blocks can simply be
defined as

: hedit (u --)

block 1024 hex-edit update ;

1Type safety is assured by the programmer not the compiler.

$ sf hexedit.fs

(hex-editor loaded. Usage: c-addr u HEX-EDIT) ok

Create conference ’E’ c, ’u’ c, ’r’ c, ’o’ c, ’F’ c, ’o’ c, ’r’ c, ’t’ c, ’h’ c,

conference 30 hex-edit

00003CB44 45 75 72 6F 46 6F 72 74 68 08 68 65 78 2D 65 64 EuroForth.hex-ed

00003CB54 69 74 63 65 2A 00 0F 00 4F 14 00 00 2A 00 itce*...O...*.

Figure 2: A sample hex-editor session

If a Forth system implements its stacks in main
memory then the stacks also become editable
using the hex editor, e.g.:

10 20 30 40 sp@ 4 cells hex-edit

will start the hex editor on the top most 4 stack
items:

0BFFFFA80 28 00 00 00 1E 00 00 00 14

00 00 00 0A 00 00 00 (...............

The exact layout of the stack in memory is of
course system specific.

For this however a different projection of mem-
ory might be more appropriate. This leads to
the stack editor.

2.2 Stack Editor

The stack editor (sample session in figure 3)
displays an editable stack representation with
each stack item on a line of its own and al-
lows to interactively modify the stack. Each
item ist shown in its character, unsigned hex-
adecimal, unsigned decimal and signed decimal
representation. The stack editor items can be
cut/copied and pasted (Ctrl-X, -C, -V) or re-
placed by items that are the result of a Forth
fragment entered on the items line.

Like the hex editor also the stack editor is just
a word that can be invoked when appropriate
and resumes execution of the caller when ex-
ited. So it can be inserted in source where ap-
propriate and be used as an interactive alter-
native for .S debugging.

2.3 Other editors

Adopting the idea of Forth Projectional Edit-
ing (i.e. projections from memory to editable
representations) in other areas would enable
a large selection of possible editors. Examples
might be:

• A Variable Editor
This could represent a VARIABLE defined
word similar to the stack editor in dif-
ferent ways and interactively allow for
appropriate changes. Depending on the
programmer intended variable type dif-
ferent representations might be reason-
able. For example a flag might be shown
as a toggle that can be flipped or enu-
meration data could show and allow to
select one of the possible values.

• A User Area Editor
In a multi tasking system the user area
is a collection of task specific variables.
The idea of the variable editor could be
extended to editing the entire user area
along with the user variable name and its
content.

• A Structure Editor
While a variable editor would allow for
editing just a single cell, a structure
editor could project an editable repre-
sentation of an entire structure defined
by BEGIN-STRUCTURE, FIELD:, etc. By
introspection it could display the field
names and provide appropriate variable
editors for each of the fields in the struc-
ture.

> gforth stackedit.fs

10 20 30 40 50 -1 stack-edit

0: ’?’ $FFFFFFFFFFFFFFFF #18446744073709551615 -1

1: ’2’ $32 #50 50

2: ’(’ $28 #40 40 42

3: ’.’ $1E #30 30

4: ’.’ $14 #20 20

5: ’.’ $A #10 10

up/down: select line DEL Ctrl-X, -C , -V Forth words leaving one item

Figure 3: A sample stack-editor session

• A Wordlist Editor or Dictionary
Editor
Forth systems typically use a system spe-
cific way to organize their dictionary. A
projectional editor for the dictionary or
a single word list would allow to ma-
nipulate the dictionary, i.e. change the
order of definitions, adapt spelling or
word names, change immediacy of words,
possible removing definitions, and oth-
ers. This way the dictionary becomes the
central internal data structure. Also the
search-order could be subject of a Search
Order Editor.

• A Word Definition Editor
A Forth decompiler typically recreates
Forth source code from the memory rep-
resentation of a definition in the Forth
dictionary. A Word Definition Editor
could based on a decompiler project a
definition in dictionary to an editable
representation in source code (tokens or
text) and so allow for changing defini-
tions directly in the dictionary.

• A Screen Editor with line and
screen terminators
As mentioned before the traditional way
to represent Forth source code in mem-
ory is 16 by 64 characters in blocks.
Source code could be represented in dif-
ferent ways with handling of line termi-
nators (and possible screen terminators)
and a screen editor would perform the
appropriate projection to user editable
source code.

Editors for other data structures seem very
well to be possible. The main idea here is to
see all of theses editors as a projection from
their memory representation to an appropriate
editable representation.

3 Related work

Since Martin Fowler’s blog article [1] in 2008
some systems have been developed around pro-

jectional editing for DSLs. Most prominent is
Jetbrain’s Meta Programming Systems (MPS)
[2] that allows for defining domain specific
languages along with appropriate projectional
editors. It also supports projectional editing
for (parts of) contemporary languages (Java,
Javascript, XML, C, . . .).

In Forth context the Jupiter Ace [3] home com-
puter includes a Word Definition Editor and
follows the code is the source paradigm.

The ForthOS [4] system uses 4 KB screens with
a source representation of 80 x 25. The Enth [5]
system has a screen editor (CodeEd) that han-
dles line terminated source code in fixed sized
1 KB blocks.

HolonForth [6] stores word definitions along
with meta data in a database and includes
an integrated editing environment that struc-
tures projects in a hierarchical way. For editing
source code is projected to a full screen editor.
Machine code is generated from the internal
data base representation.

ColorForth tokenizes word names on entry to
32 bit items and stores these in screens. The
colorForth editor generates an editable rep-
resentation of this token sequence and allow
for interactive manipulation of the tokenized
source code. The colorForth compiler used the
token sequence to generate machine code.

4 Conclusion and future

work

Projectional editing gives a different view of
programming language editing based on in-
ternal abstract representations. It opens addi-
tional possibilities for handling programs.

Although Forth systems have never explic-
itly used projectional editing its ideas are
well present in several Forth systems and the
idea of projecting memory to specific editors
has many interesting applications that comple-
ment Forths interactive nature.

Hex- and Stack editors have been implemented
as Forth-200x standard programs. Other edi-

tors as mentioned in section 2.3 seem not to be
more difficult to implement but some of them
probably need system specific details. Among
the proposed editors a Structure Editor seems

to be the most useful. One can also envision
mixed editors that use different editors for dif-
ferent parts of memory.
Is the map the territory? You decide.

Forth is stacks, words, and blocks; start there.
Jeff Fox [8]

References

[1] ProjectionalEditing, M. Fowler, martinfowler.com/bliki/ProjectionalEditing.html, 2008

[2] Meta Programming System, Jetbrains, jetbrains.com/mps

[3] Jupiter Ace, Wikipedia, en.wikipedia.org/wiki/Jupiter_Ace

[4] ForthOS, Wikipedia, sources.vsta.org/forthos/

[5] Enth Flux aha colorForth, Sean Pringle, www.ultratechnology.com/enthflux.htm, 2000

[6] Holonforth, Wolf Wejgaard, holonforth.com

[7] ColorForth, Charles Moore, colorforth.github.io

[8] Forth is stacks, words, blocks, Jeff Fox, www.ultratechnology.com/forth2.htm

