
33rd EuroForth Conference

September 8-10, 2017

College Garden Hotel
Bad Vöslau

Austria

(Preprint Proceedings)

Preface

EuroForth is an annual conference on the Forth programming language, stack
machines, and related topics, and has been held since 1985. The 33rd EuroForth
finds us in Bad Vöslau (near Vienna) for the first time. The two previous Euro-
Forths were held in Bath, England (2015), and on Reichenau Island, Germany
(2016). Information on earlier conferences can be found at the EuroForth home
page (http://www.euroforth.org/).

Since 1994, EuroForth has a refereed and a non-refereed track. This year
there were three submissions to the refereed track, and all were accepted (100%
acceptance rate). For more meaningful statistics, I include the numbers since
2006: 24 submissions, 17 accepts, 71% acceptance rate. Each paper was sent to
three program committee members for review, and they all produced reviews.
The reviews of all papers are anonymous to the authors: This year all three
submissions were from program committee members, and one of them from the
program chair; the papers were reviewed and the final decision taken without
involving the authors. Ulrich Hoffman served as secondary chair and organized
the reviewing and the final decision for the paper written by the program chair.
I thank the authors for their papers and the reviewers and program committee
for their service.

These online proceedings (http://www.euroforth.org/ef17/papers/) also
contain papers and presentations that were too late to be included in the printed
proceedings. In addition, you can find videos (also for presentations without pa-
per or slides in the proceedings) on the proceedings website.

Workshops and social events complement the program. This year’s Euro-
Forth is organized by Gerald and Claudia Wodni

Anton Ertl

Program committee

Sergey N. Baranov, SPIIRAS, Russia
M. Anton Ertl, TU Wien (Chair)
Ulrich Hoffmann, FH Wedel University of Applied Sciences (Secondary Chair)
Phil Koopman, Carnegie Mellon University
Jaanus Pöial, Tallinn University of Technology
Bradford Rodriguez, T-Recursive Technology
Bill Stoddart
Reuben Thomas, SC3D Ltd.

3

http://www.euroforth.org/
http://www.euroforth.org/ef17/papers/

Contents

Refereed Papers
Sergey N. Baranov: A Formal Language Processor Implemented in Forth 5
Bill Stoddart: Halting misconceived? 11
M. Anton Ertl: SIMD and Vectors . 25

Non-Refereed Papers
Stephen Pelc: Special Words in Forth 37
Ron Aaron: Security Considerations in a Forth Derived Language . . 46
Andrew Read and Ulrich Hoffmann: Forth: A New Synthesis 50
Nick J. Nelson: In Cahoots — Forth, GTK and Glade working secretly

together . 56
Howerd Oakford: cryptoColorForth . 62

Presentation Slides
Andrew Haley: A multi-tasking wordset for Standard Forth 64
Bernd Paysan: MINOS2 — A GUI for net2o 68
Ulrich Hoffmann: A Recognizer Influenced Handler Based Outer In-

terpreter Structure . 69

4

Abstract—The structure of a Forth program is described which

implements a language processor for an ALGOL-like programming
language with its context-free component belonging to the class
LL(1). It allows to check that a program in the given formal language
is syntactically correct as well as to convert a correct program into a
pseudo-code for a simple interpreter to interpret it and thus simulate
the program behavior in a certain environment. The ultimate goal of
this work is to build a tool for running experiments with programs in
the Yard language which formally describes the behavior of multi-
layer artificial neural networks on the principles of a machine with
dynamic architecture (MDA) and due to that has a number of specific
language constructs. The tool is assumed to run on a PC under MS
Windows and is based on the system VFX Forth for Windows IA32
which implements the Forth standard Forth 200x of November 2014
(the so called Forth 2014).

Keywords—formal languages, language processor, parser,
regular expressions, Forth.

I. INTRODUCTION

UTOMATED analysis of formal languages started in the
1960s. Various tools were developed for processing both
context free and context dependent formal languages to

be studied with computer machinery. To-day, data processing
technologies are widely used in translation systems for a
variety of computer devices with many applications to support
them. E.g., the Flex/Bison parsers ([1], [2], [3]) are often used
to quickly obtain a particular language processor from a
formal definition of a language. The tool ANTLR [4] is the
next step in developing language processors and is based on
principles close to those of this paper. However, these
mentioned tools constrain the type of the input formal
grammar, and the employed algorithm often requires
enormous memory for storing intermediate data. Moreover,
their usage requires understanding their special language for
representing a formal grammar of the considered
programming language and code generation of the recognized
program is out of scope of those useful tools.

This paper is aimed at developing a flexible and "pocket-
like" inexpensive tool based on the current Forth 2014
standard [5] for experimenting with new formal languages.
Usage of Forth provides the necessary flexibility and
unlimited freedom [6] in designing the respective definitions
while modern computing machinery eliminates a lot of
memory and speed limitations of early 1960s. The tool should
also allow for experiments with code generation for correct
programs and simulation of their execution on some hardware

S. N. Baranov for over 10 years was with Motorola ZAO, St. Petersburg,

Russia. He is now with the St. Petersburg Institute for Informatics and
Automation of the Russian Academy of Sciences, 14 linia 39, St. Petersburg,
199178, Russia (phone: 812-328-0887; fax: 812-328-4450; e-mail:
SergeyBaranov@gmail.com).

platform (code generation and simulation will be the scope of
future work based on the already obtained results).

Any ALGOL-like programming language may be
considered as a set of chains composed from the lexical units
of this language (the so called language lexems or terminals)
according to the rules of the language grammar which splits
into its context-free component and a number of context
dependent rules or constraints [7]. To use the proposed
technique, the context-free component of the language under
consideration should be specified in the formalism of regular
expressions [8], [9] built from the language terms (terminals,
non-terminals, and expressions in them) using three classical
operations: concatenation (sequencing), alternative choice
(branching), and recursion (cycling). Initial terms are language
lexems (terminals) directly recognizable in a program text,
non-terminals denoting language constructs built from
terminals, and an empty string denoting an absence of a
lexem. Context dependencies are specified informally, they
are checked through a mechanism of semantics – special
procedures invoked by the language processor in the process
of input text parsing and which exchange their data via a stack
or global variables.

The text in the given programming language to be
processed is contained in a simple text file considered as a
sequence of symbols (characters) in the 8 bit ASCII coding.
The following 4 classes of characters are distinguished:

1) 96 skip characters (space, tabulation and other "invisible"
symbols);

2) 10 digits – characters which represent decimal digits ,
from "0" to "9";

3) 119 letters – letters of the Latin (52) and Russian (66)
alphabets, both in the upper and lower case, as well as the
underscore symbol "_";

4) 31 special characters – "! ", "" ", "#", "$", "%", "&", " ' ",
"(", ") ", "* ", "+", ", ", "- ", ". ", "/ ", " : ", "; ", "<", "=", ">",
"?", "@", "[", "\ ", "] ", "^ ", "` ", "{ ", " | ", "} ", "~".

Thus a complete set of 96+10+119+31=256 8-bit character
codes is obtained.

The text under processing may contain comments (see
section IV) which are skipped and treated as a single space.

II. SAMPLE PROGRAMMING LANGUAGE

Further narrative will be illustrated with examples in the
OCC language – a subset of C for developing programs to run
on a special kind of hardware [10].

There are a number of lexems (terminals) in any
programming language, denoted in this paper with symbols in
single quotes (apostrophes). Though their particular
nomenclature may be different in different languages, one can
always divide it in 3 groups:

A Formal Language Processor Implemented in Forth
Sergey N. Baranov

A

5

1) lexems of the general mode (distinguished be angle
brackets "<" and ">") in their denotation):

• '<finish> ' – a special terminus lexem with no external
representation;

• '<float> ' – denotation of a floating point number in the
decimal system in accorance with the ANSI/IEEE 754-1985
standard in the format: <d><d>*.<d>*[{E|e}[+|-]<d><d>*] –
a number starts with a digit; there is always a period as a
delimiter between the mandatory integer and a possible
fraction in the significand; if present, the exponent begins
with the Latin character "E" or "e", which may be followed by
plus ("+") or minus ("- "), followed by at least one digit –
examples are 3.14 , 10.E-6 , 123.456e3 , 5.E+1 ;

• '<number> ' – denotation of an integer in binary, octal,
decimal (by default), or hexadecimal, the radix being denoted
by letters "B" or "b" (binary), "C" or "c" (octal), "D" or "d"
(decimal), and "H" or "h" (hexadecimal); in the latter case the
first six letters of the Latin alphabet A..F in any case are used
as digits after 0..9 (if the first significant digits is one of these
letters, then it should be preceded by the digit 0) – examples
are 101B, 111111B (binary), 777C, 100C (octal), 0, 125 ,
126D (decimal), 0ffH , 0AH, 0DH, 1000H (hexadecimal);

• '<operation> ' – an operation sign composed by one or
two special symbols: '- ', '#', '*' , '/ ', '/\' , '/= ', '\/ ', '̂ ', '~', '+',
'< ', '<=', '=' , '=<', '=>', '>', '>='; each of these 17 operations
(except for '~') is dyadic, two of them ('- ' and '+') are both
dyadic and monadic; and '~' is monadic; their order of
execution in compound expressions is determined by their
priorities (all monadic operations have the highest priority 10):

Opera-
tion

Name
Prio-
rity

Opera-

tion
Name

Prio-
rity

'~' Negation 10 '/= ' Not equal 5
'̂ ' Power 9 '<' Less than 5
'=<' Left shift 8 '<=' Less than or

equal
5

'=> ' Right shift 8 '=' Equal 5
'* ' Multiply 7 '>' Greater than 5
'/' Divide 7 '/\ ' And 4
'- ' Subtract 6 '#' Exclusive Or 3
'+' Add 6 '\/ ' Or 3

'>=' Greater
than or
equal

5

• '<start> ' – a special initial lexem with no external

representation;
• '<string> ' – a denotation of a character string in double

quotes ("), the string length – the number of contained
characters – may be from 0 (empty string) up to 80 (maximal
length); a double quote itself as a string character is denoted
by two double adjacent double quotes; examples are "abc" ,
"" (empty string), "a""bc" (a quote inside the string);

• '<tag> ' – an identifier; i.e., a sequence of letters
(including underscore) and digits beginning with a letter. the

total number of characterd not exceeding 80; examples are
abcd , x1 , _great ;

2) lexems – reserved words: 'auto ', 'break' , 'case ',
'char ', 'const ', 'continue ', 'default ', 'do ', 'double ',
'else ', 'enum', 'extern ', 'float ', 'for ', 'goto ', 'if ', 'int' ,
'long ', 'register ', 'return ', 'short ', 'signed' , 'static ',
'struct ', 'switch ', 'typedef ', 'union ', 'unsigned ', 'void ',
'volatile ', 'while ' – these lexems correspond to words
contained in their denotations;

3) indicants denoted by one two adjacent special characters:
'(' , ') ', ', ', '. ', ':= ', '; ', '[', '] ', '{ ', '} ' – brackets of three
kinds (round, square, and curly), assignation sign composed
by a colon and an equal sign, comma, period, and semicolon.

Each lexem, except for '<start> ' и '<finish> ', enjoy an
external representation in the source program text; some
lexems may have several representations (e.g., the lexem '<='
may be represented with an indicant "<=" and the word "le "),
and some may have an unlimited number of representations

(like '<number>' , '<string>' or '<tag>').
Three lexems of the general type are characterized with

additional parameters. The lexem '<float>' (denotation of
a floating point number) and '<number>' (denotation of an
integer) have the respective value as their parameters, while
'<operation>' (operation) has two additional parameters –
operation priority and its name (add, multiply, etc.)

The following non-terminals are distinguished in the
language description to denote particular language structures:
abstr_decl , abstr_decl1 , compound , declaration ,
declarator , declarator1 , enumm, expression ,
formula , init , operand , param , paramlist , pointer ,
program , specif , statement , struct_decl . The non-
terminal named program is usually the initial non-terminal
which any syntactically correct text is generated from. The
following semantics whose names begin with "$" occur in the
grammar rules to take into account non-formal context
dependencies: $array1 , $array2 , $arrow , $aster , $brk ,
$call1 , $call2 , $call3 , $case1 , $case2 , $char ,
$comp1, $comp2, $cond , $cond1 , $cond2 , $cont , $decl ,
$default , $do1 , $do2 , $dot , $else , $expr , $field ,
$finish , $for1 , $for2 , $for3 , $for4 , $for5 , $goto ,
$ident , $if , $incr1 , $incr2 , $init , $label , $mem,
$null , $number , $op1 , $op2 , $opcode1 , $opcode2 ,
$operand , $qual , $r et1, $ret2 , $start , $stmnt ,
$string , $sw1, $sw2, $sw3, $tag , $then , $type , $wl1 ,
$wl2 . Each semantic usually denotes a certain procedure
which is executes if in the process of input text parsing the
current recognized lexem follows this semantic the in a
grammar rule, the semantic enjoying access to all lexem
parameters.

Grammar rules are formulated in the following way:

Non-terminal : Regular_expression .

Non-terminal being one of the non-terminal denotations
enlisted above, and being specified in accordance with the
following syntax of the Naur-Backus formalism:

6

Regular expression ::= {
Empty | Lexem | Non-terminal

| Semantic |
Basic elements (1)

Regular_expression
Regular_expression | Concatenation (2)

Regular_expression ';'
Regular_expression |

Alternatives (3)

Regular_expression '*'
Regular_expression | Recursion (4)

'(' Regular_expression ')' }.
Expression in

brackets (5)
 Alternatives are enumerated in curly brackets separated with a
vertical bar. In the section marked (1) basic elements of a
regular expression are enumerated: Empty (an empty
expression denoting absence of anything), Lexem, Non-

terminal , and Semantic . Section (2) represents a
concatenation which has no particular denotation, section (3)
is for alternative choice with a semicolon as the operation
sign, section (4) stands for recursion with an asterisk as its
operation sign, and the last section (5) allows to embrace a
regular expression in round brackets and thus to consider it as
one operand in operations of concatenation, alternative choice,
and recursion.

For better visibility of an alternative choice between a
regular expression А and an empty alternative: (А ;) is
denoted as А in square brackets: [A] (pronounced as
"possible А") , as well as for a recursions with an empty left or
right operand * А and А* are denoted as *(А) and (А)*
respectively, while a recursion with both non-empty operands
А* В is denoted as (А)*(В) .

With the above denotations a grammar of the OCC
language may be specified through the following regular
expressions:

abstr_decl : pointer [abstr_decl1] ;
 abstr_decl1 .
abstr_decl1 : ('(' abstr_decl ')')*(
 '[' [formula] ']' ;
 '(' [paramlist] ')') .
compound : $comp1 '{' *(declaration $decl)
 *(statement $stmnt) $comp2 '}' .
declaration : (specif)* (declarator
 [$init ':=' init])*(',') ';' .
declarator : [pointer] declarator1 .
declarator1 : ($tag '<tag>' ;
 $tag '<label>' ; '(' declarator
 ')')*(('[' [formula] ']')* ;
 '(' (($tag '<tag>')*(',') ;
 paramlist ;
) ')') .
enumm : '<tag>' [':=' expression] .
expression : (formula)*(',') .
formula : (*($opcode1 '<operation>')
 operand $operand)*(
 $opcode2 ':=' ; $opcode2 '<operation>') .
init : formula ; '{' (formula ; '.' '.' '.'
)*(',') '}' .
operand : (($incr1 '<increment>'
 $tag ('<tag>' ; '<label>') ;
 $tag '<tag>' ($incr2 '<increment>' ;
 ($array1 '[' formula $array2 ']')* ;
 $call1 '(' [expression $call2]

 $call3 ')' ; $ident) ;
 $op1 '(' expression $op2 ')')
 [($dot '.' ; $arrow '->') $field (
 '<tag>' ; '<label>')] ;
 $tag '<label>' ;
 $number '<number>' ; $char '<char>' ;
 $string '<string>'
)*($cond1 '?' expression $cond2 ':') .
param : specif (declarator ;
 '[' [formula] ']') .
paramlist : (param ; '.' '.' '.')*(',') .
pointer : ($aster '<operation>'
 *($qual 'const' ;
 $qual 'volatile'))* .
program : $start '<start>'
 ((specif)*(';' ;
 declarator [compound]
 (';' ;
 ':=' init *(',' declarator
 [':=' init]) ';' ;
 ',' (declarator [':=' init]
)*(',') ';'
 *(declaration) compound
)) ;
 declarator *(declaration) compound
)* $finish '<finish>' .
specif : ($mem 'auto' ; $mem 'register' ;
 $mem 'static' ;
 $mem 'extern' ; $mem 'typedef' ;
 $type 'void' ; $type 'char' ;
 $type 'short' ;
 $type 'int' ; $type 'long' ;
 $type 'float' ;
 $type 'double' ; $type 'signed' ;
 $type 'unsigned' ;
 ('struct' ; 'union') ['<tag>'] ['{' (
 struct_decl)*
 '}'] ; 'enum' ('<tag>' ['{' (enumm
)*(',') '}'] ;
 '{' (enumm)*(',') '}') ;
 $qual 'const' ; $qual 'volatile')* .
statement : *($label '<label>' ':' ;
 $case1 'case' expression
 $case2 ':' ; $default 'default' ':')
 (compound ;
 'if' $cond '(' expression $then ')'
 statement
 [$else 'else' statement] $if ;
 'switch' $sw1 '(' expression $sw2 ')'
 statement $sw3 ;
 'while' $cond '(' expression $wl1 ')'
 statement $wl2 ;
 $do1 'do' statement 'while' $cond '('
 expression ')' $do2 ;
 'for' $for1 '(' [expression]
 $for2 ';' [expression]
 $for3 ';' [expression] $for4 ')'
 statement $for5 ;('goto' $goto
'<tag>' ; $cont 'continue' ; $brk 'break' ;
 $ret1 'return' [expression] $ret2 ;
 expression $expr ; $null) ';') .
struct_decl : specif (declarator [':'
 expression])*(',') ';' .

The initial non-terminal in this grammar is program.

This grammar representation is nothing more than a linear
record of a syntactic graph of this language for recognizing

7

correctly constructed chains composed from its lexems, and it
may be considered as a text in Forth (that's why its elements
are separated with spaces) which in its turn may represent a
Forth program if the respective word definitions are provided.
Therefore, the development of a language processor which
recognizes this programming language consists in
development of these word definitions.

III. LANGUAGE PROCESSOR STRUCTURE

The language processor works as follows.
1. An instrumental Forth system compliant with the Forth

2014 standard (e.g., VFX Forth for Windows IA32 [11] or
gFORTH for Windows [12]) is launched on a working PC
under MS Windows, and the respective Forth text with
word definitions is compiled.

2. After successful compilation of this Forth text which
establishes the necessary context, another Forth text with
the language grammar is compiled which thus is
transformed into a parser program. Successful compilation
of the grammar is terminated with the message "Lexical

Analyzer successfully compiled! " from the
instrumental Forth system.

3. Upon successful completion of the step 2, the source text
in the programming language is submitted as input to the
parser for analysis and upon successful completion of
parsing a pseudo-code of the submitted program is built in
an output file for subsequent execution. If a syntax error in
the input text were found or any exception occurred (like
file system error, buffer overflow etc.) then a respective
error message is produces and the parser terminates
processing.

The language processor has two major components: the
lexical analyzer (scanner) and the syntactic analyzer (parser),
each of them may be considered as a separate software
product.

In the current version, the scanner consists of 62 Forth
definitions with the total size of 368 LOCs (source lines of
code in Forth, excluding empty lines and lines with comments
only) and the parser has 73 definitions of the total size 431
LOCs; thus the total size of the scanner and parser is 799
LOCs including the OCC grammar of 135 LOCs. The
grammar graph of the OCC language in its internal
representation occupies 1391 cells (machine words).

For scanner and parser testing, the respective test wrappers
and test suites were developed. Exceptions which occur when
running these programs are processed through the Forth
interruption mechanism of CATCH-THROW, where the word
CATCH receives an address of the message string formed by
the scanner or parser when the exception is recognized and
passed by THROW. Exceptions recognized while compiling
these two components terminate compilation through the word
ABORT" with a respective error message.

IV. LEXICAL ANALYZER

The lexical analyzer (scanner) converts the input source text
into a sequence of numeric values denoting lexems (terminals)

of the programming language, recognized in the input text in
the order of their occurrences in this text. The scanner is
implemented as two co-programs: the low-level GetChar and
the upper-level GetLex . The former sequentially consumes
and filters characters from the input text skipping all irrelevant
characters and returning the next significant character upon a
request, while the latter forms the next lexem from characters
obtained at the low level. Both co-programs work with
"looking ahead" at 1 element – a character in case of GetChar
and a lexem in case of GetLex . Results of each invocation of
these co-programs are returned in a respective pair of
variables: {CurrChar , NextChar } in case of GetChar , and
{ CurrLex , NextLex } in case of GetLex . The first variable in
the pair contains the value (character or lexem) returned upon
the given request to respective co-program, and the second
variable in the pair contains the value to be returned upon the
next request addressed to this co-program.

A list of lexems is specified by the defining word
LexClasses created to build definitions of all lexems in the

word list Lexems. A lexem is represented with its execution
token which never executed during compilation of the lexical
analyzer, while during parsing this code checks whether the
current value of the variable CurrLex is the execution token
of this lexem and if this is the case, the current lexem is
"accepted" and the parser proceeds to considering the next
lexem from its input stream; otherwise, this lexem signals the
parser about its failure to accept the current lexem.

Along with lexems, the scanner recognizes two kinds of
comments in the input: a) from two adjacent slashes ("// ") up
to the end of line; and b) from a slash and an asterisk ("/* ")
up to an asterisk and a slash ("*/ "), as is common in many C
realizations, unless these two character combinations marking
the beginning of a comment are not inside a string denotation.
At the formal level, a comment is treated as a space character.

The initial value of the variable NextChar is a space, and
that of the variable NextLex is the lexem '<start>' . Upon
reaching the end of the input file, the co-program GetChar
returns a special character <eof> with no external
representation and denoting the end-of-file. From that moment
this character is returned by GetChar in response to all further
requests for the next character. When consumed by the co-
program GetLex this character transforms in a special lexem
'<finish>' returned by GetLex in response to all further
requests for the next lexem.

A test wrapper for the scanner provides three kinds of
testing: getting text lines from the input file, getting characters
from the input file, and getting lexems. They are specified by

test words TestGetLine" , TestGetChar" , and
TestGetLex" which get the name of the input file from the
input stream and subsequently extract lines, characters, and
lexems from it until the input file is exhausted. The word
Test" is an extension of TestGetLex" – it establishes an
interrupt handler through CATCH and executes TestGetLex"
in this context.

: Test" ("<chars>name<quote>"--)
 -1 ?Echo !

8

 ['] TestGetLex" CATCH ?DUP
 IF
 CR ." Exception: " COUNT TYPE
 CR CloseInFile
 THEN ;

Fig. 1 displays excerpts from a log of running GetLex in
the test wrapper LA_TestWrapper which demonstrates the
work of the scanner. Excerpts are separated by dotted lines.

include
c:\yard\LA_TestWrapper.fth
Including
c:\yard\LA_TestWrapper.fth
Including C:\yard\LA34.fth
ok
Test" c:\yard\words31.txt
Yard version:
C:\yard\LA34.fth
Test run on 30.06.2017 at
11:21:30
001 // Identifiers<eol>
002 abcd x1 _great<eol>
'<START>'
'<TAG>' repr=abcd
'<TAG>' repr=x1
003 <eol>
004 // Integers<eol>
005 0 101B 111111B /*
Binary */<eol>
'<TAG>' repr=_great
'<NUMBER>' repr=0 value=0
'<NUMBER>' repr=101B
value=5
006 777C 100C /* Octal
*/<eol>
'<NUMBER>' repr=111111B
value=63
'<NUMBER>' repr=777C
value=511
007 125 126D /* Decimal
*/<eol>
'<NUMBER>' repr=100C
value=64
'<NUMBER>' repr=125
value=125
008 0ffH 0AH 0DH 1000H /*
Hexadecimal */<eol>
'<NUMBER>' repr=126D
value=126
............................

..........................
014 static struct switch
typedef union<eol>
'SIGNED' repr=signed
'STATIC' repr=static
'STRUCT' repr=struct
'SWITCH' repr=switch
'TYPEDEF' repr=typedef
015 unsigned void volatile
while <eol>
'UNION' repr=union
'UNSIGNED' repr=unsigned
..........................
020 ~ not ^ ** * / + - = < >
xor /\ & \/ | or >= /= <=
=> =< shl shr le ge <eol>
'WHILE' repr=while
'<OPERATION>' repr=~ op=~
prio=10
............................
025 <eol>
026 // Strings<eol>
027 "abc"<eol>
'--' repr=-
028 "" /* Empty string
*/<eol>
'<STRING>' repr=abc
length=3
029 """abc" "a""bc" "abc"""
/* Quote in various places
*/<eol>
'<STRING>' repr= length=0
'<STRING>' repr="abc
length=4
'<STRING>' repr=a"bc
length=4
030 <eol><eof>
'<STRING>' repr=abc"
length=4
'<FINISH>'
 ok

Fig. 1. A log of a scanner test run

Three digit numbers in the beginning of a line are the input
text line numbers; the text lines are included in the log as they
are read-in by the co-program GetChar . There are 30 such
lines in this example. Each line terminates with the symbol
<eol> which marks its end-of-line, while the symbol <eof>
marks the end of the input file.

The log contains denotations of the recognized lexems
followed be their external representation in the input file (after
the key word "repr= ") and additional parameters of this
lexem if any with appropriate key words.

V. SYNTACTIC ANALYZER

The syntactic analyzer (parser) is built on-top of the lexical
analyzer. Its main (starting) word is OCC" which obtains the
name of the input file with the program text to be analyzed
and checks whether this text complies with the grammar of the
programming language OCC. As with the scanner, the test
wrapper of the parser contains the word Test" which
establishes an interrupt handler and initiates execution of the

main parser word in this context.
The parser main word is created through the defining word

Grammar. It starts grammar definition of the considered
programming language in form of a series of generating rules
for its non-terminals. The grammar ends with the closing word
EndGrammar which identifies the initial non-terminal:

: Grammar ("<spaces>name"--123)
 CREATE ALIGN HERE (pfa)
 DUP GrammarGraph ! \ Grammar graph start
 ['] (CallNT) , 0 , HERE CELL+ CELL+ ,
 ['] (Success) , ['] (Fail) ,
.....................................
: EndGrammar ("<spaces>name" addr 123 --)
 (pfa) ' (pfa xt-inital) >BODY @
 SWAP CELL+ ! 0 ,
 CR ." Lexical Analyzer successfully
compiled!" ;

The Forth interpreter of the underlying Forth system
ensures execution of the source grammar text as a text in Forth
resulting in construction of a grammar graph for the given
formal language which consists of elements of several kinds.
The parser main word created by the defining word Grammar
provides traversal of this graph controlled by the variable Pnt ,
pointing to its next element. The return stack Return with
operations Push and Pop and the queue SemanticsQueue of
semantics whose execution is delayed till accepting the current
terminal, are used as auxiliary data structures. Executable
codes are denoted with words in brackets. In total, 9 kinds of
elements are provisioned for a grammar graph:

1. Jump at the address addr – 2 cells: (Jump)|addr
: (Jump) Pnt @ @ Pnt ! ;

2. Call of a non-terminal at the address addr – 3 cells:
(CallNT)| addr |failaddr

: (CallNT) Pnt @ Return Push (Jump) ;

3. Starting a non-terminal xt – 2 cells: (StartNT)| xt
: (StartNT) CELL Pnt +! ;

if zero is specified instead of xt then this is an auxiliary non-
terminal created automatically with no name.

4. Successful completion of a non-terminal – 1 cell:
(ExitNT)

: (ExitNT) Return Pop CELL+ CELL+ Pnt ! ;
5. Unsuccessful completion of a non-terminal – 1 cell:

(FailNT)
: (FailNT) Return Pop CELL+ Pnt ! (Jump) ;

6. Passing a semantic xt – 2 cells: (Semantic)| xt
: (Semantic) Pnt @
 SemanticsQueue Push CELL Pnt +! ;

7. Passing a lexem xt – 3 cells: (Lexem)|xt |failaddr
: (Lexem) CurrLex @ pnt @ @ =
 IF \ accept the current lexem:
 Pnt @ CELL+ CELL+ Pnt !
 ELSE \ reject the current lexem:
 CELL Pnt +! (Jump) THEN ;

8. Successful completion of parsing – 1 cell: (Success)
: (Success) (--) CR ." Success!" 1 THROW ;

9. Unsuccessful completion of parsing – 1 cell: (Fail)
: (Fail) (--) CR ." Compilation Failed!"

........... \ Form a message in MessageBuf
 MessageBuf THROW ;

9

the scanner reports through MessageBuf which lexem was
the current one and what other lexems were checked for it in
form of the message: "Lexem < name> is unexpected;

possible options are: < list of lexem names>".
The above list of 9 element kinds is complete for the

following reasons. Elements (Success) and (Fail) are
necessary because these are all possible outcomes of the
parsing process (excluding its abnormal terminations through
ABORT or exceptions). Elements (CallNT) , (Semantic) ,
and (Lexem) are inevitable as they match all grammar basic
elements. Execution of a non-terminal may terminate either
successfully or with a failure; therefore, two different exits
(ExitNT) and (FailNT) should be provisioned as well. And
finally, (StartNT) and (Jump) are needed to start a non-
terminal body and to jump around it in a linear code of a
grammar graph. Thus, totally 2+3+2+2=9 different kinds of
elements are needed and this seems to be a sufficient
minimum (as the number of Muses1 is).

An initial value – the address of a five cell element
"invoking the initial non-terminal"

(CallNT)| addr |failaddr|(Success)|(Fail)

of the given grammar is assigned to the variable Pnt , addr
being the starting address of a series of elements for the initial
non-terminal of the grammar, and failaddr being the
address of the next cell but one which contains a reference to
the code (Fail) while the previous cell contains a reference
to the code (Success) (see items 8 and 9 above which occur
in the grammar graph only once in this five cell element).

The parser provides an option to print-out the grammar
graph with by the word .DisplayCode – see Fig. 2 below.
Similar to Fig. 1, excerpts from the OCC grammar graph
representing its beginning and end are separated by a dotted
line. One can see that the whole graph occupies only
5564/4=1391 cells.

VI. CONCLUSION

The described implementation of a scanner and a parser in
Forth turned out to be quite flexible and powerful. Its main
part was borrowed from earlier author's development [10] and
ported from Forth-83 to the Forth 2014 standard [5] with
minor changes. However, it required reworking and
redeveloping the grammar interpreter in order to avoid direct
references to the internal structure of the definitions prohibited
by Forth 2014. The tool runs on a PC under MS Windows and
was developed using the system VFX Forth [11] which
supports Forth 2014.

Another problem yet to be solved with the proposed
analyzer is checking the input grammar for its correctness; i.e.,
that it really belongs to the class LL(1) and contains no
undesirable recursions. This problem was successfully
overcome in [13], so the tool may reuse the found solution.

1 ̒ The thrice three Muses mourning for the death
Of Learning late deceas'd in beggaryʼ
That is some satire, keen and critical. (W. Shakespeare, "A Midsummer
Night's Dream", Act 5, Scene 1, 52-54).

GrammarGraph @ .DisplayCode
0000 (CALLNT) 2848 0016
0012 (SUCCESS)
0016 (FAIL)
0020 (STARTNT) ABSTR_DECL
0028 (CALLNT) 2700 0060
0040 (CALLNT) 0080 0052
0052 (JUMP) 0072
0060 (CALLNT) 0080 0076
0072 (EXITNT)
0076 (FAILNT)
0080 (STARTNT) ABSTR_DECL1
0088 (JUMP) 0148
0096 (STARTNT) Noname
0104 (LEXEM) '(' 0144
0116 (CALLNT) 0020 0144
0128 (LEXEM) ')' 0144
0140 (EXITNT)
0144 (FAILNT)
0148 (CALLNT) 0096 0264
0160 (LEXEM) '[' 0204
0172 (CALLNT) 1216 0184
0184 (LEXEM) ']' 0204
0196 (JUMP) 0240
0204 (LEXEM) '(' 0260
0216 (CALLNT) 2560 0228
0228 (LEXEM) ')' 0260
0240 (CALLNT) 0096 0260
0252 (JUMP) 0160
0260 (EXITNT)
0264 (FAILNT)
0268 (STARTNT) COMPOUND
0276 (SEMANTIC) $COMP1
0284 (LEXEM) '{' 0376
0296 (CALLNT) 0380 0324
0308 (SEMANTIC) $DECL
0316 (JUMP) 0296
0324 (CALLNT) 4416 0352
0336 (SEMANTIC) $STMNT
0344 (JUMP) 0324
0352 (SEMANTIC) $COMP2
0360 (LEXEM) '}' 0376
0372 (EXITNT)
0376 (FAILNT)
0380 (STARTNT) DECLARATION

0388 (JUMP) 0424
0324 (CALLNT) 4416 0352
0336 (SEMANTIC) $STMNT
0344 (JUMP) 0324
0352 (SEMANTIC) $COMP2
0360 (LEXEM) '}' 0376
0372 (EXITNT)
0376 (FAILNT)
0380 (STARTNT) DECLARATION
0388 (JUMP) 0424
0396 (STARTNT) Noname
0404 (CALLNT) 3440 0420
0416 (EXITNT)
0420 (FAILNT)
0424 (CALLNT) 0396 0584
0436 (CALLNT) 0396 0456
0448 (JUMP) 0436
0456 (JUMP) 0524
0464 (STARTNT) Noname
0472 (CALLNT) 0588 0520
0484 (SEMANTIC) $INIT
0492 (LEXEM) ':=' 0516
0504 (CALLNT) 1384 0516
0516 (EXITNT)
0520 (FAILNT)
0524 (CALLNT) 0464 0584
0536 (LEXEM) ',' 0568
0548 (CALLNT) 0464 0568
............................
5424 (STARTNT) STRUCT_DECL
5432 (CALLNT) 3440 5564
5444 (JUMP) 5504
5452 (STARTNT) Noname
5460 (CALLNT) 0588 5500
5472 (LEXEM) ':' 5496
5484 (CALLNT) 1120 5496
5496 (EXITNT)
5500 (FAILNT)
5504 (CALLNT) 5452 5564
5516 (LEXEM) ',' 5548
5528 (CALLNT) 5452 5548
5540 (JUMP) 5516
5548 (LEXEM) ';' 5564
5560 (EXITNT)
5564 (FAILNT) ok

Fig. 2. The beginning and the end of the OCC grammar graph

Future work will consist in developing a pseudo-code
generator and an its interpreter to simulate execution of
programs in the considered programming language.

REFERENCES
[1] M. E. Lesk, E. Schmidt, "Lex – A Lexical Analyzer Generator", web:

http://dinosaur.compilertools.net/lex/ (2017).
[2] "Win flex-bison", web: http://sourceforge.net/projects/winflexbison/

(2017).
[3] "GNU Bison", web: http://www.gnu.org/software/bison/ (2017).
[4] Terence Parr, "ANTLR (ANother Tool for Language Recognition)",

web: http://www.antlr.org/ (2017).
[5] "Forth 200x", web: http://www.forth200x.org/forth200x.html (2016)
[6] L. Brodie, Thinking Forth. Punchy Pub, 2004.
[7] A. Aho, R. Sethi, J. Ullman, Compilers: Principles, Techniques and

Tools. Addison-Wesley (1986).
[8] Jeffrey E.F. Friedl, Mastering regular expressions. O'Reilly Media, Inc.,

2002.
[9] B. K. Martynenko, "Regular Languages and CF Grammars". In

Computer Tools in Education. 1, pp.14–20, 2012. (In Russian).
[10] S. Baranov, Ch. Lavarenne, Open C Compiler in Forth. In:

EuroForth’95, 27-29 Oct. Schloss Dagstuhl, 1995.
[11] "VFX Forth for Windows. User manual. Manual revision 4.70, 19

August 2014". – Southampton: MPE Ltd, 2014. – 429 p., web:
http://www.mpeforth.com/ (2014)

[12] "gForth", web: https://www.gnu.org/software/gforth/ (2017)
[13] S.N. Baranov, L.N. Fedorchenko, "Equivalent Transformations and

Regularization in Context-Free Grammars" Cybernetics and Information
Technologies. Bulgarian Academy of Sciences, Sofia. 2014. Volume 14,
no 4, p.30-45. web: http://www.degruyter.com/view/j/cait.2014.14.issue-
4/cait-2014-0003/cait-2014-0003.xml (2017)

10

Halting misconceived?

Bill Stoddart

August 25, 2017

Abstract

The halting problem is considered to be an essential part of the

theoretical background to computing. That halting is not in general

computable has been �proved� in many text books and taught on many

computer science courses, and is supposed to illustrate the limits of

computation. However, there is a dissenting view that these proofs

are misconceived. In this paper we look at what is perhaps the sim-

plest such proof, based on a program that interrogates its own halting

behaviour and then decides to thwart it. This leads to a contradiction

that is generally held to show that a halting function cannot be im-

plemented. The dissenting view agrees with the conclusion that the

halting function, as described, cannot be implemented, but suggests

that this is because its speci�cation is inconsistent. Our paper uses

Forth to illustrate complex abstract arguments.

Keywords: Forth, halting problem, proof

1 Introduction

In his invited paper [2] at The First International Conference on Unifying
Theories of Programming, Eric Hehner dedicates a section to the proof of the
halting problem, claiming that it entails an unstated assumption. He agrees
that the halt test program cannot exist, but concludes that this is due to
an inconsistency in its speci�cation. Hehner has republished his arguments
using less formal notation in [3].

The halting problem is considered to be an essential part of the theoretical
background to computing. That halting is not in general computable has

11

been �proved� in many text books and taught on many computer science
courses to illustrate the limits of computation. Hehner's claim is therefore
extraordinary. Nevertheless he is an eminent computer scientist1 whose opin-
ions reward careful attention. In judging Hehner's thesis we will take the view
that to illustrate the limits of computation we need a program which can be
consistently speci�ed, but not implemented.

In this paper our aims are to examine Hehner's arguments by expressing them
in Forth. A secondary aim is to show the suitability of Forth for performing
such an analysis.

The halting problem is typically stated as follows. Given a Turing machine
equivalent (TME) language there is no halt test program H (P ,X) which
will tell us, for arbitrary program P and data X , whether P will halt when
applied to X .

Hehner simpli�es this, saying there is no need to consider a program applied
to data, as data passed to a program could always be incorporated within
the program. So his version is that there is no halt test H (P) which tells us,
for an arbitrary program P , whether execution of P will halt.

To express the halting proof in Forth, we assume we have implemented a
program H with stack e�ect (xt −− f) which, for any token xt , reports
whether execution of xt will halt.2 We write ′P to represent the token for
program P .

Were H to exist, we could use it as follows:

: Skip ; : Loop BEGIN AGAIN ;
′Skip H .

� −1 ok
′Loop H .

�

0 ok

1In the area of programming semantics, Hehner was the �rst to propose �programs
as predicates�, an approach later adopted in Hoare and He's work on unifying theories.
He was the �rst person to express the semantics of selection and iteration in terms of two
simple semantic primitives, choice and guard, an approach now generally adopted and used,
for example, in Abrial's B-Method. He has proposed a reformulation of set theory that
supports unpacked collections and gives semantic meaning to the contents of a set, which
is referred to as a bunch, and has properties perfect for representing non-determinism. His
other contributions have been in areas as diverse as quantum computing and the semantics
of OO languages. When the book "Beauty is our business" was conceived as a tribute to
the work of E W Dijkstra, Hehner contributed a chapter discussing Gödel's incompleteness
theorem. His book A Practical Theory of Programming [1] is available online in updated
form.

2Our tokens are abstract analogies of Forth execution tokens, freed from any �niteness
constraints.

12

When a Forth program is executed from the keyboard it either comes back
with an �ok� response, or exhibits some pathological behaviour such as re-
porting an error, not responding because it is in an in�nite loop, or crashing
the whole system. We classify the �ok� response as what we mean by �halt-
ing�.

The proof that H cannot be implemented goes as follows. Under the assump-
tion that we have implemented H , we ask whether the following program will
halt:3

: S ′S H IF Loop THEN ;

Now within S , H must halt and leave either a true or false judgement for
the halting of S . If it leaves a true �ag (judging that S will halt) then S will
enter a non-terminating Loop. If it leaves a false �ag (judging that S will
not halt), then S will immediately halt.

Since H cannot pass a correct judgement for S , we must withdraw our as-
sumption that there is an implementation of H . Thus halting behaviour
cannot, in general, be computed. �
Hehner asks us to look in more detail at the speci�cation of H . Since it must
report on the halting behaviour of any program, it must assume the objective
existence of such a behaviour. But S contains a �twisted self reference� and
the halting behaviour of S is altered by passing judgement on it. H does
not have a consistent speci�cation. It cannot be implemented, but this has
little signi�cance, as it is due to the inconsistency of its speci�cation. When
someone claims a universal halt test is uncomputable, and you reply, �What
do you mean by a universal halt test?� you won't receive a mathematically
consistent answer.

From a programming perspective, we can add that S looks as if it will NOT
terminate, because when ′S H is executed, it will be faced with again
commencing execution of ′S H , and with no additional information to help
it. S will not terminate, but this is because the halt test invoked within it
cannot terminate.

The paper is structured as follows. In section 2 we verify Hehner's simpli�-
cation of the halting problem. In section 3 we make some general remarks on
halting, �nite memory computations, and connections between halt tests and
mathematical proofs. In section 4 we present a tiny language consisting of

3The program accesses its own token. Later, in some code experiments, we show how
this is achieved.

13

three Forth programs with access to a halt test. We �nd we can still use the
same proof, that a halt test cannot be implemented. We examine the spec-
i�cation of the halt test for this minimal scenario in detail, and we produce
a Forth implementation of an amended halt test that is allowed to report
non-halting either by the return of a stack argument or by an error message.
In section 5 we perform a semantic analysis of S , taking its de�nition as a
recursive equation, and conclude that its de�ning equation has no solution.
S does not exist as a conceptual object, and neither does H .

The halting problem is generally attributed to Turing's paper on Computable
Numbers [6], but this attribution is misleading. In an appendix we brie�y
describe Turing's paper and how the halting problem emerged from it. We
also give an example of uncomputability which has a consistent speci�cation.

The original aspects of this paper are: a careful examination of Hehner's
arguments by re-expressing them in Forth; a translation of the halting prob-
lem proof to a minimal language where exactly the same argument can be
made; an examination of the consistency of the halt test speci�cation for our
minimal language with an extension of this argument to the general case;
an implementation of a less strict halt test for the minimal language which
allows a result to be computed except in the self referential case, where non-
halting is reported as an error; a semantic analysis of S and H as a conceptual
objects; and a critique of the response to Hehner's 2006 paper [2] presented
in Halting still standing [5].

2 Hehner's simpli�cation of the halting prob-

lem

Normally the halting problem is discussed in terms of a halt test taking data
D and program P and reporting whether P halts when applied to D .

Hehner's simpli�ed halt test takes a program P and reports whether it halts.

We refer to the �rst of these halt tests as H2, since it takes two arguments,
and the second as H .

To verify Hehner's simpli�cation of the halting problem we show that any
test that can be performed by H2 can also be performed by H , and any test
that can be performed by H can also be performed by H2.

Proof Given P0 (−− ?), P1 (x −− ?) and D (−− x), where P0,P1 are

14

arbitrary Forth de�nitions with the given signatures and D is arbitrary Forth
code that returns a single stack value, and assuming tests H (xt −− f)
and H2 (x xt −− f) where ′P0 H reports whether P0 halts, and D ′P1 H2

reports whether D P1 halts, then:

The test D ′P1 H2 can be performed by H with the aid of the de�nition
: T D P1 ; as ′T H .

The test ′P0 H can be performed by H2 with the aid of the de�nition
: U DROP P0 ; as D ′U H2. �

3 Some notes on halting analysis

Fermat's last theorem states that for any integer n > 2 there are no integers
a, b, c such that:

an + bn = cn

Fermat died leaving a note in a copy of Diophantus's Arithmetica saying he
had found a truly marvellous proof of his theorem, but it was too long to
write in the margin. No proof was never found. All subsequent attempts
failed until 1995, when Andrew Wiles produced a proof 150 pages long.

However, given a program FERMAT which searches exhaustively for a counter
example and halts when it �nds one, and a halt test H we could have proved
the theorem by the execution:

′FERMAT H .

�

0 ok

This would tell us the program FERMAT does not halt, implying that the
search for a counter example will continue forever, in other words that no
counter example exists and the theorem is therefore true.

In the same way we could explore many mathematical conjectures by writing
a program to search exhaustively over the variables of the conjecture for a
counter example. Then use H to determine whether the program fails to
halt, in which case there is no counter example, and the conjecture is proved.

15

3.1 Known, bounded, and unbounded memory require-

ments

If a program has a known memory requirement of n bits its state transitions
can take it to at most 2n di�erent states. We can solve the halting problem
by running it in a memory space of 2n bits and using the additional n bits as
a counter. When we have counted 2n state transitions and the program has
not halted, we know it will never halt because it must have, at some point,
revisited a previous state.

The postulated FERMAT program above has an unbounded memory require-
ment, since as it performs its exhaustive search for a counter example it will
need to work with larger and larger integers.

Now consider the Goldbach conjecture, which states that every even inte-
ger can be expressed as the sum of two primes (we include 1 in the prime
numbers). This is an unproved conjecture, but so far no counter example has
been found, although it has been checked for all numbers up to and somewhat
beyond 1018.

Now suppose we have a program GOLDBACH which performs an exhaustive
search for a counter example to Goldbach's conjecture and halts when it �nds
one. If Goldbach's conjecture is true, this program has unbounded memory
requirements. If the conjecture is false, it has bounded memory requirements,
but the bound is unknown.

When Turing formulated his Turing machines he gave them an unbounded
memory resource in the form of in�nite tapes. This allows a Turing machine
to be formulated which will perform an unbounded calculation, such as cal-
culating the value of π. Although we cannot ever complete the calculation,
we can complete it to any required degree of accuracy, and the existence of
an e�ective procedure for calculating π gives us a �nite representation of its
value.

A Turing machine consists of a �nite state machine (FSM) plus an in�nite
tape. To be TME a language needs to be powerful enough to program a
FSM, and needs to be idealised to the extent of having an in�nite memory
resource corresponding to the tape of the Turing machine. Providing Forth
with a pair of in�nite stacks is su�cient to simulate an in�nite tape.

Unbounded memory resources are important for the discussion of halting in
this section, but they do not play a part in our discussion of the halting
proof.

16

4 Halting in a trivial language

The conventional view of the halting problem proof is that it shows a univer-
sal halt test is impossible in a TME language. We have also seen that failure
to halt can be detected in programs with known memory requirements, be-
cause after a known number of transitions such programs are bound to have
revisited a previous state, which tells us they will never terminate.

It is rather strange, therefore, that we can apply the halting program proof
to a minimal language whose only programs, in semantic terms, are one that
terminates and one that does not.

Consider a language L0 consisting of two words, Skip and Loop.

This is a stateless language for which we can specify and implement a halt
test H0. The speci�cation is consistent because it has a model:

{ ′Skip 7→ true , ′Loop 7→ false }

Now we become ambitious and wish to consider a more complex language L1

which consists of three words, Skip, Loop, and S , with a halt test H .

Our de�nition of S is still:

: S ′S H IF Loop THEN ;

and note that, were S to exist it will either behave like Skip or Loop,

and our speci�cation for H is:

H (xt −− f) Where xt is the execution token of Skip, Loop, or S , return
a �ag that is true if and only if execution of xt halts.

But what is the model for H ?

{ ′Skip 7→ true , ′Loop 7→ false, ′S 7→ ? }

Our model must map ′S to either true or false, but whichever is chosen
will be wrong. We have no model for H , so it cannot have a consistent
speci�cation.

We have reduced the halting scenario to a minimal language so we can write
out the model of halting, but exactly the same argument applies to halting
in a TME language.

17

In this minimal scenario of a state free language we can make the same
�proof� that halting is uncomputable that we used for TME languages in
the introduction. Yet we have seen that for programs with known memory
requirements halting can be veri�ed by monitoring execution of the program
until it terminates or has performed enough steps for us to know that it
will not halt. Of course the question being answered by the proof, on the
one hand, and the monitoring of execution, on the other, are not the same.
Monitoring execution does not require a �twisted self reference�. There is a
separation between the monitor, as observer, and the executing program, as
the thing observed.

4.1 Experiments with code

We have already noted in the introduction that S looks as if it will NOT
terminate, because when ′S H is executed, it will be faced with again
commencing execution of ′S H with no additional information to help it. S
will not terminate, but this is because the halt test invoked within it cannot
terminate.

There is no reason, however, why a halt test cannot terminate in other situ-
ations, or why failure to halt cannot be reported via an error message when
the halt test itself cannot halt.

Here is a speci�cation of a slightly di�erent halting test.

H1 (xt −− f), Return a true �ag if execution of xt halts. If execution
of xt does not halt return a false �ag, unless that failure to halt is due to
non-termination within H1, in which case report an error.

We de�ne : S1
′S1 H1 IF Loop THEN ;

Here is the error report when S1 is invoked.

S1

�

Error at S1

Cannot terminate
reported at H1 in file ...

And here is the interaction when halt tests are invoked directly from the
keyboard.

′Loop H1 .

�

0 ok
′Skip H1 .

�− 1 ok
′S1 H1 .

�

0 ok

18

Implementation requires H1 to know when it is being invoked within S1. This
information is present in the run time system, and we obtain it from the word
S1X �S1 executing� which, when used in H1, will return true if and only if
H1 has been invoked by S1.

0 VALUE ′Skip 0 VALUE ′Loop 0 VALUE ′S1 0 VALUE ′H1

: S1X (−− f , true if S1 is executing , implementation specific code)
R> R@ SWAP >R ′S1 − 16 = ;

: Skip ; : Loop BEGIN AGAIN ;

: H1 (xt −− f , , If H1 has been invoked within xt and cannot terminate
without compromising the termination behaviour of xt , report a
Cannot terminate error . Otherwise return the halting behaviour of xt)

CASE
′Skip OF TRUE ENDOF
′Loop OF FALSE ENDOF
′S1 OF S1X ABORT“ Cannot terminate ′′ FALSE ENDOF
DROP

ENDCASE ;

: S1 (−−) ′S1 H1 IF Loop THEN ;

′ Skip to ′Skip ′ Loop to ′Loop ′ S1 to ′S1
′ H1 to ′H1

This illustrates that the problem is not that halting of S1 cannot be com-
puted, but that the result cannot always be communicated in the speci�ed
way. Requiring H (or in this case H1) to halt in all cases is too strong, as it
may be the halt test itself that cannot halt. We may, however, require that
the halt test should always halt when not invoked recursively within S1.

5 Proof and paradox

In [2] the halting problem is compared to the Barber's paradox. �The barber,
who is a man, shaves all and only the men in the village who do not shave
themselves. Who shaves the barber?� If we assume he shaves himself, we see
we must be wrong, because the barber shaves only men who do not shave
themselves. If we assume he does not shave himself, we again see we must
be wrong, because the barber shaves all men who do not shave themselves.
The statement of the paradox seems to tell us something about the village,
but it does not, since conceptually no such village can exist.

19

In a similar way, the program S which we have used in the halting problem
proof, does not exist as a conceptual object4 so what we say about it can be
paradoxical.

To prove this we need a rule for the termination of the form g IF T THEN
under the assumption that computation of g terminates. To formulate the
rule we need a mixture of Forth notation and formal logic notation: where
the Forth program P has stack e�ect −− x we use dPe to represent the
value of x in our formal logic. We use trm(T) for the predicate which is true
if and only if T will terminate.

Now we can state our rule as:5

trm(g) ⇒ (trm(g IF T THEN) ⇔ (¬ dge ∨ (dge ⇒ trm(T))) (1)

And we can state the speci�cation of ′P H as:

d′P H e ⇔ trm(P)

Bearing in mind that trm(H) is true by the speci�cation of H , we argue:

trm(S) ⇔ by de�nition of S
trm(′S H IF Loop THEN) ⇔ by rule (1) above
¬ d′S H e ∨ (d′S H e ⇒ trm(Loop) ⇔ property of Loop
¬ d′S H e ∨ (d′S H e ⇒ false) ⇔ logic
¬ d′S H e ∨ ¬ d′S H e ⇔ logic
¬ d′S H e ⇔ speci�cation of H
¬ trm(S)

So we have proved that trm(S) ⇔ ¬ trm(S). This tells us that S does not
exist as a conceptual object, let alone as a program. We have seen in the
previous section that by relaxing the speci�cation of H we can implement
the same textual de�nition of S , so the non existence of S proved here can
only be due to the speci�cation of H being inconsistent.

The proof of the halting problem assumes a universal halt test exists and
then provides S as an example of a program that the test cannot handle.
But S is not a program at all. It is not even a conceptual object, and this

4Examples of conceptual objects include numbers, sets, predicates, and programs. Sup-
pose we have P , which is supposed to be a predicate, but is claimed to have the property
P ⇔ ¬ P . No such predicate exists: P is not a conceptual object. P ⇔ ¬ P reduces to
false, from which we can prove anything, including paradoxical properties.

5A referee queried whether we need to refer to a formal semantics of recursion. Such
a semantics would suggest that S might not exist as a conceptual object [5]. However,
since the only semantic question concerns termination, we can show it does not exist with
a simple direct approach.

20

is due to inconsistencies in the speci�cation of the halting function. H also
doesn't exist as a conceptual object, and we have already seen this from a
previous argument where we show it has no model.

A response to Hehner's Unifying Theories paper was given by by Verhoe�
et al [5]. This paper, like [2], frames its arguments in the specialist notation
of [4]. They note that Hehner's proof that the speci�cation of S does not
de�ne a conceptual object is based on an analysis of the de�nition S =
¬ ok ′ C H (S) B ok ′. This just says S halts if H says it doesn't and vice

versa. But Hehner de�nes S = “¬ ok ′C H (S) B ok ′ �, i.e. S is a string, and
this is what is passed to H . This can be �xed with a notational adjustment.
Their second point is that whilst speci�cations, which are just mathematics,
may not de�ne conceptual objects (not all equations have solutions) the same
is not true of programs. Code always de�nes a semantic object. However
we �nd that, under the assumption that H has been implemented, we don't
have the right mathematical conditions for the implementation of S to have
a solution, and this is enough to establish the contradiction. This point
caused Hehner to change his rhetoric slightly � his point is not that the
proof does not con�rm the non-existence of a universal halt test, but rather
that a universal halt test does not exist conceptually, so we can't expect to
implement it.

Our notion of an uncomputable speci�cation requires the speci�cation to
have a model, but no implementation. An example is provided by Turing's
uncomputable sequence β, discussed brie�y in the appendix.

6 Conclusions

The halting problem is universally used in university courses on Computer
Science to illustrate the limits of computation. Hehner claims the halting
problem is misconceived. Presented with a claim that a universal halt test
cannot be implemented we might ask � what is the speci�cation of this test
that cannot be implemented? The informal answer, that there is no program
H which can be used to test the halting behaviour of an arbitrary program,
cannot be formalised as a consistent speci�cation.

The program S , used as example of a program whose halting cannot be
analysed, observes its own halting behaviour and does the opposite. Hehner
calls this a �twisted self reference�. It violates the key scienti�c principle of,
where possible, keeping what we are observing free from the e�ects of the

21

observation.

To better understand Hehner's thesis we have re-expressed his argument
using Forth as our programming language. We have veri�ed Hehner's simpli-
�cation of the problem, and proposed a minimal language of three programs
and a halt test, to which exactly the same proof can be applied.

Our programming intuition tells us that S will not terminate because when
′S H is invoked within S , H will not terminate. However, we cannot require
H to return a value to report this, because that would require it to terminate!
We provide a programming example based on a minimal language where we
resolve this by allowing the option for a halt test to report via an error
message when it �nds itself in this situation. However, we can require that
the halt test should always halt other situations. The problem is not the
uncomputability of halting!

We have also performed semantic analysis using Forth. This analysis con�rms
that the halt test and S do not exist as conceptual objects.

We have found nothing to make us disagree with Hehner's analysis. Defenders
of the status quo might say � so the halt test can't even be conceived, so it
doesn't exist. What's the di�erence? Hehner says that uncomputability
requires a consistent speci�cation that cannot be implemented. Turing's
uncomputable sequence β can provide such an example. A computation
that inputs n and outputs β(n) has a model, since β is mathematically
well de�ned, but if we could compute it for arbitrary n, then β would be a
computable sequence. The uncomputability of β is proved in the appendix.

Forth has been invaluable in this work in providing a concise notation, and
in helping us combine programming intuition with abstract arguments. We
have used it to transfer the argument to the scenario of a minimal language,
where the proof still holds, and to play with a variation of the halt test
that demonstrates that he problem in the scenarios we examine is not the
uncomputabilty of halting.

Acknowledgements.

Thanks to Ric Hehner for extensive electronic conversations; Steve Dunne
for extended discussions; participants at EuroForth 2016 for the stimulating
comments and questions in response to my talk �The halting problem in
Forth�; to the referees and Ric Hehner for their corrections of, and interesting
comments on, a draft paper; also to Campbell Ritchie for proof reading the
�nal version.

22

References

[1] E C R Hehner. A Practical Theory of Programming. Springer Verlag,
1993. Latest version available on-line.

[2] E C R Hehner. Retrospective and Prospective for Unifying Theories of
Programming. In S E Dunne and W Stoddart, editors, UTP2006 The

First International Symposium on Unifying Theories of Programming,
number 4010 in Lecture Notes in Computer Science, 2006.

[3] E C R Hehner. Problems with the halting problem. Advances in Computer

Science and Engineering, 10(1):31�60, 2013.

[4] C A R Hoare and He Jifeng. Unifying Theories of Programming. Prentice
Hall, 1998.

[5] Cornelis Huizing, Ruurd Kuiper, and Tom Verhoe�. Halting Still Stand-

ing � Programs versus Speci�cations, pages 226�233. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010.

[6] Alan M Turing. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society,
2(42):230�265, 1936.

Appendix: Turing's 1936 paper and the halting problem

On computable numbers, with a contribution to the Entscheidungsproblem,
Turing's paper from 1936 [6] is cited as the source of the halting problem,
but it does not mention halting. The paper captures Hilbert's notion of an
�e�ective procedure� by de�ning �computing machines�, consisting of �nite
state machines with an in�nite tape, which are similar to what we now call
Turing machines but with signi�cant di�erences. He uses such machines to
de�ne all numbers with a �nite representation as �computable numbers�, with
the fractional part of such a number being represented by a machine that
computes an in�nite binary sequence. The description of these machines is
�nite, so numbers such as π, which are computable to any desired accuracy,
can have a �nite representation in terms of the machines that compute them.

Turing's idea of a computer calculating π would perhaps have been of a
human being at a desk, performing the calculation, and now and then writing
down another signi�cant �gure. His �computing machines� are supposed
to continue generating the bits of their computable sequence inde�nitely,

23

but faulty machines may fail to do so, and these are not associated with
computable sequences.

The computing machines that generate the computable sequences can be
arranged in order. Turing orders them by an encoding method which yields
a di�erent number for each computing machine, but we can just as well think
of them being lexigraphically ordered by their textual descriptions.

The computable sequences de�ne binary fractions that can be computed.
Turing's contribution to the Entscheidungsproblem is in de�ning a binary
sequence β that cannot be computed. Let M (n) be the nth computable se-
quence, and de�ne the sequence:

β(n) = if M (n)(n) = 1 then 0 else 1 end .

By a diagonalisation argument β is not one of the computable sequences: it is
de�nable but not computable. The link with halting comes from asking why
it cannot be computed, the reason being that although we can talk about
the sequence of computing machines that generate in�nite binary sequences
of 0's and 1's we cannot distinguish these from machines which have the
correct syntactic properties but which do not generate in�nite sequences. So
we cannot compute which of the computable sequences is the nth computable
sequence because we cannot distinguish good and bad computing machines.

The �rst reference to the �halting problem� I have been able to �nd comes
in Martin Davis's book Computability and Unsolvability, from 1958. By then
Turing machines had taken their current form and were required to halt
before the output was read from their tape. He credits Turing's 1936 paper
as the source of the problem's formulation.

A proof using a computing mechanism which enquires about its own halting
behaviour and then does the opposite appears in Marvin Minsky, Computa-

tion. Finite and in�nite machines, from 1967.

24

SIMD and Vectors

M. Anton Ertl∗

TU Wien

Abstract

Many programs have parts with significant data
parallelism, and many CPUs provide SIMD instruc-
tions for processing data-parallel parts faster. The
weak link in this chain is the programming lan-
guage. We propose a vector wordset so that Forth
programmers can make use of SIMD instructions
to speed up the data-parallel parts of their appli-
cations. The vector wordset uses a separate vec-
tor stack containing opaque vectors with run-time
determined length. Preliminary results using one
benchmark show a factor 8 speedup of a simple
vector implementation over scalar Gforth code, a
smaller (factor 1.8) speedup over scalar VFX code;
another factor of 3 is possible on this benchmark
with a more sophisticated implementation. How-
ever, vectors have an overhead; this overhead is
amortized in this benchmark at vector lengths be-
tween 3 and 250 (depending on which variants we
compare).

1 Introduction

Current computer hardware offers several ways to
perform operations in parallel:

Superscalar execution Independent instruc-
tions are executed in parallel, if enough
functional units and other resources are
available. This requires little programmer
intervention: out-of-order processors find
independent instructions by themselves.

SIMD instructions perform the same operation
on multiple data in parallel. The programmer
or compiler has to use these instructions ex-
plicitly.

Multi-core CPUs Programs have to be split into
multiple threads or processes to make use of
this feature.

As a close-to-the-metal language, Forth should
provide ways to make use of these hardware fea-
tures. At least SwiftForth and Gforth already con-

∗Correspondence Address: Institut für Computer-
sprachen, Technische Universität Wien, Argentinierstraße 8,
A-1040 Wien, Austria; anton@mips.complang.tuwien.ac.at

tain features to make use of shared-memory multi-
cores, by extending the classical Forth multi-tasking
wordset. Superscalar execution is exploited by the
hardware and/or the compiler [SKAH91] without
programmer intervention.

In this paper I present the basic concepts and
an initial version of a vector wordset (Section 3)
that can make good use of SIMD instructions. The
main concept and contribution is a vector stack that
contains opaque vectors of dynamically determined
length. The programmer can use this vector stack
to express vector operations in a way that does not
introduce additional dependencies, and is therefore
the key to allowing very efficient implementations
with relatively little compiler complexity, as well as
enabling simpler implementations (with less perfor-
mance). We present different ways to implement
this wordset in Section 4, and Section 5 presents
preliminary performance results of using this word-
set. We discuss related work in Sections 2 and 6.

Terminology: In this paper, vector refers to
application-level one-dimensional arrays with an ar-
bitrary number of elements, while SIMD refers to
what machine instructions offer: arrays with lim-
ited (and often fixed) number of elements.

2 Background

In many applications one has to perform the same
operations on a lot of data, mostly independently,
sometimes combining the results. This is known as
data parallelism.

Data parallelism is obvious for many scientific ap-
plications, but can also be found in other appli-
cations, e.g., in the Traveling Salesman Problem1.
So introducing a wordset for expressing data paral-
lelism may be useful in more applications than one
might think at first.

Computer architects provide SIMD (single in-
struction multiple data) instructions that allow
to express some of this data parallelism to the
hardware. The Cray-1 was an early machine
with SIMD instructions, but starting in the 1990s,
microprocessor manufacturers for general-purpose
CPUs incorporated SIMD instructions in their ar-
chitectures. E.g., Intel/AMD incorportated MMX,

1<news:b2aed821-2b7e-456d-9a6d-c2ea1fdedd55@googlegroups.com>

25

vmulpd %ymm2, %ymm3, %ymm1

f* f* f* f*

ymm2 ymm3

ymm1

Figure 1: A SIMD instruction: vmulpd (AVX)

3DNow, SSE, AVX etc. and ARM incorporated
Neon.

These instruction set extensions typically provide
registers with a given number of bits (e.g., 128 bits
for the XMM registers of SSE and AVX128, and
256 bits for the YMM registers of AVX256), and
pack as many items of a basic data type in there
as fit; e.g., you can pack 16 16-bit integers or 4
64-bit FP values in a YMM register. A SIMD in-
struction typically performs the same operation on
all the items in a SIMD register. E.g., the AVX
instruction vmulpd %ymm2, %ymm3, %ymm12 multi-
plies each of the elements of ymm2 with the corre-
sponding element in ymm3, and puts the result in
the corresponding place in ymm1 (Fig. 1).

On the application side, these instructions are
usually used for implementing vector operations,
such as the inner product.

Making use of these instructions in programs has
been a major challenge. The following methods
have been used, and Fig. 2 shows examples.

Assembly language allows specifying a specific
SIMD instruction directly.

Intrinsics tell the compiler to use specific SIMD
instructions; e.g., the intrinsic _mm256_mul_pd

tells the Intel C compiler to use the vmulpd

instruction. These intrinsics are just as
architecture-dependent as assembly language,
but at least they play nicely with the rest of
the C code. Other compilers (e.g., gcc) typi-
cally support the same intrinsics as the Intel
compiler.

Vectors as language feature APL and its mod-
ern descendent J have arrays as first-class data
type, and many operations that work on arrays
or generate arrays. The array sizes are deter-
mined at run-time.

2In this paper, we use the AT&T syntax for the AMD64
architecture; in contrast to Intel syntax, the destination of
an instruction is the rightmost operand in AT&T syntax.

;Assembly language

vmulpd ymm1, ymm2, ymm3

/* C with Intel Intrinsics */

__m256d a,b,c;

c = _mm256_mm_mul_pd(a, b);

NB. J

a =: 3 5 7 9

b =: 2 4 6 8

c =: a*b

!Fortran Array language

REAL, DIMENSION(4) :: a,b,c

c = a*b;

/* GNU C Vector Extensions */

typedef double v4d

__attribute__ ((vector_size (32)));

v4d a,b,c;

c = a*b

/* C with auto-vectorization */

double a[4], b[4], c[4];

for (i=0; i<4; i++)

c[i] = a[i] * b[i];

Figure 2: Using SIMD instructions in programs

Modern Fortran contains an array sublanguage
that allows the programmer to express various
operations on whole arrays and sub-arrays di-
rectly instead of through scalar3 operations in
loops; the example in Fig. 2 shows an example
that can be directly translated to vmulpd, but
vectors of any length (including dynamically
determined lengths) are supported, as well as
higher-dimensional arrays, and parts of arrays.

GNU C contains a simple vector extension4,
usable only with fixed-size vectors with 2n

elements, ideally the size of the SIMD reg-
isters (gcc generates relatively bad code for
larger vectors). So it mostly is useful as an
architecture-independent way to specify SIMD
operations, and the programmer should com-
pose the code for longer vectors himself; for
run-time determined vector sizes, this is the
only option.

Auto-vectorization Ever since the Cray-1 there
has been the hope of auto-vectorization: Pro-
grammers would write scalar code oblivious
of SIMD instructions, and the compiler would

3In the context of programming with vectors, scalar refers
to a single value, i.e., a non-vector.

4https://gcc.gnu.org/onlinedocs/gcc/

Vector-Extensions.html

26

a v@ b v@ f*v c v@ f+v

a[0] b[0]

c[0]f*

f+

a[1] b[1]

c[1]f*

f+

a[2] b[2]

c[2]f*

f+

...

Figure 3: Dependences in a sequence of vector oper-
ations. Note that there are no dependences between
computations of different elements.

find out by itself how to make use of these in-
structions for that code.

While auto-vectorization occasionally succeeds in
vectorizing a piece of code (especially benchmarks),
this is an unreliable method; there are often obsta-
cles, that make it hard or impossible for the com-
piler to vectorize the code, e.g., the possibility of
overlap between memory accesses in the loop; and
if you ask the programmer to change his program to
remove these obstacles, why stick with scalar code?
If the programmer thinks in terms of vectorizing the
program, the way to go is to directly express vec-
tor operations rather than expressing them through
scalar operations and then hoping that the compiler
will auto-vectorize them. Compiling language-level
vector operations to SIMD code also requires much
less complexity than auto-vectorization.

Therefore, in this paper I propose an approach to
express vector operations in Forth.

3 Forth Vector Wordset

3.1 Vectors

A vector contains a dynamically determined num-
ber of bytes; different vectors can contain different
numbers of bytes, but many operations require that
all operands have the same length (as in APL, J,
and Fortran).

Vectors are opaque: They do not reside in mem-
ory that an application program is allowed to ac-
cess. Programmers can easily comply with this re-
striction: Only access vectors with vector words;
moreover, when using this wordset, if you use the
wrong words, the error will typically reveal itself
quickly.

Vectors have value semantics, like cells or floats,
and unlike strings in memory: When you copy a
vector, the copy has an identity of its own, and it is
unaffected by operations on the original (and vice
versa).

The main benefit of these properties is that it
gives a lot of freedom to the implementation of vec-

tor operations: Every part of every vector is in-
dependent of every other part of the same vector,
other vectors, and main memory (see Fig. 3), so vec-
tors can be processed in any order: front-to-back,
back-to-front, in parallel, in some combination of
these methods, or in some other order.

This restriction also gives the implementation a
lot of freedom when storing the vector data: It can
be stored in main memory with as much alignment
and padding as is useful for an efficient implemen-
tation; or it can be (partially or fully) stored in
SIMD registers, or in, e.g., graphics card memory;
the implementation may also store the vector data
in a way convenient for calling high-performance
computing libraries in other languages (as long as
the data used by these libraries are vectors or sub-
vectors).

An alternative approach would represent vectors
by an address/length pair, as is done in the stan-
dard for strings [For14, Section 3.1.4.2]; this is
somewhat similar to Fortran’s array language, that
also works on the existing arrays in memory. The
disadvantage of this approach is that efficient im-
plementation is hard, and in some cases impossible:
vectors would not necessarily be aligned for efficient
memory access, the size may not be a multiple of the
vector register size, and the memory areas of vec-
tors specified in this way may overlap, so the order
of element operations of a vector operation would
be restricted, it would require significant compiler
and/or run-time sophistication to achieve correct
operation while using SIMD instructions, and effi-
ciency would suffer as well.

Some have suggested combining the addr/len ap-
proach with restrictions on the program to avoid
the compiler/run-time complexity and performance
disadvantages, but this would add conceptual com-
plexity to the usage of the wordset and very likely
lead to non-portable programs, because such re-
strictions are hard to comply with in every instance:
It is hard to find out by testing that you have
not complied, unless every restriction is always ex-
ploited by the implementation you use. Also, when
choosing between portability and performance, pro-
grammers will often choose performance (especially
when dealing with a performance-enhancing fea-
ture).

3.2 Vector Stack

There is a separate vector stack that is used by
vector words.

Why have a separate stack instead of just storing
single-cell vector tokens on the data stack? Vector
tokens on the data stack would be error-prone: it
would be natural to use, e.g., dup to copy a vector
token, or drop to get rid of it; this would be in-
compatible with otherwise attractive implementa-

27

tion options for the value semantics of vectors (see
Section 4.1), and, worse, there is no implementation
that would be compatible with it that does not use
garbage collection.

By contrast, with a separate vector stack, the
user has to use vdup and vdrop to deal with vec-
tors, and these words (and all others dealing with
vectore) can perform the bookkeeping necessary for
preserving value semantics in the vector implemen-
tation.

The usual stack manipulation words get vec-
tor equivalents: vdup vover vswap vrot vdrop

vpick vroll.
Once we have such a vector stack, we can also use

it for other data, such as strings, bignums and ma-
trixes, but that is outside the scope of the present
work.

3.3 Data types

Forth uses only a few on-stack data type sizes:
single-cell, double-cell and float. It uses additional
in-memory sizes for communications with other
software or hardware, and for making efficient use
of memory.

For vectors, we usually also want to use the small-
est element data types that are big enough for the
application. This allows us to have shorter vectors
and faster vector operations. So while on a 64-bit
system we have only, e.g., + for adding 8-bit, 16-
bit, 32-bit and 64-bit integers, for vectors we want
b+v w+v l+v x+v, because, for long vectors, b+v

will be 8 times faster than x+v.
The vector wordset uses the following prefixes for

types: b ub w uw l ul x ux sf df.
In this paper, vector stack elements are denoted

with v for general vectors, or type v for specific
types, e.g. uwv for a vector of unsigned 16-bit (uw)
values, and sfv for a vector of 32-bit floats.5 Vec-
tor items are always on the vector stack, so this
paper does not use a V: notation or somesuch for
indicating that an item is on the vector stack.

Should we have vector types with cell-sized ele-
ments (v uv), and vectors with float-sized elements
(fv)? Vectors with cell-sized elements would be
fine, but are not implemented in the current word-
set; the vector words dealing with them would be
aliases of words dealing with xv uxv or lv ulv vec-
tors.

Vectors with float-sized elements have the prob-
lem, that there are relevant Forth systems where the
default float type uses the 80-bit 387 format, and
is stored in memory in 10-byte (VFX) or 16-byte
(iForth) units. There are no SIMD instructions for

5The standard has r for on-stack FP numbers and f for
flags, but uses the prefixes f, sf, df for dealing with FP
numbers of various lengths in memory; should we use sr for
32-bit floats?

dealing with this format, so vector words for them
would be slow. So, programmers should use dfv

or sfv words for portability (including performance
portability), and implementing fv words does not
make much sense.

3.4 Vector operation patterns

There are a number of operation patterns when
working with vectors:

Parallel vector/vector E.g., adding each ele-
ment of the first vector to the corresponding el-
ement of the second vector, resulting in a third
vector. This pattern works only with vectors
of the same length. Words implementing this
pattern have a v suffix.

Parallel vector/scalar E.g., adding a scalar to
each element of a vector. Words implement-
ing this pattern have a vs or sv suffix (sv only
for non-commutative operations).

Reduce E.g., for the sum or the maximum of all
elements of a vector, producing a scalar. Words
implementing this pattern have suffix r. Cur-
rently the vector wordset does not support this
pattern.

Generate a vector of a certain length, with all
elements containing the same scalar (possi-
bly unnecessary if we have vs instructions).
Other generating operations are NGSPICE’s
vector(n) that produces a vector containing
0,1,2..9. Matlab’s linspace(x1,x2,n) gener-
ates n points; the spacing between the points
is (x2 − x1)/(n − 1) (always includes the end-
points). Currently the vector wordset does not
support this pattern.

Reorder/shuffle elements of the vector, e.g., for
use in a FFT. Certain shuffle operations are
supported by SIMD instructions, but they are
rather limited. For now, the vector wordset
will not support this pattern.

Compress Given a vector of data and a vector of
flags, pick only those data corresponding to
true flags, and put them in a new (possibly
shorter) vector. While this pattern is com-
monly used in APL, it is not well-supported
in SIMD instructions, and the vector wordset
will not support it for now.

Scan The APL operator \ produces the intermedi-
ate results of reducing a vector. E.g. +\1 2 3

produces 1 3 6. The vector wordset will not
support this for now.

28

Index Sometimes the index of the first element sat-
isfying a condition, or the index of the maxi-
mum or minimum element is needed. The vec-
tor wordset will not support this pattern for
now.

3.5 Words

The vector wordset provides v (vector/vector
parallel) versions of the arithmetic, logic and
comparison operations + - * / mod negate and

or xor invert lshift rshift6 mux7 abs max

min < = > <= >= <>, vs (parallel vector/scalar,
with the first argument being the vector) versions
of + - * / mod and or xor lshift rshift

arshift max min < = > <= >= <> (not negate

invert abs, because they are unary operations,
and not mux, because it is ternary and scalar
operands do not make sense for it), and sv (parallel
scalar/vector, with the first argument being scalar)
versions of the non-commutative words - / mod

lshift rshift arshift < > <= >=8. Signed
integer / mod may be symmetric or floored (and
not necessarily the same as the scalar / and mod).
The result of comparison operations is a vector
with elements of the same size as the operand
elements (e.g, 8 bits per element for b<v); all bits
of the result element are 1 if the comparison result
is true or 0 otherwise. For bitwise operations (and
or xor invert mux), no type prefix is used.

For reducing words, one would use the associative
binary operations: + * and or xor max min.9

The combination of types, operations, and pat-
terns produces a large number of words: In the cur-
rent implementation, 137 v words, 123 vs words,
and 76 sv words. We see the same thing in the
SIMD extensions of computer architectures: They
introduce a large number of instructions thanks to
the combinations of types and operations (and pos-
sibly register widths).

3.6 Memory

Having vectors only on the vector stack with no
way to move data to/from ordinary memory would
be too restrictive for general usage. So the vector
wordset provides two ways to deal with memory:

• Have concrete data on the memory side, i.e., a
memory range where you can access individual

6Both signed and unsigned shifts right are supported.
7Mux (x1 x2 x3 -- x) is a bitwise operation, that se-

lects a bit from x1 if the corresponding bit from x3 is 1,
otherwise it selects the corresponding bit from x2.

8E.g., 0 l-vs would have no effect, while 0 l-sv would
be equivalent to lnegatev.

9F+ and f* do not satisfy the associative law, but df+r is
useful anyway, because it delivers an approximation to the
rational/real value of the computation, just like f+ and f*

itself.

elements with address arithmetics; the align-
ment of the memory range is not necessarily
SIMD-friendly, nor is it padded to a multiple of
the SIMD width; the memory after the last el-
ement may be inaccessible, so the last element
requires special (expensive) treatment even on
loading.

• Have opaque vectors in memory, i.e., the same
representation as on the vector stack. Opaque
vectors make the use of SIMD instructions easy
by storing the vectors appropriately, but the
implementation of these words has to man-
age the memory for the vectors with allocate

or some other dynamic memory management
method in order to allow proper padding and
alignment, plus management information such
as the size of the vector. Our wordset uses
single-cell vector tokens.

The words for these memory accesses are:

b!v (v c-addr u --) store a vector into con-
crete memory; if the vector length is different
from u, an error is thrown.

b@v (c-addr u -- v) load a vector from con-
crete memory.

v! (v v-addr --) Store a vector into memory
as opaque vector, storing the single-cell vector
token into v-addr.

v@ (v-addr -- v) Load a vector from an
opaque vector in memory, accessed through the
single-cell vector token v-addr.

v@’ (v-addr -- v) Fetch v, then clear v-addr.
The advantage of this operation over v@ is that
the implementation can just use the existing
reference to the opaque vector without incur-
ring the implementation cost of copying the
rest of the vector (Section 4.1). Moreover, a
later v! to v-addr does not incur the imple-
mentation cost of deleting the vector that v@

leaves at v-addr.

One danger of storing single-cell vector tokens in
memory is that this provides a hole for subverting
the implementation of value semantics: these tokens
can be copied with @ ! move etc. If this proves to
be a problem, a debugging mode can make these
tokens location-dependent by xoring them with v-
addr on v! and v@. This should quickly unveil ac-
cidential copying of this kind; there is, of course,
no protection against intentional subversion of the
implementation in Forth.

29

variable v1
s" some data" b@v vdup v1 v!

refs vect-bytespadding vect-data
2 9 some data 0 0 0 ...

v1
vsp

Figure 4: A vector in our implementation with ref-
counts (refs) after performing the shown code

4 Implementation

This section describes various implementation ap-
proaches, as well as the current implementation.

4.1 Vectors

A vector is stored in allocated memory and is
aligned and padded to the SIMD granularity (e.g.,
32 bytes for AVX256). In front of the actual vector
data, there is bookkeeping information: The num-
ber of bytes in the vector, and possibly a reference
count (see below); in addition, there may be some
padding to align the actual vector data, too (see
Fig. 4). The address of the start of the allocated
memory is the vector token.

There are two ways to implement the value se-
mantics:

linear Every vector has exactly one reference.
Copying (v@ vdup vover) creates (allocates)
a new copy of the complete vector, and con-
suming or overwriting a token (vdrop v! and
many other operations) frees the vector.10

refcount Every vector can have several tokens re-
ferring to it; the number of tokens is stored
with the vector in a reference count. When
copying the token, the reference count is in-
creased, when consuming or overwriting a to-
ken, it is decreased; if the reference count
reaches 0, the vector itself is freed. This re-
duces the number of allocates and frees, at
the cost of some additional complexity.

I normally avoid reference counting, because
it does not handle cyclic data structures well,
but vectors don’t contain any pointers to other
data at all, and therefore cannot form cycles,
so reference counting is ok for this purpose.

In many operations (e.g., df+v), one vector (or
more) is consumed, and another of the same length
is created. Then one can use the memory of a con-
sumed vector for the created one, avoiding the over-
head of free and allocate, unless (in the refcount

10The name linear for this approach is inspired by Henry
Baker [Bak94].

vec vect-bytes @ vect-data 0 vect-data ?do

vec1 i + df@ vec2 i + df@ f+ vec i + df!

[1 dfloats] literal +loop

Figure 5: The vector-processing loop of the trivial
implementation of f+v. vec, vec1 and vec2 are
locals containing vector addresses, vect-bytes and
vect-data are the fields shown in Fig. 4.

variant) the consumed vector still has references
left.

The current implementation supports both ap-
proaches (based on a compile-time flag), so the user
can determine the efficiency difference himself.

Another alternative that comes to mind is to
copy just the references, but use garbage collec-
tion for managing the memory. A disadvantage is
that words that consume and produce a vector (e.g.,
f+v) cannot reuse the vector memory directly, but
would always have to allocate new vector memory.
Allocation is about as expensive as with explicit
allocate/free unless you use a copying garbage
collector, and a copying garbage collector has rel-
atively high collection overhead for big data struc-
tures (such as potentially our vectors, when they
are used for sounds or pictures). Overall, this alter-
native does not look attractive.

Region-based memory allocation [Ert14] may be
useful when dealing with longer-term storage of vec-
tors, but is probably too cumbersome to be used
for the memory management of intermediate vector
results; also, it is not clear how to make region-
based memory allocation work properly with refer-
ence counting.

Finally, a compiler that is analytical about the
vector operations can avoid the overhead of vector
allocation and freeing in many cases.

4.2 Vector stack

Once vectors have been implemented, the vector
stack is trivial: It is just a stack of vector tokens.
However, unlike in a normal stack of cells, the copy-
ing or consuming words have to perform the appro-
priate copying or deleting of the referenced vectors
and/or reference-count bookkeeping.

4.3 Computations

Trivial implementation

The vector words can trivially be implemented in
standard Forth with loops containing scalar com-
putation words (see Fig. 5).

While this implementation realizes none of the
SIMD speedup that the vector wordset is designed
for, it provides a fallback option for users who want

30

simple:

vmovapd (%rdi,%rax,1),%ymm0

vaddpd (%rsi,%rax,1),%ymm0,%ymm0

vmovapd %ymm0,(%rdx,%rax,1)

add $0x20,%rax

cmp %rax,%rcx

ja simple

Figure 6: The vector-processing loop of the simple
implementation of df+v.

to write portable code: They can write code using
the vector wordset, and still run it (albeit slowly)
on Forth systems that do not have a SIMD imple-
mentation of the vector wordset. It also provides
a gradual approach for SIMD implementations: the
implementor can implement the most important op-
erations using SIMD instructions first, still falling
back to the trivial implementation for the words he
has not implemented yet.

Simple implementation

A simple implementation implements every vector
word separately, but uses SIMD instructions for
that.

For the vector-parallel v, vs, and sv words, the
meat of the word is the vector loop: in each iter-
ation, it loads the operand(s) from the vect-data

memory into SIMD registers, uses a SIMD instruc-
tion to perform the operation n times in parallel,
and then stores the result back into the memory
for a vector (see Fig. 6). For running that on a
CPU with in-order execution, you want to software-
pipeline [Cha81] this loop for good performance; on
out-of-order execution hardware, the hardware re-
orders the instruction execution by itself, achieving
the same result.

For the r (reducing) words, the implementation
is more involved: Thanks to associativity, there
are many different ways to evaluate the result: A
very parallel implementation of +r divides the vec-
tor into pairs of numbers, computes the sum of the
pairs, resulting in an n/2-sized vector; repeat that
until you have only one number left, the result. A
very sequential implementation of +r would add up
all the vector elements, one after the other, incur-
ring n− 1 times the latency of +.

One way to use SIMD instructions for reduction
would be to add up SIMD-register-wide parts of the
vector in a SIMD register; then each element of the
vector occurs exactly once in the computation of
exactly one of the components of the SIMD regis-
ter; finally, the components of the SIMD register
are reduced to form the final result. This may not
fully utilize the resources of the CPU, especially
for FP operations, which have a latency of more

sophisticated:

vmulpd (%rdi,%rax,1),%ymm0,%ymm1

vaddpd (%rsi,%rax,1),%ymm1,%ymm1

vmovapd %ymm1,(%rdx,%rax,1)

add $0x20,%rax

cmp %rax,%rcx

ja sophisticated

Figure 7: The vector-processing loop of the sophisti-
cated implementation of the sequence df*vs df+v.

than one cycle. More parallelism can be exploited
by adding up the elements of the vector in 4 or
8 SIMD registers in parallel (in an unrolled loop),
then adding these registers together with SIMD in-
structions, and finally the components of the result-
ing SIMD register.

Sophisticated implementation

If we have several vector-parallel words in a Forth-
level basic block11, the simple implementation
would produce several loops, with the data stored
in memory between the loops, incurring loop over-
head, and load and store overhead, and possi-
bly overhead for allocating and freeing vectors for
the intermediate results. Instead, several vector-
parallel words can be combined into a single loop12,
with the intermediate results only in SIMD registers
(i.e., not as full vectors, see Fig. 7).13

We can also let reducing vector words participate
in this scheme, with some caveats: The result of the
reduction must not be used in the same sequence of
vector words, so the combining ends with the first
word that uses the result of the reduction. And
the unrolling that you may want for the reduction
would complicate the rest of the code generation; on
the other hand, a smaller unrolling factor (even 1)
may be sufficient to achieve good performance given
that the loop performs not just one reduction, but
more.

Letting concrete-memory stores (e.g., b!v) par-
ticipate in the combining also has caveats: If the
memory of such a store overlaps the memory of con-
crete loads or other concrete stores, the result of a
näıve combination of vector operations can produce
an incorrect result. As a simple example,

a 1024 b@v a 64 + 1024 b!v

logically has to copy the whole 1024 bytes to the
vector stack before it starts storing, but a näıve
combining implementation might overwrite a 64 +

11A basic block is a straight-line code segment.
12This is a special case of the general optimization loop

fusion.
13This is similar to vector chaining used in hardware-

pipelined vector processors such as the Cray-1.

31

simple2:

vmovapd (%rdi,%rax,1),%ymm0

vaddpd (%rsi,%rax,1),%ymm0,%ymm0

vmovapd %ymm0,(%rdx,%rax,1)

vmovapd 0x20(%rdi,%rax,1),%ymm0

vaddpd 0x20(%rsi,%rax,1),%ymm0,%ymm0

vmovapd %ymm0,0x20(%rdx,%rax,1)

add $0x40,%rax

cmp %rax,%rcx

ja simple2

Figure 8: The loop of Fig. 6 unrolled by a factor
of 2

before loading this memory location, producing a
different result (like the difference between move

and cmove).
One solution to this problem is to check the mem-

ory ranges for overlaps before the loop; if there is
an overlap, let the loop write to temporary, non-
overlapping memory regions, and copy these to the
target addresses in the right order after the loop.

Unrolling

By unrolling the vector loop (see Fig. 8), the loop
overhead can be reduced for long vectors. It turns
out that this does not improve performance signif-
icantly on the Core i5-6600K, but it may help on
other CPUs.

Unrolling normally has to deal with left-over it-
erations. In the case of vectors we can avoid that
by making the vector data long enough for our pre-
ferred unrolling factor (e.g., with 32-byte SIMD in-
structions and unrolling factor 2, always have mul-
tiples of 64 bytes as vector data).

Beyond basic blocks

Extending the combining of vector words beyond
basic blocks is possible, but significantly more com-
plex: the vector stack has to be analysed beyond
basic blocks, and there are some issues to consider.

For ifs, one implementation is to pull the if in-
side the loop implementing the combined vector op-
eration; loop unrolling can reduce the number of
dynamically executed ifs (see Fig. 9).

Another way to deal with if is if-conversion
[MLC+92]: Both branches are computed, and the
result is selected with a muxv operation. However,
in cases where if-conversion is beneficial, I expect
programmers to perform it at the source level, so I
would not perform this at the compiler level. Also,
this is not possible for every operation, in particular
not for stores.

If the vector operations are contained in a loop,
we can extend the combining by unrolling this loop

df+v x 0< if

a v@ df+v then

0.5e df*vs

x in %r10, a in %r11, 0.5 in %ymm2

vector_loop:

vmovapd (%rsi,%rax,1), %ymm0

vmovapd 0x20(%rsi,%rax,1), %ymm1

vaddpd (%rdi,%rax,1),%ymm0,%ymm0

vaddpd 0x20(%rdi,%rax,1),%ymm1,%ymm1

test %r10, %r10

jns then

vaddpd (%r11,%rax,1),%ymm0,%ymm0

vaddpd 0x20(%r11,%rax,1),%ymm1,%ymm1

then:

vmulpd %ymm2,%ymm0,%ymm0

vmulpd %ymm2,%ymm1,%ymm1

vmovapd %ymm0, (%r12,%rax,1)

vmovapd %ymm0, 0x20(%r12,%rax,1)

add $0x40,%rax

cmp %rax,%rcx

ja vector_loop

Figure 9: A vector code fragment containing an if,
and a possible way to compile it. The if moves
inside the vector loop, and loop unrolling (factor 2)
is used to reduce its overhead.

n2 0 ?do

b1 i th v@

a j n2 * i + dfloats + df@

f*vs f+v

loop

%ymm3=a[j,i]

%ymm2=a[j,i+1]

%rbx=%r9=vtos vect-data

%r11=b[i] vect-data

%r10=b[i+1] vect-data

sophisticated_unrolled:

vmulpd (%rcx,%r11,1),%ymm3,%ymm0

vaddpd (%rcx,%rbx,1),%ymm0,%ymm0

vmulpd (%rcx,%r10,1),%ymm2,%ymm1

vaddpd %ymm1,%ymm0,%ymm0

vmovapd %ymm0,(%rcx,%r9,1)

add $0x20,%rcx

cmp %rcx,%r8

ja sophisticated_unrolled

Figure 10: A Forth loop containing vector words,
and the assembly language for the vector loop (the
(outer) do loop is not shown) for two iterations of
the do loop (not the vector loop); i.e., the result of
unrolling the do loop by a factor of 2.

32

typedef double

vdf __attribute__ ((vector_size (32)));

static void dfplusv_(vdf*v1,

vdf*v2, vdf*v, size_t bytes)

{

size_t i;

...

for (i=0; i<bytes;) {

*v = *v1+*v2;

i+=SIMD_SIZE, v1++, v2++, v++;

}

}

Figure 11: The C-level implementation of the vector
loop of df+v in Gforth. The resulting assembly code
is shown in Fig. 6.

genv-binary-c dfplusv_ vdf *v1+*v2

genv-binary df+v dfplusv_ df-type f+

Figure 12: Generating words: The first line gen-
erates the C function dfplusv shown in Fig. 11
(note how the C expression from this line appears
in the function), the second line generates the Forth
vector word (including memory management) df+v,
calling dfplusv if available, otherwise generating
a trivial implementation that uses f+.

(instead of or in addition to unrolling the vector
loop). Figure 10 shows the inner do loop of the vec-
tor version of matrix multiplication, as well as the
vector loop generated from an unrolled (factor 2) do
loop body. In addition to reducing the vector loop
overhead, the unrolling reduces the number of vtos
accesses (only one load and one store vs. two each
for the two iterations without unrolling). However,
this kind of unrolling requires dealing with left-over
iterations.

4.4 Current implementation

The current implementation of the vector wordset
supports different implementation options: It sup-
ports choosing between linear and refcount options
(independent of the other options), it includes a
trivial implementation (for all systems that don’t
have anything better yet), and it has a simple imple-
mentation for Gforth that is based on GNU C’s vec-
tor extensions (see Fig. 11). There are further con-
figuration options for this variant: You can define
the SIMD size (default 16 bytes), and the vector-
loop unroll factor (default 1).

Given the large number of vector words, all fol-
lowing a few patterns, plus these configuration op-
tions, the words are not hand-coded, but are in-

C_scalar:

movsd (%rdi),%xmm1

add %rsi,%rdi

mulsd %xmm0,%xmm1

addsd (%rdx),%xmm1

movsd %xmm1,(%rdx)

add %rcx,%rdx

sub $0x1,%r8

jne C_scalar

Figure 13: The inner loop of the C scalar implemen-
tation; it allows different strides for the involved
vectors and therefore has separate increments for
the addresses.

stead generated. Figure 12 shows the lines generat-
ing df+v. The dfplusv_ function and Forth word
is generated only on Gforth. Another system could
provide its own (e.g. code) version of dfplusv_ (the
core vector loop), and this would then be called by
df+v, upgrading this word from a trivial implemen-
tation to a simple implementation.

5 Results

This section gives some idea of the speedups achiev-
able by using various vector word implementation
approaches. We enhance the existing matrix mul-
tiplication code14 with variants that use the vector
wordset.

Note that while the vector wordset shows nice
speedups over scalar code on large-matrix multipli-
cation, calling a specialized matrix multiplication
library probably shows even better performance,
so this is not the ideal application area for vec-
tors; but there are areas where no specialized li-
braries are available, and the vector wordset can be
useful there. Here I use matrix multiplication for
benchmarking, because it is vectorizable, because
we already have a matrix multiplication benchmark,
and because it allows scaling for arbitrary vector
lengths.

We compared the following vector implementa-
tions and matrix multiplication variants:

trivial Vector words are implemented using scalar
Forth words without loop unrolling (Fig. 5).

simple Matrix multiplication uses f*vs and f+v,
each of which is implemented as a separate
loop, with the intermediate vector stored in
memory. The vector loops are written C with
the GNU C vector extension and compiled to
use AVX instructions (Fig. 6); the rest of the
vector words is written in Forth.

14http://theforth.net/package/matmul

33

simple refcount 32 1

simple linear 16 1
simple linear 32 1

sophisticated refcount 32 1

sophisticated linear 16 1

sophisticated linear 32 1

soph.-unrolled refcount 32 1

soph.-unrolled linear 32 1

Gforth trivial refcount

VFX trivial refcount

VFX scalar Gforth C scalar

Gforth scalar

n

cycles

1 1632 64 125 250 500
0G

1G

2G

3G

4G

5G

6G

7G

Figure 14: Timings for 20 matrix multiplications, each performing 250,000 times f*vs f+v (or equivalent)
for n-wide vectors

sophisticated We have no sophisticated compiler,
so we fake the effect by implementing a word
f*+vvs and use that instead of the sequence
f*vs f+v; f*+vvs combines Forth and GNU
C in the same way as simple (Fig. 7).

soph.-unrolled We fake the effect of a sophis-
ticated compiler with unrolling (factor 2) by
writing a word that combines the effect of v@

f*vs f+v v@ f*vs f+v, resulting in the code
shown in Fig. 10.

scalar The matrix multiplication code written in
scalar Forth code, otherwise using the same al-
gorithm. Unlike trivial, this version unrolls the
loop by a factor of 4, providing a significant
speedup on VFX (where the loop counter up-
date otherwise limits performance).

C scalar The inner loop of the matrix multiplica-

tion uses scalar C code (Fig. 13). This is mostly
useful for determining how good the (Forth)
scalar implementation perfroms.

For all the vector (i.e., not scalar) variants, both
linear and refcount was measured. For simple,
sophicticated, and soph.-unrolled, SIMD sizes of 16
(AVX128) and 32 (AVX256) were measured, and
vector-loop unrolling factors of 1, 2, and 4.

The benchmarks were run on a 4GHz Core i5-
6600K (Skylake) running Debian 8 (glibc 2.19).
Two Forth systems were used: gforth-fast (de-
velopment version from August 2017) was used for
all variants, VFX Forth 4.72 was used for trivial
and scalar.

The benchmark multiplies a 500×500 matrix with
a 500×n matrix for varying n; given the algorithm
of the benchmark, this always produces 250,000 in-
stances of f*vs f+v (or the scalar equivalent), with

34

vector length n. I.e., for all n the overheads were the
same. For a single matrix multiplication, compiling
the vector wordset takes longer than some of the
benchmark instances, so the benchmark performs
20 such matrix multiplications to mitigate this ef-
fect. Overall, the benchmark loads 10M×n FP val-
ues, stores 5M×n FP values, performs 5M×n FP
additions and 5M×n FP multiplications.

Figure 14 shows a selection of the results. Show-
ing all results would have overloaded the graph, so
we only show the most relevant ones, but also dis-
cuss the other results here.

Unrolling the vector loop had little effect on per-
formance, so here we show only unrolling factor 1.

SIMD size did not have the big effect I expected.
SIMD size 16 (AVX128) was often slightly slower
than SIMD size 32 (AVX256), but occasionally
faster (some cases where it is faster are shown in
Fig. 14). SIMD size 32 apparently produces some
non-linear effects, especially for the variants that
allocate and free memory, so I suspect some in-
terference between AVX256 and the memory alloca-
tor. The AVX128 variants of the same benchmarks
are closer to linear.

Refcount clearly beats linear for this benchmark,
across all vector sizes. Apparently the overhead of
allocate and free is much larger than that of ref-
erence counting, and for the larger vector sizes, you
also have to pay for copying quite a bit of vector
data on each v@. Still, the slowdown of soph.-
unrolled linear 32 1 over soph.-unrolled refcount
32 1 is surprisingly large; one contributing factor
is probably that sophisticated and soph.-unrolled
with refcount doe not perform a single allocate

or free in the core of the matrix multiplication.
For the trivial implementations, we show only the
refcount variants; the linear variants are slightly
slower.

Given that much of the time is apparently spent
in allocate and free for many of the results, re-
peating the benchmark on a platform with a differ-
ent implementation of these words might give quite
different results; in particular, a per-thread cache
has been added to malloc() in glibc 2.26.15 In the
present case all the allocated and freed vectors
have the same size, so such a cache should work
very well. One could also add such a cache to the
vector wordset implementation, to reduce the per-
formance dependency on the underlying allocate

and free implementation.

Overall, as expected, for the larger vector sizes
we have a big performance increase from trivial
through simple, sophisticated up to soph.-unrolled,
with the scalar results being between trivial and
simple. The performance of C scalar is interesting,
because it is faster than everything except sophis-

15https://lwn.net/Articles/729761/

ticated and soph.-unrolled (at small vector sizes, C
scalar beats even them); however, when program-
ming in Forth, we usually don’t have a scalar C
version at hand, so the (Forth) scalar results are
more relevant.

By looking where the scalar lines cross those of
various vector implementations, we can determine
at what vector length using vector words starts pay-
ing off. For Gforth scalar, the crossover point with
soph.-unrolled refcount 32 1 is at vector length 3,
with sophisticated refcount 32 1 at vector length 4,
simple refcount 16 1 is faster at vector length 16
and simple refcount 32 1 is faster at length 32.

VFX scalar is quite a bit faster, crossing over
soph.-unrolled refcount 32 1 only between vector
lengths 16 and 32, and crossing over simple refcount
32 1 between 125 and 250. However, these vector
implementations all run on Gforth, and I expect
that a SIMD-based vector implementation in VFX
will run faster and reach crossover sooner.

Overall, we see that the vector words can pro-
vide a speedup, especially if the scalar code is not
compiled optimally (whereas the inner loops of the
vector words can be written in assembly language).
However, vector words have an additional overhead,
and that means that, for short vector lengths, using
the vector words will produce a slowdown.

6 Related work

Related work in other languages has been intro-
duced in Section 2.

The most significant difference between the vec-
tor wordset and the Fortran array sublanguage is
that our vectors are stored separately from ordi-
nary memory, avoiding alias problems, whereas the
Fortran array sublanguage operates on arrays and
subarrays that can be accessed in other ways, too,
and therefore has to worry about alias problems.

The most significant difference between GNU C’s
vector extensions and the vector wordset is that
GNU C’s vector types have a fixed size that is re-
stricted to be a power of 2, and in practice should be
the same as the SIMD size; so it is essentially a way
to express SIMD operations without resorting to
architecture-specific intrinsics or assembler. In con-
trast, the vector words process vectors of arbitrary
length, which does not even have to be a multiple
of the SIMD length, thus providing a higher-level
programming interface.

APL is much more sophisticated than the vector
words, and includes operations that do not benefit
from current SIMD instructions, and are hard to
implement efficiently. If the vector words become
popular and such features are asked for, the vector
wordset may grow in the direction of APL in the
future. Of course, you can instead use APL or J

35

today (but then have to live without the features of
Forth).

Closer to Forth, there is a Forth dialect designed
for genetic programming that includes vector and
matrix operations [HRvR07] in order to let the ge-
netic programming system discover programs that
benefit from such operations, such as signal process-
ing. The Forth dialect uses a combined stack for all
the types (including vectors and matrices), static
type checking, and overloading resolution. Apart
from that, the paper is very superficial in its de-
scription of the vector words. Our vector words
are oriented towards the traditional Forth model of
not performing type checking. The separate vector
stack is a direct consequence of this model, espe-
cially because we want to treat vectors as opaque
data type (unlike, traditionally, strings [Ert13]) to
avoid aliasing.

7 Conclusion

By having opaque vectors and a wordset for them,
we can make use of SIMD instructions without un-
reliable compiler complications such as alias analy-
sis or auto-vectorization. The wordset can be imple-
mented in different ways: The simple implementa-
tion is easy to implement; its performance for large
vector sizes is better in our benchmark than us-
ing scalar Forth code on VFX. The sophisticated
implementation provides a better speedup, but re-
quires more implementation effort. The source code
can be found on https://github.com/AntonErtl/

vectors.

Acknowledgments

Herbert Pohlai provided valuable knowledge about
APL and J. Marcel Hendrix and the anonymous
reviewers provided valuable feedback on the pa-
per. Marcel Hendrix provided information on fur-
ther generate patterns.

References

[Bak94] Henry Baker. Linear logic and per-
mutation stacks — the Forth shall
be first. ACM Computer Architecture
News, 22(1):34–43, March 1994.

[Cha81] Alan E. Charlesworth. An approach to
scientific array processing: The archi-
tectural design of the AP-120B/FPS-
164 family. Computer, pages 18–27,
September 1981.

[Ert13] M. Anton Ertl. Standardize strings now!
In 29th EuroForth Conference, pages
39–43, 2013.

[Ert14] M. Anton Ertl. Region-based memory
allocation in Forth. In 30th EuroForth
Conference, pages 45–49, 2014.

[For14] Forth 200x Standardization Committee.
Forth Standard 2012, 2014.

[HRvR07] Kenneth Holladay, Kay Robbins, and
Jeffery von Ronne. FIFTHTM: A stack
based GP language for vector process-
ing. In Marc Ebner et al., editor,
Genetic Progamming (EuroGP), pages
102–113. Springer LNCS 4445, 2007.

[MLC+92] Scott A. Mahlke, David C. Lin,
William Y. Chen, Richard E. Hank, and
Roger A. Bringmann. Effective compiler
support for predicated execution using
the hyperblock. In 25th Annual Interna-
tional Symposium on Microarchitecture
(MICRO-25), pages 45–54, 1992.

[SKAH91] Mark Smotherman, Sanjay Krishna-
murthy, P. S. Aravind, and David Hun-
nicutt. Efficient DAG construction
and heuristic calculation for instruction
scheduling. In MICRO-24, 24th Annual
Intl. Symp. on Microarchitecture, pages
93–102, 1991.

36

Special Words in Forth EuroForth 2017

Special Words in Forth
Stephen Pelc
MicroProcessor Engineering
133 Hill Lane
Southampton SO15 5AF
England
t: +44 (0)23 8063 1441
e: sfp@mpeforth.com
w: www.mpeforth.com

Abstract
Over the last few years, I have become convinced that I do not understand the ANS Forth
description of compilation and how this situation came about. The Forth 2012 description of
compilation is the same as that of ANS. This paper describes the process of understanding
that leads to being able to make a few proposals to make use of a new description of
compilation. In essence, we are going to have to regard IMMEDIATE as a special case of
our new situation. The model also allows us to build words that would previously have had
to be state-smart.

Introduction
The Forth94 (ANS) and Forth 2012 standards talk about execution of a word in terms of
semantics. In the Oxford dictionary, we find the definition of semantics to be:
The branch of linguistics and logic concerned with meaning. The two main areas
are logical semantics, concerned with matters such as sense and reference and
presupposition and implication, and lexical semantics, concerned with the
analysis of word meanings and relations between them.
Wikipaedia says:
In programming language theory, semantics is the field concerned with the
rigorous mathematical study of the meaning of programming languages. It
does so by evaluating the meaning of syntactically legal strings defined by a
specific programming language, showing the computation involved.

In terms of undestanding Forth standards, these do not help much. In practice semantics
means action or behaviour. From the Forth 2012 standard:
compilation semantics: The behavior of a Forth definition when its name is encountered by
the text interpreter in compilation state.
execution semantics: The behavior of a Forth definition when it is executed.
interpretation semantics: The behavior of a Forth definition when its name is encountered
by the text interpreter in interpretation state.
In this paper we use semantics, behaviour and action interchangeably.

MPE’s VFX code generator was written in the late 1990s just as the Forth94 standard was
being adopted by most vendors. In particular, VFX took advantage of the then new word
COMPILE, to attach code generators for a range of words. It did this while preserving the
classic Forth interpreter loop, or so we thought.

37

Special Words in Forth EuroForth 2017

: process-xt \ i*x xt -- j*x
 state @ 0 = if
 execute
 else
 dup immediate?
 if execute else compile, then
 then
;
The classical Forth interpreter loop has been used to describe the operation of Forth for over
three decades now. It has been a useful model for many people. People regularly claim that
they need to write a custom interpreter and that not all Forth systems permit this in a portable
manner. We will see that a minor change to the loop and its associated structures brings it in
line with Forth 2012 and expands the interpreter’s facilities to take advantage of the Forth
2012 description of Forth words’ action or behaviour or semantics.

Although this paper describes the interpreter in terms of the classic Forth interpreter loop, it
should not be assumed that other techniques for writing interpreters are excluded. Exactly the
same problems and solutions are present in techniques with different organisations including
recognisers.

Smart COMPILE,
VFX Forth and other Forths take advantage of COMPILE, (xt --) by attaching
optimisers to the words that they generate code for. For example, the word DUP has a word
C_DUP that generates code for DUP. The xt for C_DUP is attached to DUP. Then when
COMPILE, looks at DUP it executes C_DUP to generate the code for DUP.

Illustration 1: Classical Forth interpreter loop

38

Special Words in Forth EuroForth 2017

The smart COMPILE, introduces the idea that a word (identified by one primary xt) may
require one or more secondary xts. It has become common practice in desktop Forths for
dictionary headers to contain more than just link, name and flags. This trend is particularly
true in Forth systems that perform native code compilation (NCC).

The smart COMPILE, can completely separate the interpretation (execution of DUP) and
compilation actions of a word. This technique can also be used for other words such as IF,
with the deliberate intention that the interpretation and compilation actions of a word can be
separated. However, COMPILE, is then broken as far as current standards are concerned
because structure words such as IF produce or consume stack items, and string words parse
the input stream. There may/will also be corner cases to do with POSTPONE.

Standards issues
The use of the smart COMPILE, for optimisation is not contentious. However, it opens a box
that cannot and should not be closed. The Forth94 standard introduced a new way of talking
about Forth words. Words have a number of actions, including interpretation and compilation
actions. The only standard way to separate interpretation and compilation actions is,
paradoxically, to define them as being the same and then to use STATE to separate them
within the word. This is the state-smart nightmare that leads to bugs which are hard to find.

In the Forth94 and Forth 2012 world, very few words are defined as IMMEDIATE and there
is no standard way to ask the system if the xt of a word is of an IMMEDIATE word.

In terms of the classical loop shown above, the only place at which non-default compilation
semantics can be attached is COMPILE, and the system immediately becomes contentious,
not least because some people insist that IF must be IMMEDIATE without stating any
evidence for this. Another way to look at the problem is to state that the language of the
standard does not match any Forth implementations except cmForth and Gforth. Chuck
Moore’s cmForth is as idiosyncratic as all Chuck Moore’s other tools and was obsolete at the
time of the ANS standard. Gforth’s original design target was to be a model implementation
of the Forth94 standard, i.e. the standard is correct. In my opinion this design target has lead
to complexity. Correcting the disconnect between the current standard and real Forths while
maintaining simplicity is the function of this paper.

39

Special Words in Forth EuroForth 2017

A way forward

: process-xt \ i*x xt -- j*x
 state @ 0 = if
 execute
 else
 dup immediate? if
 execute
 else
 ndcs?
 if ndcs, else compile, then
 then
;
The picture illustrates a Forth interpreter/compiler loop that has been modified to cope with
separated interpretation and compilation actions.

We also need a small number of new words that enable the loop to be constructed portably:
IMMEDIATE? Xt -- flag ; return true if the word is immediate
NDCS? Xt -- flag ; return true if the word has non-default compilation semantics
NDCS, i*x xt -- j*x ; like COMPILE, but may parse.

In order to finish up, we need to understand what the word labelled NDCS, actually does. It
finds the word that performs the non-default compilation semantics and then EXECUTEs it.

Illustration 2: Allowing for the Forth94 and Forth 2012 standards

40

Special Words in Forth EuroForth 2017

The next picture shows the loop using the definition of IMMEDIATE words as having the
same interpretation and compilation semantics.

The significant change is the introduction of a dictionary header flag, NDCS, which indicates
that a word has non-default compilation semantics.

Replace IMMEDIATE with NDCS

The two boxes “Find xt” and “EXECUTE” were called NDCS, in the previous diagram. Here
they are exposed to show that non-default compilation semantics are found in a system-
specific manner.

: process-xt \ i*x xt -- j*x
 state @ 0 = if
 execute
 else
 dup ndcs?
 if find-ndcs-xt execute else compile, then
 then
;

The immediate flag has disappeared because all immediate words have non-default
compilation semantics. They are immediate if the NDCS xt is the same as the for
interpretation xt. The definition of immediate is more complicated in standards-speak, but
comes to the same thing. An alternative implementation strategy may be to keep a separate

Illustration 3: The IMMEDIATE flag becomes the NDCS flag

41

Special Words in Forth EuroForth 2017

immediate flag, but we should not hide the basic idea that immediate words have non-default
compilation semantics.

Several modern Forth systems have interpreter loops that would be easy to convert to the new
requirements. Coming back to our three new words:
IMMEDIATE? Xt -- flag ; return true if the word is immediate
NDCS? Xt -- flag ; return true if the word has non-default compilation semantics
NDCS, i*x xt -- j*x ; like COMPILE, but may parse. Used by words such as IF.

We can see that the conventional immediate flag in a word’s header becomes the NDCS flag,
set for all words that have non-default compilation semantics. Comparison of the
interpretation xt and the NDCS xt gives us a basis for the word IMMEDIATE? The word
NDCS, just hides the system-specific action of obtaining the NDCS action from an xt.

Using NDCS words
The NDCS words and the notation below allow us to construct NDCS words, both for system
use and for general use. It is worth considering whether a library or an application may want
to construct NDCS words. The most common case that we see is when an application needs a
“Domain Specific Language” (DSL) which is Forth-based. Such a DSL may wish to provide
interpreted as well as compiled versions of IF … ELSE … THEN and DO … LOOP.

In the past this type of notation has been shunned because it required state-smart words.
Words that use NDCS correctly in two portions that do not test STATE are not state-smart.
Therefore the reasons to avoid such notations only have to do with programming taste and
overcoming the limitations of 20+ years of dogma. The dogma arose because we did not have
the structures to separate interpretation and compilation actions, even though the Forth94 and
Forth 2012 standards described compilation in those terms. Once we have Forth words to
implement such ideas, we can move forward.

Here’s a potential way of building NDCS words. They illustrate a conventional IF … THEN
pair. The word NDCS: modifies the previous word to have the following non-default
compilation semantics – it defines a nameless word and sets system-specific flags and data.

: IF \ C: -- orig ; Run: x --
\ This is the traditional interpretation behaviour
 NoInterp ;
ndcs: (-- orig) s_?br>, ; \ conditional forward branch

: THEN \ C: orig -- ; Run: --
\ This is the traditional interpretation behaviour
 NoInterp ;
ndcs: (orig --) s_res_br>, ; \ resolve forward branch

To produce an interpreted version, the interpretation behaviour is simply replaced by the new
version. The next example shows how a contentious notation such as S” and friends becomes
non-contentious.

42

Special Words in Forth EuroForth 2017

: S" \ Comp: "ccc<quote>" -- ; Run: -- c-addr u
\ Describe a string. Text is taken up to the next double-quote
\ character. The address and length of the string are
\ returned.
 [char] " parse >syspad
;
ndcs: (--) postpone (s") ", ;

Words we need to consider
: set-compiler \ xt --
\ Set xt as the compiler (by COMPILE,) of the last
\ definition. The word whose xt is given receives
\ the of the word it is to compile (xt --).
\ Used to define optimisers.

: comp: \ xt --
\ Starts a nameless word whose xt becomes the compiler
\ for the last definition.

: set-ndcs \ xt --
\ Set xt as the NDCS action of the last definition.
\ The word whose xt is given to SET-NDCS has the stack
\ action: i*x –- j*x

: ndcs: \ i*x xt -- j*x
\ Starts a nameless word whose xt becomes the NDCS
\ action for the last definition.

: IMMEDIATE \ --
\ Mark the last defined word as immediate by
\ setting the NDCS flag making the NDCS xt the same
\ as the interpretation xt.

: IMMEDIATE? \ Xt -- flag
\ Return true if the word is immediate.

: NDCS? \ Xt -- flag
\ Return true if the word has non-default compilation
\ semantics.

: NDCS, \ i*x xt –- j*x
\ Like COMPILE, but may parse. Used to perform the action
\ at compile time of NDCS words such as IF.

: SEARCH-NAME \ c-addr len -- ior | xt 0
\ Perform the SEARCH-WORDLIST operation on all wordlists
\ within the current search order. On failure, just an ior
\ (say -13) is returned. On success, the word’s xt and 0
\ are returned.

During a review on the Forth200x mailing list, nobody liked the acronym NDCS for these
words. The phrase “special complation semantics” was much preferred instead. I have left
NDCS in the paper because Forth 2012 refers to “non-default compilation semantics”
throughout. When the standard uses the new phrase, then the words above can change names.

43

Special Words in Forth EuroForth 2017

Consequences for compilation
We can now define what happens during compilation of a Forth word, i.e. what happens
when a source token has been recognised/found and the system is in compilation state.

1. The word has an NDCS flag and an NDCS-specific action has been defined for it.
The NDCS specific action is executed. These could be the compile-time actions of
IF or S”.

2. The word has an NDCS flag but no NDCS-specific action has been defined for it. In
this case the word’s original xt is executed, corresponding directly to the current
definition of an immediate word.

3. The word is normal and a code generator has been specified. The code generator is
executed to lay down the required code.

4. The word is normal and no code generator exists. We just lay a Forth call to this
word.

Cases 1 and 2 form the action of NDCS, in this paper. Cases 3 and 4 form the action of
COMPILE, in the standard.

The test for an NDCS xt is optional. If a system can guarantee that all NDCS words have a
separate xt for the NDCS portion, case 2 never happens and the check can be omitted.
Similarly, systems without code generators can omit case 3.

Embedded and minimal systems
If we treat the NDCS flag as equivalent to the old immediate flag, then a minimal system can
just provide cases 2 and 4 above. If such systems wish to provide both compilation and
interpretation actions for words such as S” they can fall back to state-smart words, probably
as they have always done.

Illustration 4: Forth compilation

44

Special Words in Forth EuroForth 2017

Conclusions
The Forth94 standard (ANS) introduced the idea of “non-default compilation semantics”
(NDCS) to the Forth world. However, the standard provided no facilities for dealing with
NDCS words. NDCS makes immediate words a special case of NDCS. Simple changes to the
Forth interpreter allow us to deal with and specify NDCS words. The classical Forth
interpreter loop picture (Figure 1) needs a small change (Figure 3), and we need to introduce
the words NDCS? and NDCS, to complete the picture.

Correct use of NDCS words also allows us to implement words such as S” without them
being state-smart. This in turn permits us to define notations that have been deprecated for
the last 20 years or so.

In implementing NDCS behaviour we find that immediate words are just a special case of
NDCS. We can usefully remove the immediate flag and replace it with an NDCS flag.

It would be of benefit if we can find a name other than NDCS to describe “non-default
compilation semantics”.

Acknowledgements
Anton Ertl has tested my understanding of Forth standards for many years.

My belief that all standards contain bugs has sustained me over many years.

Anton Ertl, Bernd Paysan, Graham Smith and Gerald Wodni provided valuable comments on
early drafts of the paper.

45

Security Considerations in a Forth Derived Language EuroForth 2017

Security Considerations in a Forth Derived Language

Ron Aaron
Aaron High-Tech, Ltd.
HaSheminit 34, Ma'ale Adummim, Israel
t: +972 52 652 5543
e: ron@aaron-tech.com
w: https://8th-dev.com/

Abstract

Of major concern in modern application development is how to increase the robustness of program
code while maintaining the programmers' productivity. Time-to-market directly affects ROI, but so
do security problems arising from coding practices and tools. Our “8th” language, a Forth
derivative, was conceived in part to address these issues.

Introduction

In seeking a cross-platform and secure programming language for a “secure application” which was
to run on both mobile and desktop platforms, I looked for a language which was:

• easy to use

• truly “write-once, run-anywhere” (mobile and desktop alike)

• resistant to hacking

• proof against the most common security problems

Because I didn't find an appropriate language or set of tools, despite my best efforts to do so, I
settled on creating a new language. Borrowing ideas from my former Reva Forth, which was also a
Forth-derived language, I set out to address the above issues in the new language, “8th”.

“Ordinary” security issues

Memory access:

In standard Forths, it is generally possible to access any memory in the system by means of @ and

!. Similarly, in C and C++, it is possible to assign an arbitrary value to a char * to do the same.

While it is often useful to have such access, it is an open door for hackers to subvert a program.
Therefore 8th does not permit arbitrary memory accesses. Instead, it uses strong typing along with
specific memory-accessing types (strings and buffers, among others) to safely encapsulate memory
accesses.

Memory allocation:

A common issue in C, C++, Forth, and others is memory allocation. There are several related
issues: a) allocating an incorrect amount of memory, b) neglecting to properly initialize that

46

Security Considerations in a Forth Derived Language EuroForth 2017

memory, c) neglecting to allocate memory at all, d) forgetting to de-allocate the memory when
done, and e) de-allocating the memory more than once. Problems (a), (b) and (c), in particular, can
also be security issues. The 8th solution is simply to not permit the programmer to allocate or
deallocate memory (much like Java et. al.). The data-types native to 8th automatically manage any
memory they require. They are also allocated from “pools” of that type, and they are reference-
counted so that de-allocation of memory (and other resources) occurs when the item is no longer in
use. This sort of “garbage-collection” amortizes the cost of the cleanup over the course of the
application's run-time, similar to C or C++ (or Forth for that matter), and unlike Java whose GC can
cause the application to pause for a significant amount of time at unpredictable intervals.

Stack smashing:

Possibly the most common exploit used by hackers is “stack smashing”, or overflowing an item
held on the stack and thus overwriting adjacent memory. This can be used to simply corrupt a value
(and achieve some alternate code path), or it may be used to generate an alternate code address to
return to, or even CPU opcodes to be executed.

Despite decades of battle against this particular foe, C and C++ remain quite vulnerable to it
because the languages themselves make it easy to succumb to it. 8th makes it impossible to smash
the stack, since data-items control access to their internal data, and ensure the access is within
bounds, or dynamically grow as necessary. In no case is direct access to the CPU stack provided by
any 8th words, unlike the standard Forth >r and r> which, often, are implemented as giving direct
access to the CPU stack. In 8th, those words only access an auxiliary stack, so it is impossible to
subvert the CPU stack.

Integer overflow:

While perhaps not as well-known, integer overflow continues to be an ongoing security issue in C
and C++ in particular (as well as in some Forths). The plethora of integer types and the necessity to
always be aware of those types, as well as the overuse and abuse of “casting” can lead to
unexpected and extremely difficult-to-debug security issues. 8th handles this by automatically
promoting an integer to a “big-integer” or “float” to a “big-float” as necessary. Adding 1 to
9223372036854775807 simply results in 9223372036854775808, and the underlying data type
appears simply as a “number” to the user. This means that the programmer can be concerned solely
with the correctness of the algorithm he or she is implementing, and needn't be worried about
“gotchas” in the maths department.

Pointers:

Forth users are used to having generic “cells” on the stack, which may be treated as numbers or
addresses (arbitrary memory access). C/C++ users rely heavily on pointers. The danger is that a
pointer represents an open door into your data structures and perhaps your code as well. If an
adversary can get access to a pointer to an internal structure, she or he can almost certainly find
something “interesting” to do with it. Something which you will not approve of, most likely.

47

Security Considerations in a Forth Derived Language EuroForth 2017

8th does not provide any pointers at all. This was hinted at in the “memory access” section. But it
goes further, in that the data items returned by 8th to the user are opaque and it is not possible via
plain 8th to access their internals. However, since the FFI (foreign function interface) must be able
to pass pointers to external functions, it is possible for an external library to gain access via the FFI
to internal structures. 8th attempts to reduce the footprint of this vulnerability by not passing any
actual internal structures to external programs; however, a dedicated hacker might be able to find an
opening. Therefore one must take extra steps to ensure external libraries are secured).

User input:

Another avenue for hackers to subvert an application is via uncontrolled (or more often, specifically
controlled) user-input. In common with Forth, 8th allows users to enter arbitrary information via
the REPL. The input in 8th is captured in strings, which are a self-adjusting data-type which can
handle any amount of data (within system memory limits). In general, the REPL is not considered a
vector for subverting the application. However, the application programmer can use eval to permit
interpretration of arbitrary input text, or can even invoke the REPL from within an application.

To help the programmer avoid disaster, 8th makes it quite easy to limit the vocabularies (called
“namespaces” in 8th) which are available to the REPL. Standard Forth has a similar facility. Thus
one may control which words the user-interpreted input may access.

But unlike standard Forth, 8th uses JSON as its data-description language, primarily because it is so
widely used and is easy to read. Further, 8th has “enhancements” to JSON which are intended as a
convenience to the programmer. So for example, one may embed 8th code to be interpreted along
with the JSON, in order to calculate some value at load-time. These enhancements are a potential
avenue for hackers, and so a special word json> exists which interprets only standard JSON (and
throws an exception if there is invalid JSON in the string).

In the usual case of user-input hacking, the hacker attempts to overflow a buffer in order to perform
a stack or heap-crash. Because the strings used by 8th are self-adjusting, this tactic cannot succeed.

An additional protection 8th provides is “auto-wipe” buffers and strings. When one of those data
types has set-wipe invoked on it, it will have its allocated memory wiped (zeroed out) before being
deallocated. This is important in the case of a buffer holding decrypted information or an
encryption key. The encryption words set the wipe flag automatically to ensure private or sensitive
data are not leaked.

“Extraordinary” security issues

There are two more specific issues which 8th attempts to deal with: subversion via required libraries
and validation of the application's code.

In any system where external libraries may be loaded at run-time (e.g. all the platforms 8th runs on),
it is possible for an adversary to replace a “good” library with a “bad” one. Windows has been a
non-stop target of such exploits, but neither macOS nor Linux are immune. 8th reduces the attack

48

Security Considerations in a Forth Derived Language EuroForth 2017

surface by fully incorporating most of the libraries it requires into the runtime binary. This has the
obvious disadvantages of increasing the size of that binary, as well as making it impossible to
update the version of a library used in a particular 8th binary. However, it was felt that the
advantages of significantly reducing the attack surface for this kind of hack outweighed those
disadvantages. In particular, because 8th undergoes very regular updates, the incorporated libraries
are also regularly updated as necessary.

The “Professional” edition of 8th also incorporates validation of the application as well as a
measure of protection against decompiling or exposure of the programmers intellectual property. It
does this by encrypting and signing the “deployment package” (DP) of code and resources.

In practice, the DP is a zip-file containing all the code and resources for a particular application.
The Professional edition allows programmers to encrypt the DP (with AES-256-GCM) and sign the
application with their specific PK keys (generated by the 8th system using Ed25519, not GPG etc.).
Then when the 8th runtime unpacks the DP, it will fail if any part of it has been tampered with,
providing a strong measure of confidence that the DP is legitimate. The DP's encryption makes it
difficult (though not impossible) for an adversary to decrypt it and expose the intellectual property
contained therein.

Conclusion

There is no rest for the weary.

We are continually seeking to improve the hack-resistance of 8th and improve its stability. At
present, the FFI represents the single biggest entry point for hackers, and we are researching
methods of hardening it.

Likewise, we would like to find a better method of encrypting the DP, to make it still more difficult
for an attacker to decrypt. The weakness there is that the keys must be known at runtime, and so
must be stored in a manner the 8th runtime can access on arbitrary hardware. We've not found any
particularly robust solutions to that problem, so we are careful to not make any extreme claims for
the encryption.

As new exploits are found in libraries we use or in other code, we work to find ways to offset them.

Finally, we are researching methods of confounding timing and other attacks against the encryption
libraries we use (TomCrypt).

If you have comments, questions, or criticisms, please feel free to address them to me at the email
listed at the start of this document.

49

1

RFC

 Andrew Read (AR) / Ulli Hoffmann (UH)

 EuroForth 2017

Forth: A New Synthesis

1. Introduction and objective

It is well-known that Forth scales-down well to the smallest

platforms and applications. However, it is less obvious that Forth

scales-up well to large applications or development projects. Our

hypothesis is that some of the features of Forth that enable it to

minimize so successfully, are constraints on the language in scaling

up.

These days small code size and fast execution speed are relative

rather than absolute merits. This project aims to produce a new

synthesis of Forth that rebalances the requirement for scaling-down

against the opportunity for scaling up.

We propose a “new synthesis” of Forth in a similar spirit to the

Forth Modification Laboratory workshops.

Any new synthesis of a computer language runs the risk of being

formed solely out of individual preferences and experiences. That

remains the case with this project, but to provide guidance two

governing principles have been adopted: biological analogy and

disaggregation.

2. Principle: biological analogy

The biological cell provides a fascinating model of a complex system

that processes stored information. With imagination, direct

analogies can be drawn between the component parts of a cell and the

component parts of a Forth system (Appendix I)

The most compelling rationale for consulting our understanding of the

biological cell for ideas is that the biological cell is a proven-

successful system that scales-down (to virus and single-celled life-

forms), scales-up (to self-conscious Homo sapiens), and diversifies

(to the different kinds of cell specialization within a single

organism and to the multitude of life-forms on Earth), whilst broadly
maintaining a common internal architecture of structure and function.

50

2

3. Principle: disaggregation

The project aims to identify the component parts of Forth and
separate them, even when this separation may be to the detriment of

efficiency. Experience suggests that proper disaggregation by itself

frequently solves existing problems. Table 1 makes some specific

proposals

 Traditional Forth New synthesis Implications

1 Forth words have
direct access to byte-
by-byte contiguous
memory

Interpose an allocation
based memory management
system between system
memory and the Forth
system

Allows further
disaggregation of
the dictionary and
heap (e.g. S" or
colon data) data
structures

2 Dictionary and the
heap may be built up
together in memory

Impose the separation
of the dictionary and
the heap

The dictionary and
the heap may
independently be
rewound or modified

3 Dictionary may contain
headers and code

Use the allocable
memory mode to separate
headers and code

All Forth words can
be erased and
rewritten

4 The input stream is
locked into the
INTERPRET loop

Interpose an extendible
text processor that
exclusively handles the
input stream

Rather than using
parsing words, the
text processor
provides a general
model for extending
the language

5 Both interpret or
compile states are
handled by the
INTERPRET loop and
state-smart words

Disaggregate by
eliminating state:
everything is compiled,
but depending on
context some
compilations may
immediately be executed
and then rewound

Removes ambiguity in
word definitions and
divergence in the
way the language is
extended

Table 1. New synthesis disaggregation proposals

51

3

4. Practical experiments and observations

UH prepared two model systems for experimentation since EuroFORTH
2016

i. A Forth system built on the GO language that implements an

allocable memory model foundation for a Forth system. The reason for

wanting this memory model was to enable the redefinition of

dictionary Forth words with new code. We experimented along two

dimensions, as follows

What to do with old
instances of the word?
/ what to do with
recursive references?

Not true recursion -
reference the prior
word definition, if
available

True recursion –
reference the new
definition

Old instances retain old
code

Traditional Forth “Mixed”

Replace all instances
with the new definition

n/a LISP-like

One interesting implication of the LISP-like model is that it might

allow a Forth system to completely replace its dictionary with a new

set of definitions. This is explored further in future directions,

below.

ii. An extension to Forth that “opens” the INTERPRET loop and

interposes an extendible text processor. The key finding was that

with this model there is no need for recognizers as their function is

already a natural part of the system. See "Recognizers Dissolved",

Ulli Hoffmann, EuroForth 2017

5. Conceptual next steps

We are interested in developing the new synthesis, guided at a high

level by the biological analogy. Some specific thoughts are as

follows

i. All living organisms on the Earth share a common (i.e. highly

evolutionary preserved) fundamental core (DNA/RNA, the genetic code,

proteins, cells, etc.). Yet the complexity and diversity of life on

Earth depends on the variation between their biological systems. For

example, the fore limb apparatus can be adapted into arms and hands
by primates, into legs by four-legged animals, or into wings by

birds.

Should the same be true for Forth systems? A common operating

framework (WORDS, STACKS and BLOCKS?) with a minimal dictionary in

52

4

all Forth systems, but then wide variation at higher levels between

systems in both the vocabulary of available words and their

definitions. This would be contrary to the ANSI approach, but could
it be sympathetic to Chuck Moore’s original vision?

ii. All multi-cellular organisms grow from a single cell, typically

the egg.

Should a similar approach be taken to ‘growing’ Forth onto a new

target? For example: The Forth ‘egg’ in ROM implements the minimal

framework and dictionary. It has the capability to read an input-

stream from a small EEPROM, but otherwise no input/output firmware.

The EEPROM contains plain-text Forth code in byte-by-byte format.

The egg reads from the EEPROM and ‘grows’ by implementing further i/o

and other firmware, including if necessary a FAT file system on SD

card. An SD card may contain further Forth files with application

software. At each stage the Forth system will be re-engineering its

input stream apparatus with a more sophisticated version.

iii. Biological systems are not static – they continue to evolve.

Should Forth be the same? For example, rather than standardizing

more and more of the language, should the curation of Forth encourage

"forking" of new versions of Forth, even if most die out.

iv. Some biological systems are super-organisms, such as colonies of

ants or bees. Individual organisms are specialized into different

roles, and the loss of one individual does not jeopardize the hive.

Should some Forth systems strive to adopt a distributed model, with a

"queen" system spinning off specialized, limited capability "worker"

Forth systems on very low cost peripheral processors.

v. Biological organisms are single-purpose: a dog is a dog, a cat is

a cat and a man is a man. Conventional computer systems are now

multipurpose: a desktop computer is a word-processor and a CAD

platform and a music player. This results in the "layered" operating

system / middle-ware / package approach with standardized interfaces,

all programmed by thousands of different individuals

Is Forth better off devoting itself to single-purpose systems that

are developed by individuals or small teams? In this domain inter-

compatibility, wide library support, the layers and standardized

definitions are not critical. (See also unikernal.org for some

interesting thinking on this topic.)

In this model, ANSI Forth remains important for thought leadership

and communication, but not for its word definitions per se.

53

5

In exploring these ideas we will certainly need to address at least

two questions.

Firstly, what is the basic operating framework needed across all

Forth systems, analogous to the highly conserved structures of the

biological cell. For example, memory allocation, a dictionary, a

heap? Specified at what level of detail?

Secondly, what should a Forth ‘egg’ contain? In common with a

biological egg it should contain the operating framework and a small

dictionary. What needs to be in the dictionary? How is the egg

‘primed’ at power on, etc..

6. Conclusion

We are exploring the future of Forth in the spirit of the Forth

Modification Laboratory. Our work is motivated by the observation

that Forth has been left behind as computer systems have scaled up,

and by our optimism that somehow Forth might still be refreshed and

reinvented in interesting new ways.

Two principles are guiding us. Firstly, on modern hardware

minimalization of code size and optimization of execution speed are

no longer extreme necessities. We are prepared to make some

sacrifices on these dimensions for the sake of a more disaggregated

architecture that has the potential to scale up more easily. In

other words we want to be more aware of the degrees of freedom on any

given target and make conscious decisions that may differ from

historical precedent.

Secondly, we note an exciting analogy between Forth and biological

systems and wish to see if this inspiration can guide us to a

“Cambrian Explosion” in the diversity and sophistication of Forth

Life.

54

6

Appendix I – Forth biological analogy

 Cell Forth Analogy

1 DNA is the genetic
material that defines
the functioning of the
cell

Source code is the
material that defines
the functioning of the
application

DNA <=> Source code

2 The DNA of a cell is
located in the
chromosomes

The source code of a
Forth application is
located in blocks

Chromosome <=>
Blocks

3 Foreign DNA may be
expressed in a cell
(viruses / genetic
engineering)

The input stream may be
directed to the
keyboard, serial line
or other port

Foreign DNA <=>
Keyboard input

4

DNA that is to be
expressed is
translated into mRNA

Source code that is to
be run is directed to
the input stream

mRNA <=> Input
stream

5 Gene expression is
mediated by
controlling the
transcription of DNA
into mRNA

Source code may be
chosen by directing the
input stream to the
relevant blocks

Gene expression
control <=>
Redirection of the
input stream

6 mRNA is translated
into proteins;
proteins make the cell
function

Source code is compiled
into words; words make
the application
function

Proteins <=> Words

7 Proteins are comprised
of amino acids

Words are comprised of
assembly language
instructions

Amino acids <=>
assembly language
instructions

8 Translation takes
place at the active
sites of ribosomes

Source code is compiled
into words by the
compiler

Ribosomes <=>
Compiler

9 Translation is
mediated by tRNA
molecules that parse
the sequences of the
genetic code

Compilation is mediated
by recognizers that
parse the input stream

tRNA <=> Recognizers

10 mRNA coding regions
begin with start
codons and end with
stop codons

The input stream
defines words with
colon and semi-colon

Start codon <=>
Colon
Stop codon <=> Semi-
colon

55

EuroForth 2017
In Cahoots

Forth, GTK and Glade working secretly together

N.J. Nelson B.Sc. C. Eng. M.I.E.T.
R.J. Merrett B.Eng.
Micross Automation Systems
Unit 6, Ashburton Industrial Estate
Ross-on-Wye, Herefordshire
HR9 7BW UK
Tel. +44 1989 768080
Emails: njn@micross.co.uk rjm@micross.co.uk

Abstract
Forth is a very good language for working with other tools and libraries. In this paper
we will introduce some techniques to make GTK and Glade work with Forth as
seamlessly as possible.

1. Introduction
Cahoots in this instance does not refer to that well-known town in New York state on
the banks of the Hudson River.1 Its alternative meaning is when two or more parties
conspire to act together secretly. The parties in this case are:
Forth
Our favourite language for conciseness, readability, and in this case ease of
interoperability.
GTK
This is one of several open source toolkits for graphical programming.
It was chosen because it is being very actively developed, and has a straightforward
interface method.
Glade
This is a graphical design tool for GTK. It produces XML code that can be loaded by
GTK as required.

2. Compilers, versions and targets
We have been working with the MPE VFX Forth compiler, using GTK+ version 3,
for the Ubuntu Linux operating system on both single-board computers with ARM
processors, and industrial PCs with x86 CPUs.

1 Roger S. Brody RDP, Chairman of the Smithsonian Museum Philatelic Research Committee.

56

3. Library bindings
The MPE compiler came with a basic set of bindings to the GTK+ V2 libraries. We
adapted these to GTK+ V3, added many new bindings and enumerations as needed,
and removed features that we concluded were dead ends. Since GTK+ is written in
C, the bindings are very straightforward e.g.

extern: void "c" gtk_button_set_image(int * button, int * image);

4. Maintaining interactivity
A major difference between MPE VFX for Linux and MPE VFX for Windows, is that
the Linux version runs straight from a standard Linux terminal. This means that
interactivity is lost as soon as the GTK message pump starts. Since we regard
interactivity as an essential debugger tool, it was necessary to restore it somehow.

Because there are always small differences needed in behaviour between programs
when run in debug and when run normally (e.g. so that logon is not necessary every
time you run in debug), we always create two different build files which set or clear a
debugging flag e.g.

Debug
TRUE VALUE DEBUGGING \ Set debugging mode
include PackingLabel.bld \ Main build file
.BadExterns \ Report any library failures
PACKINGLABELMODULE \ Run in debug

Compile
FALSE VALUE DEBUGGING \ Clear debugging mode
include PackingLabel.bld \ Main build file
PACKINGLABELMODULE \ Run, to get it all set up
save PackingLabel \ Save ELF file

This debugging flag can then be used to start the GTK message pump in a separate
thread, when in debug mode.

TASK MAINTASK \ For GTK in debug
: MAINACTION (---) \ GTK action, when in debug
 gtk_main \ Start the message pump
;

...
 INIT-MULTI \ Initialise the multitasker
 MULTI \ Start the multitasker
 DEBUGGING IF \ Running in debug
 ['] MAINACTION MAINTASK INITIATE \ Start main in separate thread
 ELSE
 gtk_main \ Start the message pump
 THEN
...

Forth commands can then continue to be run from the Linux terminal, when in debug
mode.

57

5. Structuring the Glade files

The VFX Forth comes with a nice wrapper which both loads the Glade XML file, and
resolves the signals, in one operation. However, this is restricted to a single Glade
file, and in a real application a single Glade file soon becomes too big to handle. We
started to split the files by function, which also makes for re-usability. However, a
single builder object is used for all the Glade files, so that all windows, dialogs and
other features can be handled together. We also separated the file load from the signal
resolution, because of the next feature.

: LOADGLADE { | be[cell] -- } \ Loads the glade files
 gtk_builder_new -> PBUILDER \ Create builder
 PBUILDER IF
 be[OFF
 PBUILDER Z" SW1015.glade" be[gtk_builder_add_from_file \ Main glade
 PBUILDER Z" Logon.glade" be[gtk_builder_add_from_file AND \ Logon glade
\ PBUILDER Z" next file .." be[gtk_builder_add_from_file AND \ More ...
 0= IF
 be[@ 2 cells + @ .z$ \ Error string
 be[@ g_error_free
 PBUILDER g_object_unref
 THEN
 THEN
;

6. Handling the handles

In order to do anything with a GTK+ widget, you need to know its magic number -
the equivalent of a "handle" in Windows. When designing in Glade, you specify a
name, then at run time you can ask the "builder" into which you loaded the Glade
file, for the number of an object, from its name. You can then store it in a value
(typically of the same name).

: GETHANDLE (z$---h) \ Get handle of builder element from name
 PBUILDER SWAP gtk_builder_get_object
;

Z" Mybutton" GETHANDLE -> MYBUTTON

That was OK for simple applications, but then we soon realised that we were typing
the name of every widget three times before we even used it - once in the Glade
design, once to declare the value, and once to get the magic number.

In any other language other than Forth, you are stuck with that.

But as so often happens, the unique ability of Forth to do things during compilation
time as well as during run time, comes to the rescue. We soon discovered that it's
possible to get the builder to create a list of all objects, which can then be scanned for
names.

58

: MAKEGLADENAMES { | pslist pobject -- } \ Create values for every object
 PBUILDER gtk_builder_get_objects -> pslist \ Make list of objects
 pslist g_slist_length 0 ?DO \ For all objects
 pslist I g_slist_nth_data -> pobject \ Get data
 pobject gtk_buildable_get_name \ Get name
 pobject ZVALUE \ Create value for each name
 LOOP
 pslist g_slist_free \ Free list
;

This uses a very cunning feature - the ability to create Forth values automatically.

: ZVALUE (zname, ival ---) \ Creates a new value with name and initialisation
 SWAP ZCOUNT ($CREATE)
 , ['] valComp, set-compiler
 interp>
 valInterp
;

Note: you need an up-to-date version of VFX to make this work.

All that is necessary during a debug, is to call both LOADGLADE and
MAKEGLADENAMES during the compile, and all the values are ready for you to
use. However, when you then run an executable, you've got the value names, but not
their magic numbers. It's necessary to distinguish between debug and normal run
mode again, to load the numbers when necessary.

: SETGLADEVALS { | pslist pobject -- } \ Set values for glade objects
 PBUILDER gtk_builder_get_objects -> pslist \ Make list of objects
 pslist g_slist_length 0 ?DO \ For all objects
 pslist I g_slist_nth_data -> pobject \ Get data
 pobject gtk_buildable_get_name \ Get name
 zcount search-context IF \ Name is in dictionary
 >body pobject SWAP ! \ Set value
 THEN
 LOOP
 pslist g_slist_free \ Free list
;

Notice that it's rather important to make sure the Glade widget names are Forth-
unique, otherwise strange things happen.

Now in our initialisation, we simply include

...
 PBUILDER 0= IF \ Glade not loaded
 do_gtk_init \ Initialise GTK
 LOADGLADE \ Load glade files
 SETGLADEVALS \ Set values for glade objects
 THEN
 RESOLVEGLADE \ Resolve Glade signals
...

59

7. To do - automatic resizing

Most of the applications that we have written recently have been for touchscreens, in
"kiosk" mode i.e. the operator has no access to the underlying operating system. This
is far easier to achieve in Linux than it is in Windows, where it has become more and
more difficult to eliminate the infuriating little things that Windows "pops up"
without being asked.

Of course, any kiosk applications must run full screen. But screen resolution may
vary. In Windows, the size and position of each element is under the exact control of
the programmer. We used to design each display based on the minimum plausible
resolution (say, 800 x 600 pixels) then use a Forth word that ran through all possible
windows, and resized and repositioned them according to the actual screen resolution.
The fonts were also resized to match the vertical resolution.

: CTRL2RES { ahctrl -- } \ Set size and position of control
 ahctrl HIROANIM @ = \ Animation control
 ahctrl HIRONSETUP @ = OR IF \ or, superimposed button
 ahctrl \ Move only, do not size
 ahctrl WINDOW-X ahctrl WINDOW-Y 0 0
 RESVAR-XYWH 2DROP WINDOW-AMOVE
 ELSE \ All other controls
 ahctrl 0 \ Resize and move
 ahctrl WINDOW-X ahctrl WINDOW-Y
 ahctrl WINDOW-WIDTH ahctrl WINDOW-HEIGHT
 RESVAR-XYWH
 SWP_NOZORDER SWP_NOSENDCHANGING OR
 WINSETWINDOWPOS DROP
 ahctrl RESVAR-FONT \ New font
 THEN
;

: WIN2RES (Whndl ---) \ Set size and position of window and all controls
 DUP 0 0 WINDOW-AMOVE
 DUP CURRHORZRES @ CURRVERTRES @ WINDOW-ASIZE
 DUP RESVAR-FONT
 WINGETTOPWINDOW ?DUP IF
 BEGIN
 DUP CTRL2RES
 GW_HWNDNEXT WINGETNEXTWINDOW ?DUP
 0=
 UNTIL
 THEN
;

Unfortunately, this is not so easy in GTK. There is a heavy emphasis on automatic
sizing of widgets. Before rendering, each container widget asks all the contained
elements right down the chain, for the size they'd like to be. This can be a minimum
size that has been set in Glade, but it is usually not possible to set a maximum size.
So if you have a label widget, and increase the length of its string or the size of its
font, and it will automatically resize itself, which in turn will resize its container, and
so on up the chain. If the topmost window is now too big for the screen resolution, it
will create scrollbars for itself, and worse still, reveal the Ubuntu toolbar.

60

We have still not fully resolved this problem, and for the time being there is the very
irritating and time-consuming process of making a different set of Glade files for
each screen resolution.

We're sure we cannot be the only people with this issue, and suggestions are very
welcome.

8. Conclusion

Only in Forth, can one successively improve the compilation process so that each
application becomes more compact and easier to write.

NJN
RJM
30/8/17

61

cryptoColorForth

less is more

Presentation at EuroForth 2017, Bad Vöslau, Austria,

Howerd Oakford www.inventio.co.uk

Aim
To create the simplest possible secure communication, data storage and user interface for the You-Me

Drive (YMD).

For more details on the YMD please go to :http://you-me.one/ , a summary is :

“The You-Me Drive is a secure personal identity device that aims to connect important data to real,

trusted people”.

It does this by providing a WiFi USB drive, peer to peer networking software, multi-signed file encryption

and a user interface that boots directly on a PC.

Kickstarter
My first, and almost certainly last, Kickstarter project was an attempt to get funding to speed up the

development of the You-Me Drive.

https://www.kickstarter.com/projects/inventio/you-me-drive

Even though the Kickstarter campaign was a failure, it provided the impetus to document the project :
http://you-me.one/You-Me_Drive_2016Oct01.pdf
I also learned how hard it is to explain a complex idea in a way that appeals to a non-technical audience.

62

So development continues as time allows, with the current sub-project being the colorForth inspired

software infrastructure.

Why colorForth?
The YMD requires the highest possible level of security, and this rules out a conventional operating

system.

Commercially successful operating systems are designed to lock users into a particular manufacturer’s

brand of complexity, in order to maximise profitability. The complexity generated to achieve this is so

high that it is not possible to evaluate potential security weaknesses.

There are several less complex operating systems, but my personal favourite amongst the FOSS ones has

always been colorForth - less is more in this context.

User-friendly colorForth
There are several versions of colorForth published online, Chuck Moore’s original (colorforth.com), and

many others derived from this, the SourceForge version and the GreenArrays ArrayForth GA144

development environment. Since they are all based on Chuck’s original version they all share some of

Chuck’s original design decisions – for example the use of the ANS Forth standard names or and ?dup

to have non ANS functionality, the use of 32 bit cell addressing, and the use of the eax register for the

Top Of Stack instead of ebx.

Some of the colorForths have optional QWERTY keyboard text entry, but my view is that this should be

available for user text entry only, and not included as part of the programming environment. Also, most

colorForths require actual floppy disk hardware to function.

So cryptoColorForth (so far) makes some user-friendly changes :

1. ANS Forth names – or xor , ?dup qdup
2. Byte addressing for @, C@, ! and C!
3. BIOS sector read/write operation from USB drive
4. QWERTY text input

Further colorForth development

There are many useful functions defined in ANS-like Forths for the x86 architecture - crypto libraries using
big numbers, modular exponentiation, TEAN, RSA etc.
With the simple changes listed above, and a meta-data replacement for the conventional file system,

cryptoColorForth can be made to work with this source code, allowing these building blocks to be

imported easily.

Summary
colorForth has an extraordinary “power to weight ratio”, its small size (12K bytes for the kernel) and

extreme simplicity makes it the ideal platform to develop secure applications, with the You-Me Drive

being one example.

Howerd Oakford, 31st August 2017

63

A multi-tasking wordset for
Standard Forth

Andrew Haley
Consulting Engineer
8 September 2017

2 Forth multi-tasking

Background
Forth has been multi-tasking for almost 50 years. It's time to
standardize it.

● Chuck Moore's early Forths had a simple and efficient multi-tasker

● This was refined by others at Forth, Inc. and eventually became the
core of polyFORTH

● Many Forths have used a version of this multi-tasker since then, and
because of that there is some practical portability of multi-tasking
programs between Forth systems. These include products from MPE
and Forth, Inc. as well as free systems such as F83

3 Forth multi-tasking

Goals

● To make it possible to write multi-tasking programs in Standard Forth

● These standard multi-tasking programs will run unaltered on both co-
operative (round-robin) and time-sliced schedulers, on hosted and
freestanding systems

4 Forth multi-tasking

Design criteria

● No innovation!

● Wherever possible, use established practice from Forth systems

● Where no established practice exists in Forth, take inspiration from
other programming languages, especially C

● This should be a low-level wordset

● Standardize the most basic elements of multi-tasking, eschewing
more complex objects such as queues and channels. These can be
provided by libraries, based on this wordset

5 Forth multi-tasking

Design criteria

● Completeness

● This wordset must provide everything that is necessary to write
libraries and multi-tasking programs without such needing to use
carnal knowledge

● Simplicity

● Given that this is a Forth standard, simplicity hardly needs
mentioning, but it must be paramount after completeness

● Simplicity mostly “falls out” of the design as a result of following
common Forth practice

6 Forth multi-tasking

Design criteria

● Efficiency

● While the greatest possible efficiency will always result from a
system-specific wordset, we can get very close with a standard
wordset

● This wordset should work well on large multi-core systems but not
impose a significant burden on very small single-core systems

● Portability

● The wordset shouldn't require anything that is unavailable on a
system that is capable of realistic multi-tasking. This means that the
wordset should be usable on a machine with some kbytes of
memory, not megabytes

64

7 Forth multi-tasking

Round-robin versus pre-emptive
scheduling

● One of the surprising things (well, it surprised me!) was the realization
that we need to say hardly anything about the differences between
round-robin and pre-emptive schedulers

● We make no guarantees about forward progress (doing so in a
portable standard in a meaningful way is almost impossible) so it's
not necessary to discriminate between these

● Non-normative language must point out that on some systems you
need to PAUSE or perform I/O from time to time, but that's all

● Programs written with this wordset will work well with either type
of scheduler

8 Forth multi-tasking

Memory ordering

● We have to say something about what happens when more one task
accesses the same memory at the same time

● Real systems have some surprising behaviours when you do this.
These include, but are not limited to

● Word tearing, where a fetch sees a partial update of a multibyte
word

● Memory updates to different cells appear in different orders to
different tasks

● Memory reads can appear to go backwards in time, so that a
counter is not monotonic

● Memory can temporarily have unexpected values.

● Many other things

9 Forth multi-tasking

Memory ordering: SC-DRF

● I believe that the best memory ordering model for Forth is SC-DRF.

● The best reference for this is Hans Boehm, Foundations of the
C++ Concurrency Memory Model,
www.hpl.hp.com/techreports/2008/HPL-2008-56.pdf

● Hans Boehm: “IMHO, the closest we have [to a language-independent
memory model] that is actually solid and understandable is the basic
DRF model, with undefined semantics for data races.”

Or, “sequentially consistent / data race free.”

10 Forth multi-tasking

Memory ordering: SC-DRF

● A data race is defined as a concurrent (non-atomic) access to shared
memory

● SC-DRF allows tasks to use relaxed memory ordering locally, but
requires them to use SC atomic operations when communicating with
other tasks

● We give no semantics to programs with data races. The hardware
might do all manner of things. We don't have to care: a data race
might be benign on some hardware, but it won't be portable

● This isn't the dreaded nasal daemons: we only have to warn that tasks
may observe misordering, word tearing, apparent loss of causality, and
so on

Or, “sequentially consistent / data race free.”

11 Forth multi-tasking

Memory ordering: SC-DRF

● Sequential consistency, defined by Lamport, is the most intuitive
model. Memory operations appear to occur in a single total order (i.e.,
atomically); further, within this total order, the memory operations of a
thread appear in the program order for that thread

● We could define all Forth memory operations to be SC, but this would
seriously restrict many compiler and hardware optimizations

● The best route is to allow tasks to use relaxed memory ordering locally,
but require them to use SC atomic operations when communicating
with other tasks

Or, “sequentially consistent / data race free.”

12 Forth multi-tasking

Memory ordering: SC-DRF

● A program which has no data races can be proved equivalent to a
program in which every fetch and store are SC, i.e. they appear to all
threads to happen in the same order

● This is easy for programmers to understand and it is reasonably easy
to specify

● Other weaker memory models exist, but such mixed memory models
become far more complicated and unintuitive

Or, “sequentially consistent / data race free.”

65

13 Forth multi-tasking

Creating a task

TASK <taskname> [polyFORTH]

Define a task. Invoking taskname returns the address of the task's
Task Control Block (TCB).

/TASK (- n) [new]

n is the size of a Task Control block. [This word allows arrays of tasks
to be created without having to name each one.]

CONSTRUCT (addr --) [polyFORTH]

Instantiate the task whose TCB is at addr. This creates the TCB and
and possibly links the task into the round robin. After this, user
variables may be initialized before the task is started

14 Forth multi-tasking

Starting a task

ACTIVATE (xt addr –) [polyFORTH]

Start the task at addr asynchronously executing the word whose
execution token is xt. [This differs from Forth, Inc. practice, which
uses the “word with an exit in the middle” technique of DOES>.]

What should we say about a task which reaches the end of this
word, i.e. it hits the EXIT ? Traditionally, Forth systems would
crash, and in order to prevent that you'd have to end an activation
with

BEGIN STOP AGAIN

IMO, we'd be better saying that the task terminates

15 Forth multi-tasking

USER variables

USER (n1 --) [polyFORTH]

Define a user variable at offset n1 in the user area.

+USER (n1 n2 -- n3) [polyFORTH]

Define a user variable at offset n1 in the user area, and increment
the offset by the size n2 to give a new offset n3.

#USER (– n) [polyFORTH]

Return the number of bytes currently allocated in a user area. This is
the offset for the next user variable when this word is used to start a
sequence of +USER definitions intended to add to previously defined
user variables.

A programmer may define words to access variables, with private
versions of these variables in each task (such variables are called
“user variables”).

16 Forth multi-tasking

USER variables

HIS (addr1 n -- addr2) [polyFORTH]

Given a task address addr1 and user variable offset n, returns the
address of the ref- erenced user variable in that task's user area.
Usage:

 <task-name> <user-variable-name> HIS

● This is very useful for initializing user variables before a task runs

A programmer may define words to access variables, with private
versions of these variables in each task (such variables are called
“user variables”).

17 Forth multi-tasking

STOP and AWAKEN

● These have been present in some form since the earliest days of Forth

● STOP blocks the current task unless or until AWAKEN has been issued

● Calls to AWAKEN are not “counted”, so multiple AWAKENs before a STOP
only unblock a single STOP

● A task invoking STOP might return immediately because of a
"leftover" AWAKEN from a previous usage. However, in the absence of
an AWAKEN, its next invocation will block

● STOP is the most OS-independent low-level blocking primitive I know
of: it is a leaky one-bit semaphore

● STOP and AWAKEN can fairly easily be used to create locks, blocking
queues, and so on

● STOP and AWAKEN correspond to BSD UNIX's _lwp_park(2) and
_lwp_unpark(2)

18 Forth multi-tasking

Atomic operations

ATOMIC@ (a-addr -- x)[new]

Atomically load x from a-addr. The load is sequentially consistent.
Equivalent to C11's atomic_load().

ATOMIC!(x a-addr --)[new]

Atomically store x at a-addr. The store is sequentially consistent.
Equivalent to C11's atomic_store().

● These words are part of the total order so can be used for
synchronization between threads

All of these are data race free

66

19 Forth multi-tasking

Atomic operations

ATOMIC-XCHG (x1 a-addr – x2) [new]

Atomically replace the value at a-addr with x1. x2 is the value
previously at a-addr. This is an atomic read-modify-write operation.
Equivalent to C11's atomic_exchange().

ATOMIC-CAS (expected desired a-addr – prev) [new]

Atomically compare the value at a-addr with expected, and if
equal, replace the value at a-addr with desired. prev is the value
at a-addr immediately before this operation. This is an atomic
read-modify-write operation. Equivalent to C11's
atomic_compare_exchange_strong().

● These words are part of the total order so can be used for
synchronization between tasks

All of these are data race free

20 Forth multi-tasking

GET and RELEASE

MUTEX-INIT (addr) [new]

Initialize a mutex. Set its state to released.

[In polyFORTH, this was just 0 addr ! .]

/MUTEX (– n) [new]

n is the number of bytes in a mutex.

[In polyFORTH, a mutex was a simple variable.]

MutExes provide mutual exclusion

21 Forth multi-tasking

GET and RELEASE

GET (addr --) [polyFORTH]

Obtain control of the mutex at addr. If the mutex is owned by
another task, the task executing GET will wait until the mutex is
available.

[In a round-robin scheduler, this word executes PAUSE before
attempting to acquire the mutex.]

RELEASE (addr –) [new]

Relinquish the mutex at addr

● These words are part of the total order

MutExes provide mutual exclusion

22 Forth multi-tasking

And also...

PAUSE (–) [polyFORTH]

Causes the execuiting task temporarily to relinquish the CPU.

● In a system which uses round-robin sheduling, this can be used to
allow other tasks to run

● However, this isn't usually needed because I/O causes a task to block.
All words which do I/O should, unless they are extremely high priority,
execute PAUSE

67

1
68

recognizers

• new extensible outer interpreter[1] structure
proposed by mathias trute

• on its way to become a standard's
committee supported proposal

• interpret/compile/postpone structure for
syntactic classes that describes their
treatment in the outer interpreter

• stack structure for combining recognizers

[1] http://amforth.sourceforge.net/pr/Recognizer-rfc-D.html

69

handlers
idea

• give the token to a list of handlers one
handler at a time until one can cope with it

• if a handler can cope with it, it does it and
reports

• if it cannot, it reports

70

handlers properties

• modular extensible (1. dimension)

• interpreter (extensible)

• compiler (extensible)

• postponer (extensible)

• more extensions (2. dimension)

• target compiler

• remote compiler

• DSL compiler

handlers properties

• handlers are simply colon definitions

• composing handlers give new handlers

• handler lists

• layed out in memory with create and ,

• n@ n! operate on cell counted lists

• handler lists can be in allocated memory

• handler chained in :-definitions

handlers design options

• possible stack effects

• haeh?

• token scanning

• search order

• prototypes for each options on git branches

handlers design options
possible stack effect

• what stack effect shall a handler have?

• (c-addr u1 -- i*x true | c-addr2 u2 false)

• (c-addr u -- i*x true | false)

• (c-addr u -- i*x c-addr u true | c-addr u false)

71

handlers design options
haeh?

• if no handler can cope with the token, what
should be done?

• signal error (-13 throw)

• ignore

handlers design options
token scanning

• shall handlers work on pre scanned tokens?

• of shall they inspect the input stream on
their own?

handler design options
search order

• shall a handler search the search order

• or look into a single word list?

• the search order will be a sublist of handlers

summary

• simple

• handlers are ordinary :-definitions

• handler lists are easy to build and manage

• extensible
in 2 dimensions:

1. extending handler lists with new handlers
2. different compilers/interpreters (postponers)

72

	Preface
	Contents
	Sergey N. Baranov: A Formal Language Processor Implemented in Forth
	Bill Stoddart: Halting misconceived?
	M. Anton Ertl: SIMD and Vectors
	Stephen Pelc: Special Words in Forth
	Ron Aaron: Security Considerations in a Forth Derived Language
	Andrew Read and Ulrich Hoffmann: Forth: A New Synthesis
	Nick J. Nelson: In Cahoots — Forth, GTK and Glade working secretly together
	Howerd Oakford: cryptoColorForth
	Andrew Haley: A multi-tasking wordset for Standard Forth
	Bernd Paysan: MINOS2 — A GUI for net2o
	Ulrich Hoffmann: A Recognizer Influenced Handler Based Outer Interpreter Structure

