
SIMD and Vectors

M. Anton Ertl∗

TU Wien

Abstract

Many programs have parts with significant data
parallelism, and many CPUs provide SIMD instruc-
tions for processing data-parallel parts faster. The
weak link in this chain is the programming lan-
guage. We propose a vector wordset so that Forth
programmers can make use of SIMD instructions
to speed up the data-parallel parts of their appli-
cations. The vector wordset uses a separate vec-
tor stack containing opaque vectors with run-time
determined length. Preliminary results using one
benchmark show a factor 8 speedup of a simple
vector implementation over scalar Gforth code, a
smaller (factor 1.8) speedup over scalar VFX code;
another factor of 3 is possible on this benchmark
with a more sophisticated implementation. How-
ever, vectors have an overhead; this overhead is
amortized in this benchmark at vector lengths be-
tween 3 and 250 (depending on which variants we
compare).

1 Introduction

Current computer hardware offers several ways to
perform operations in parallel:

Superscalar execution Independent instruc-
tions are executed in parallel, if enough
functional units and other resources are
available. This requires little programmer
intervention: out-of-order processors find
independent instructions by themselves.

SIMD instructions perform the same operation
on multiple data in parallel. The programmer
or compiler has to use these instructions ex-
plicitly.

Multi-core CPUs Programs have to be split into
multiple threads or processes to make use of
this feature.

As a close-to-the-metal language, Forth should
provide ways to make use of these hardware fea-
tures. At least SwiftForth and Gforth already con-

∗Correspondence Address: Institut für Computer-
sprachen, Technische Universität Wien, Argentinierstraße 8,
A-1040 Wien, Austria; anton@mips.complang.tuwien.ac.at

tain features to make use of shared-memory multi-
cores, by extending the classical Forth multi-tasking
wordset. Superscalar execution is exploited by the
hardware and/or the compiler [SKAH91] without
programmer intervention.

In this paper I present the basic concepts and
an initial version of a vector wordset (Section 3)
that can make good use of SIMD instructions. The
main concept and contribution is a vector stack that
contains opaque vectors of dynamically determined
length. The programmer can use this vector stack
to express vector operations in a way that does not
introduce additional dependencies, and is therefore
the key to allowing very efficient implementations
with relatively little compiler complexity, as well as
enabling simpler implementations (with less perfor-
mance). We present different ways to implement
this wordset in Section 4, and Section 5 presents
preliminary performance results of using this word-
set. We discuss related work in Sections 2 and 6.

Terminology: In this paper, vector refers to
application-level one-dimensional arrays with an ar-
bitrary number of elements, while SIMD refers to
what machine instructions offer: arrays with lim-
ited (and often fixed) number of elements.

2 Background

In many applications one has to perform the same
operations on a lot of data, mostly independently,
sometimes combining the results. This is known as
data parallelism.

Data parallelism is obvious for many scientific ap-
plications, but can also be found in other appli-
cations, e.g., in the Traveling Salesman Problem1.
So introducing a wordset for expressing data paral-
lelism may be useful in more applications than one
might think at first.

Computer architects provide SIMD (single in-
struction multiple data) instructions that allow
to express some of this data parallelism to the
hardware. The Cray-1 was an early machine
with SIMD instructions, but starting in the 1990s,
microprocessor manufacturers for general-purpose
CPUs incorporated SIMD instructions in their ar-
chitectures. E.g., Intel/AMD incorportated MMX,

1<news:b2aed821-2b7e-456d-9a6d-c2ea1fdedd55@googlegroups.com>

http://al.howardknight.net/msgid.cgi?ID=150416577300

vmulpd %ymm2, %ymm3, %ymm1

f* f* f* f*

ymm2 ymm3

ymm1

Figure 1: A SIMD instruction: vmulpd (AVX)

3DNow, SSE, AVX etc. and ARM incorporated
Neon.

These instruction set extensions typically provide
registers with a given number of bits (e.g., 128 bits
for the XMM registers of SSE and AVX128, and
256 bits for the YMM registers of AVX256), and
pack as many items of a basic data type in there
as fit; e.g., you can pack 16 16-bit integers or 4
64-bit FP values in a YMM register. A SIMD in-
struction typically performs the same operation on
all the items in a SIMD register. E.g., the AVX
instruction vmulpd %ymm2, %ymm3, %ymm12 multi-
plies each of the elements of ymm2 with the corre-
sponding element in ymm3, and puts the result in
the corresponding place in ymm1 (Fig. 1).

On the application side, these instructions are
usually used for implementing vector operations,
such as the inner product.

Making use of these instructions in programs has
been a major challenge. The following methods
have been used, and Fig. 2 shows examples.

Assembly language allows specifying a specific
SIMD instruction directly.

Intrinsics tell the compiler to use specific SIMD
instructions; e.g., the intrinsic _mm256_mul_pd

tells the Intel C compiler to use the vmulpd

instruction. These intrinsics are just as
architecture-dependent as assembly language,
but at least they play nicely with the rest of
the C code. Other compilers (e.g., gcc) typi-
cally support the same intrinsics as the Intel
compiler.

Vectors as language feature APL and its mod-
ern descendent J have arrays as first-class data
type, and many operations that work on arrays
or generate arrays. The array sizes are deter-
mined at run-time.

2In this paper, we use the AT&T syntax for the AMD64
architecture; in contrast to Intel syntax, the destination of
an instruction is the rightmost operand in AT&T syntax.

;Assembly language

vmulpd ymm1, ymm2, ymm3

/* C with Intel Intrinsics */

__m256d a,b,c;

c = _mm256_mm_mul_pd(a, b);

NB. J

a =: 3 5 7 9

b =: 2 4 6 8

c =: a*b

!Fortran Array language

REAL, DIMENSION(4) :: a,b,c

c = a*b;

/* GNU C Vector Extensions */

typedef double v4d

__attribute__ ((vector_size (32)));

v4d a,b,c;

c = a*b

/* C with auto-vectorization */

double a[4], b[4], c[4];

for (i=0; i<4; i++)

c[i] = a[i] * b[i];

Figure 2: Using SIMD instructions in programs

Modern Fortran contains an array sublanguage
that allows the programmer to express various
operations on whole arrays and sub-arrays di-
rectly instead of through scalar3 operations in
loops; the example in Fig. 2 shows an example
that can be directly translated to vmulpd, but
vectors of any length (including dynamically
determined lengths) are supported, as well as
higher-dimensional arrays, and parts of arrays.

GNU C contains a simple vector extension4,
usable only with fixed-size vectors with 2n

elements, ideally the size of the SIMD reg-
isters (gcc generates relatively bad code for
larger vectors). So it mostly is useful as an
architecture-independent way to specify SIMD
operations, and the programmer should com-
pose the code for longer vectors himself; for
run-time determined vector sizes, this is the
only option.

Auto-vectorization Ever since the Cray-1 there
has been the hope of auto-vectorization: Pro-
grammers would write scalar code oblivious
of SIMD instructions, and the compiler would

3In the context of programming with vectors, scalar refers
to a single value, i.e., a non-vector.

4https://gcc.gnu.org/onlinedocs/gcc/

Vector-Extensions.html

https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html

a v@ b v@ f*v c v@ f+v

a[0] b[0]

c[0]f*

f+

a[1] b[1]

c[1]f*

f+

a[2] b[2]

c[2]f*

f+

...

Figure 3: Dependences in a sequence of vector oper-
ations. Note that there are no dependences between
computations of different elements.

find out by itself how to make use of these in-
structions for that code.

While auto-vectorization occasionally succeeds in
vectorizing a piece of code (especially benchmarks),
this is an unreliable method; there are often obsta-
cles, that make it hard or impossible for the com-
piler to vectorize the code, e.g., the possibility of
overlap between memory accesses in the loop; and
if you ask the programmer to change his program to
remove these obstacles, why stick with scalar code?
If the programmer thinks in terms of vectorizing the
program, the way to go is to directly express vec-
tor operations rather than expressing them through
scalar operations and then hoping that the compiler
will auto-vectorize them. Compiling language-level
vector operations to SIMD code also requires much
less complexity than auto-vectorization.

Therefore, in this paper I propose an approach to
express vector operations in Forth.

3 Forth Vector Wordset

3.1 Vectors

A vector contains a dynamically determined num-
ber of bytes; different vectors can contain different
numbers of bytes, but many operations require that
all operands have the same length (as in APL, J,
and Fortran).

Vectors are opaque: They do not reside in mem-
ory that an application program is allowed to ac-
cess. Programmers can easily comply with this re-
striction: Only access vectors with vector words;
moreover, when using this wordset, if you use the
wrong words, the error will typically reveal itself
quickly.

Vectors have value semantics, like cells or floats,
and unlike strings in memory: When you copy a
vector, the copy has an identity of its own, and it is
unaffected by operations on the original (and vice
versa).

The main benefit of these properties is that it
gives a lot of freedom to the implementation of vec-

tor operations: Every part of every vector is in-
dependent of every other part of the same vector,
other vectors, and main memory (see Fig. 3), so vec-
tors can be processed in any order: front-to-back,
back-to-front, in parallel, in some combination of
these methods, or in some other order.

This restriction also gives the implementation a
lot of freedom when storing the vector data: It can
be stored in main memory with as much alignment
and padding as is useful for an efficient implemen-
tation; or it can be (partially or fully) stored in
SIMD registers, or in, e.g., graphics card memory;
the implementation may also store the vector data
in a way convenient for calling high-performance
computing libraries in other languages (as long as
the data used by these libraries are vectors or sub-
vectors).

An alternative approach would represent vectors
by an address/length pair, as is done in the stan-
dard for strings [For14, Section 3.1.4.2]; this is
somewhat similar to Fortran’s array language, that
also works on the existing arrays in memory. The
disadvantage of this approach is that efficient im-
plementation is hard, and in some cases impossible:
vectors would not necessarily be aligned for efficient
memory access, the size may not be a multiple of the
vector register size, and the memory areas of vec-
tors specified in this way may overlap, so the order
of element operations of a vector operation would
be restricted, it would require significant compiler
and/or run-time sophistication to achieve correct
operation while using SIMD instructions, and effi-
ciency would suffer as well.

Some have suggested combining the addr/len ap-
proach with restrictions on the program to avoid
the compiler/run-time complexity and performance
disadvantages, but this would add conceptual com-
plexity to the usage of the wordset and very likely
lead to non-portable programs, because such re-
strictions are hard to comply with in every instance:
It is hard to find out by testing that you have
not complied, unless every restriction is always ex-
ploited by the implementation you use. Also, when
choosing between portability and performance, pro-
grammers will often choose performance (especially
when dealing with a performance-enhancing fea-
ture).

3.2 Vector Stack

There is a separate vector stack that is used by
vector words.

Why have a separate stack instead of just storing
single-cell vector tokens on the data stack? Vector
tokens on the data stack would be error-prone: it
would be natural to use, e.g., dup to copy a vector
token, or drop to get rid of it; this would be in-
compatible with otherwise attractive implementa-

tion options for the value semantics of vectors (see
Section 4.1), and, worse, there is no implementation
that would be compatible with it that does not use
garbage collection.

By contrast, with a separate vector stack, the
user has to use vdup and vdrop to deal with vec-
tors, and these words (and all others dealing with
vectore) can perform the bookkeeping necessary for
preserving value semantics in the vector implemen-
tation.

The usual stack manipulation words get vec-
tor equivalents: vdup vover vswap vrot vdrop

vpick vroll.
Once we have such a vector stack, we can also use

it for other data, such as strings, bignums and ma-
trixes, but that is outside the scope of the present
work.

3.3 Data types

Forth uses only a few on-stack data type sizes:
single-cell, double-cell and float. It uses additional
in-memory sizes for communications with other
software or hardware, and for making efficient use
of memory.

For vectors, we usually also want to use the small-
est element data types that are big enough for the
application. This allows us to have shorter vectors
and faster vector operations. So while on a 64-bit
system we have only, e.g., + for adding 8-bit, 16-
bit, 32-bit and 64-bit integers, for vectors we want
b+v w+v l+v x+v, because, for long vectors, b+v

will be 8 times faster than x+v.
The vector wordset uses the following prefixes for

types: b ub w uw l ul x ux sf df.
In this paper, vector stack elements are denoted

with v for general vectors, or type v for specific
types, e.g. uwv for a vector of unsigned 16-bit (uw)
values, and sfv for a vector of 32-bit floats.5 Vec-
tor items are always on the vector stack, so this
paper does not use a V: notation or somesuch for
indicating that an item is on the vector stack.

Should we have vector types with cell-sized ele-
ments (v uv), and vectors with float-sized elements
(fv)? Vectors with cell-sized elements would be
fine, but are not implemented in the current word-
set; the vector words dealing with them would be
aliases of words dealing with xv uxv or lv ulv vec-
tors.

Vectors with float-sized elements have the prob-
lem, that there are relevant Forth systems where the
default float type uses the 80-bit 387 format, and
is stored in memory in 10-byte (VFX) or 16-byte
(iForth) units. There are no SIMD instructions for

5The standard has r for on-stack FP numbers and f for
flags, but uses the prefixes f, sf, df for dealing with FP
numbers of various lengths in memory; should we use sr for
32-bit floats?

dealing with this format, so vector words for them
would be slow. So, programmers should use dfv

or sfv words for portability (including performance
portability), and implementing fv words does not
make much sense.

3.4 Vector operation patterns

There are a number of operation patterns when
working with vectors:

Parallel vector/vector E.g., adding each ele-
ment of the first vector to the corresponding el-
ement of the second vector, resulting in a third
vector. This pattern works only with vectors
of the same length. Words implementing this
pattern have a v suffix.

Parallel vector/scalar E.g., adding a scalar to
each element of a vector. Words implement-
ing this pattern have a vs or sv suffix (sv only
for non-commutative operations).

Reduce E.g., for the sum or the maximum of all
elements of a vector, producing a scalar. Words
implementing this pattern have suffix r. Cur-
rently the vector wordset does not support this
pattern.

Generate a vector of a certain length, with all
elements containing the same scalar (possi-
bly unnecessary if we have vs instructions).
Other generating operations are NGSPICE’s
vector(n) that produces a vector containing
0,1,2..9. Matlab’s linspace(x1,x2,n) gener-
ates n points; the spacing between the points
is (x2 − x1)/(n − 1) (always includes the end-
points). Currently the vector wordset does not
support this pattern.

Reorder/shuffle elements of the vector, e.g., for
use in a FFT. Certain shuffle operations are
supported by SIMD instructions, but they are
rather limited. For now, the vector wordset
will not support this pattern.

Compress Given a vector of data and a vector of
flags, pick only those data corresponding to
true flags, and put them in a new (possibly
shorter) vector. While this pattern is com-
monly used in APL, it is not well-supported
in SIMD instructions, and the vector wordset
will not support it for now.

Scan The APL operator \ produces the intermedi-
ate results of reducing a vector. E.g. +\1 2 3

produces 1 3 6. The vector wordset will not
support this for now.

Index Sometimes the index of the first element sat-
isfying a condition, or the index of the maxi-
mum or minimum element is needed. The vec-
tor wordset will not support this pattern for
now.

3.5 Words

The vector wordset provides v (vector/vector
parallel) versions of the arithmetic, logic and
comparison operations + - * / mod negate and

or xor invert lshift rshift6 mux7 abs max

min < = > <= >= <>, vs (parallel vector/scalar,
with the first argument being the vector) versions
of + - * / mod and or xor lshift rshift

arshift max min < = > <= >= <> (not negate

invert abs, because they are unary operations,
and not mux, because it is ternary and scalar
operands do not make sense for it), and sv (parallel
scalar/vector, with the first argument being scalar)
versions of the non-commutative words - / mod

lshift rshift arshift < > <= >=8. Signed
integer / mod may be symmetric or floored (and
not necessarily the same as the scalar / and mod).
The result of comparison operations is a vector
with elements of the same size as the operand
elements (e.g, 8 bits per element for b<v); all bits
of the result element are 1 if the comparison result
is true or 0 otherwise. For bitwise operations (and
or xor invert mux), no type prefix is used.

For reducing words, one would use the associative
binary operations: + * and or xor max min.9

The combination of types, operations, and pat-
terns produces a large number of words: In the cur-
rent implementation, 137 v words, 123 vs words,
and 76 sv words. We see the same thing in the
SIMD extensions of computer architectures: They
introduce a large number of instructions thanks to
the combinations of types and operations (and pos-
sibly register widths).

3.6 Memory

Having vectors only on the vector stack with no
way to move data to/from ordinary memory would
be too restrictive for general usage. So the vector
wordset provides two ways to deal with memory:

• Have concrete data on the memory side, i.e., a
memory range where you can access individual

6Both signed and unsigned shifts right are supported.
7Mux (x1 x2 x3 -- x) is a bitwise operation, that se-

lects a bit from x1 if the corresponding bit from x3 is 1,
otherwise it selects the corresponding bit from x2.

8E.g., 0 l-vs would have no effect, while 0 l-sv would
be equivalent to lnegatev.

9F+ and f* do not satisfy the associative law, but df+r is
useful anyway, because it delivers an approximation to the
rational/real value of the computation, just like f+ and f*

itself.

elements with address arithmetics; the align-
ment of the memory range is not necessarily
SIMD-friendly, nor is it padded to a multiple of
the SIMD width; the memory after the last el-
ement may be inaccessible, so the last element
requires special (expensive) treatment even on
loading.

• Have opaque vectors in memory, i.e., the same
representation as on the vector stack. Opaque
vectors make the use of SIMD instructions easy
by storing the vectors appropriately, but the
implementation of these words has to man-
age the memory for the vectors with allocate

or some other dynamic memory management
method in order to allow proper padding and
alignment, plus management information such
as the size of the vector. Our wordset uses
single-cell vector tokens.

The words for these memory accesses are:

b!v (v c-addr u --) store a vector into con-
crete memory; if the vector length is different
from u, an error is thrown.

b@v (c-addr u -- v) load a vector from con-
crete memory.

v! (v v-addr --) Store a vector into memory
as opaque vector, storing the single-cell vector
token into v-addr.

v@ (v-addr -- v) Load a vector from an
opaque vector in memory, accessed through the
single-cell vector token v-addr.

v@’ (v-addr -- v) Fetch v, then clear v-addr.
The advantage of this operation over v@ is that
the implementation can just use the existing
reference to the opaque vector without incur-
ring the implementation cost of copying the
rest of the vector (Section 4.1). Moreover, a
later v! to v-addr does not incur the imple-
mentation cost of deleting the vector that v@

leaves at v-addr.

One danger of storing single-cell vector tokens in
memory is that this provides a hole for subverting
the implementation of value semantics: these tokens
can be copied with @ ! move etc. If this proves to
be a problem, a debugging mode can make these
tokens location-dependent by xoring them with v-
addr on v! and v@. This should quickly unveil ac-
cidential copying of this kind; there is, of course,
no protection against intentional subversion of the
implementation in Forth.

variable v1
s" some data" b@v vdup v1 v!

refs vect-bytespadding vect-data
2 9 some data 0 0 0 ...

v1
vsp

Figure 4: A vector in our implementation with ref-
counts (refs) after performing the shown code

4 Implementation

This section describes various implementation ap-
proaches, as well as the current implementation.

4.1 Vectors

A vector is stored in allocated memory and is
aligned and padded to the SIMD granularity (e.g.,
32 bytes for AVX256). In front of the actual vector
data, there is bookkeeping information: The num-
ber of bytes in the vector, and possibly a reference
count (see below); in addition, there may be some
padding to align the actual vector data, too (see
Fig. 4). The address of the start of the allocated
memory is the vector token.

There are two ways to implement the value se-
mantics:

linear Every vector has exactly one reference.
Copying (v@ vdup vover) creates (allocates)
a new copy of the complete vector, and con-
suming or overwriting a token (vdrop v! and
many other operations) frees the vector.10

refcount Every vector can have several tokens re-
ferring to it; the number of tokens is stored
with the vector in a reference count. When
copying the token, the reference count is in-
creased, when consuming or overwriting a to-
ken, it is decreased; if the reference count
reaches 0, the vector itself is freed. This re-
duces the number of allocates and frees, at
the cost of some additional complexity.

I normally avoid reference counting, because
it does not handle cyclic data structures well,
but vectors don’t contain any pointers to other
data at all, and therefore cannot form cycles,
so reference counting is ok for this purpose.

In many operations (e.g., df+v), one vector (or
more) is consumed, and another of the same length
is created. Then one can use the memory of a con-
sumed vector for the created one, avoiding the over-
head of free and allocate, unless (in the refcount

10The name linear for this approach is inspired by Henry
Baker [Bak94].

vec vect-bytes @ vect-data 0 vect-data ?do

vec1 i + df@ vec2 i + df@ f+ vec i + df!

[1 dfloats] literal +loop

Figure 5: The vector-processing loop of the trivial
implementation of f+v. vec, vec1 and vec2 are
locals containing vector addresses, vect-bytes and
vect-data are the fields shown in Fig. 4.

variant) the consumed vector still has references
left.

The current implementation supports both ap-
proaches (based on a compile-time flag), so the user
can determine the efficiency difference himself.

Another alternative that comes to mind is to
copy just the references, but use garbage collec-
tion for managing the memory. A disadvantage is
that words that consume and produce a vector (e.g.,
f+v) cannot reuse the vector memory directly, but
would always have to allocate new vector memory.
Allocation is about as expensive as with explicit
allocate/free unless you use a copying garbage
collector, and a copying garbage collector has rel-
atively high collection overhead for big data struc-
tures (such as potentially our vectors, when they
are used for sounds or pictures). Overall, this alter-
native does not look attractive.

Region-based memory allocation [Ert14] may be
useful when dealing with longer-term storage of vec-
tors, but is probably too cumbersome to be used
for the memory management of intermediate vector
results; also, it is not clear how to make region-
based memory allocation work properly with refer-
ence counting.

Finally, a compiler that is analytical about the
vector operations can avoid the overhead of vector
allocation and freeing in many cases.

4.2 Vector stack

Once vectors have been implemented, the vector
stack is trivial: It is just a stack of vector tokens.
However, unlike in a normal stack of cells, the copy-
ing or consuming words have to perform the appro-
priate copying or deleting of the referenced vectors
and/or reference-count bookkeeping.

4.3 Computations

Trivial implementation

The vector words can trivially be implemented in
standard Forth with loops containing scalar com-
putation words (see Fig. 5).

While this implementation realizes none of the
SIMD speedup that the vector wordset is designed
for, it provides a fallback option for users who want

simple:

vmovapd (%rdi,%rax,1),%ymm0

vaddpd (%rsi,%rax,1),%ymm0,%ymm0

vmovapd %ymm0,(%rdx,%rax,1)

add $0x20,%rax

cmp %rax,%rcx

ja simple

Figure 6: The vector-processing loop of the simple
implementation of df+v.

to write portable code: They can write code using
the vector wordset, and still run it (albeit slowly)
on Forth systems that do not have a SIMD imple-
mentation of the vector wordset. It also provides
a gradual approach for SIMD implementations: the
implementor can implement the most important op-
erations using SIMD instructions first, still falling
back to the trivial implementation for the words he
has not implemented yet.

Simple implementation

A simple implementation implements every vector
word separately, but uses SIMD instructions for
that.

For the vector-parallel v, vs, and sv words, the
meat of the word is the vector loop: in each iter-
ation, it loads the operand(s) from the vect-data

memory into SIMD registers, uses a SIMD instruc-
tion to perform the operation n times in parallel,
and then stores the result back into the memory
for a vector (see Fig. 6). For running that on a
CPU with in-order execution, you want to software-
pipeline [Cha81] this loop for good performance; on
out-of-order execution hardware, the hardware re-
orders the instruction execution by itself, achieving
the same result.

For the r (reducing) words, the implementation
is more involved: Thanks to associativity, there
are many different ways to evaluate the result: A
very parallel implementation of +r divides the vec-
tor into pairs of numbers, computes the sum of the
pairs, resulting in an n/2-sized vector; repeat that
until you have only one number left, the result. A
very sequential implementation of +r would add up
all the vector elements, one after the other, incur-
ring n− 1 times the latency of +.

One way to use SIMD instructions for reduction
would be to add up SIMD-register-wide parts of the
vector in a SIMD register; then each element of the
vector occurs exactly once in the computation of
exactly one of the components of the SIMD regis-
ter; finally, the components of the SIMD register
are reduced to form the final result. This may not
fully utilize the resources of the CPU, especially
for FP operations, which have a latency of more

sophisticated:

vmulpd (%rdi,%rax,1),%ymm0,%ymm1

vaddpd (%rsi,%rax,1),%ymm1,%ymm1

vmovapd %ymm1,(%rdx,%rax,1)

add $0x20,%rax

cmp %rax,%rcx

ja sophisticated

Figure 7: The vector-processing loop of the sophisti-
cated implementation of the sequence df*vs df+v.

than one cycle. More parallelism can be exploited
by adding up the elements of the vector in 4 or
8 SIMD registers in parallel (in an unrolled loop),
then adding these registers together with SIMD in-
structions, and finally the components of the result-
ing SIMD register.

Sophisticated implementation

If we have several vector-parallel words in a Forth-
level basic block11, the simple implementation
would produce several loops, with the data stored
in memory between the loops, incurring loop over-
head, and load and store overhead, and possi-
bly overhead for allocating and freeing vectors for
the intermediate results. Instead, several vector-
parallel words can be combined into a single loop12,
with the intermediate results only in SIMD registers
(i.e., not as full vectors, see Fig. 7).13

We can also let reducing vector words participate
in this scheme, with some caveats: The result of the
reduction must not be used in the same sequence of
vector words, so the combining ends with the first
word that uses the result of the reduction. And
the unrolling that you may want for the reduction
would complicate the rest of the code generation; on
the other hand, a smaller unrolling factor (even 1)
may be sufficient to achieve good performance given
that the loop performs not just one reduction, but
more.

Letting concrete-memory stores (e.g., b!v) par-
ticipate in the combining also has caveats: If the
memory of such a store overlaps the memory of con-
crete loads or other concrete stores, the result of a
näıve combination of vector operations can produce
an incorrect result. As a simple example,

a 1024 b@v a 64 + 1024 b!v

logically has to copy the whole 1024 bytes to the
vector stack before it starts storing, but a näıve
combining implementation might overwrite a 64 +

11A basic block is a straight-line code segment.
12This is a special case of the general optimization loop

fusion.
13This is similar to vector chaining used in hardware-

pipelined vector processors such as the Cray-1.

simple2:

vmovapd (%rdi,%rax,1),%ymm0

vaddpd (%rsi,%rax,1),%ymm0,%ymm0

vmovapd %ymm0,(%rdx,%rax,1)

vmovapd 0x20(%rdi,%rax,1),%ymm0

vaddpd 0x20(%rsi,%rax,1),%ymm0,%ymm0

vmovapd %ymm0,0x20(%rdx,%rax,1)

add $0x40,%rax

cmp %rax,%rcx

ja simple2

Figure 8: The loop of Fig. 6 unrolled by a factor
of 2

before loading this memory location, producing a
different result (like the difference between move

and cmove).
One solution to this problem is to check the mem-

ory ranges for overlaps before the loop; if there is
an overlap, let the loop write to temporary, non-
overlapping memory regions, and copy these to the
target addresses in the right order after the loop.

Unrolling

By unrolling the vector loop (see Fig. 8), the loop
overhead can be reduced for long vectors. It turns
out that this does not improve performance signif-
icantly on the Core i5-6600K, but it may help on
other CPUs.

Unrolling normally has to deal with left-over it-
erations. In the case of vectors we can avoid that
by making the vector data long enough for our pre-
ferred unrolling factor (e.g., with 32-byte SIMD in-
structions and unrolling factor 2, always have mul-
tiples of 64 bytes as vector data).

Beyond basic blocks

Extending the combining of vector words beyond
basic blocks is possible, but significantly more com-
plex: the vector stack has to be analysed beyond
basic blocks, and there are some issues to consider.

For ifs, one implementation is to pull the if in-
side the loop implementing the combined vector op-
eration; loop unrolling can reduce the number of
dynamically executed ifs (see Fig. 9).

Another way to deal with if is if-conversion
[MLC+92]: Both branches are computed, and the
result is selected with a muxv operation. However,
in cases where if-conversion is beneficial, I expect
programmers to perform it at the source level, so I
would not perform this at the compiler level. Also,
this is not possible for every operation, in particular
not for stores.

If the vector operations are contained in a loop,
we can extend the combining by unrolling this loop

df+v x 0< if

a v@ df+v then

0.5e df*vs

x in %r10, a in %r11, 0.5 in %ymm2

vector_loop:

vmovapd (%rsi,%rax,1), %ymm0

vmovapd 0x20(%rsi,%rax,1), %ymm1

vaddpd (%rdi,%rax,1),%ymm0,%ymm0

vaddpd 0x20(%rdi,%rax,1),%ymm1,%ymm1

test %r10, %r10

jns then

vaddpd (%r11,%rax,1),%ymm0,%ymm0

vaddpd 0x20(%r11,%rax,1),%ymm1,%ymm1

then:

vmulpd %ymm2,%ymm0,%ymm0

vmulpd %ymm2,%ymm1,%ymm1

vmovapd %ymm0, (%r12,%rax,1)

vmovapd %ymm0, 0x20(%r12,%rax,1)

add $0x40,%rax

cmp %rax,%rcx

ja vector_loop

Figure 9: A vector code fragment containing an if,
and a possible way to compile it. The if moves
inside the vector loop, and loop unrolling (factor 2)
is used to reduce its overhead.

n2 0 ?do

b1 i th v@

a j n2 * i + dfloats + df@

f*vs f+v

loop

%ymm3=a[j,i]

%ymm2=a[j,i+1]

%rbx=%r9=vtos vect-data

%r11=b[i] vect-data

%r10=b[i+1] vect-data

sophisticated_unrolled:

vmulpd (%rcx,%r11,1),%ymm3,%ymm0

vaddpd (%rcx,%rbx,1),%ymm0,%ymm0

vmulpd (%rcx,%r10,1),%ymm2,%ymm1

vaddpd %ymm1,%ymm0,%ymm0

vmovapd %ymm0,(%rcx,%r9,1)

add $0x20,%rcx

cmp %rcx,%r8

ja sophisticated_unrolled

Figure 10: A Forth loop containing vector words,
and the assembly language for the vector loop (the
(outer) do loop is not shown) for two iterations of
the do loop (not the vector loop); i.e., the result of
unrolling the do loop by a factor of 2.

typedef double

vdf __attribute__ ((vector_size (32)));

static void dfplusv_(vdf*v1,

vdf*v2, vdf*v, size_t bytes)

{

size_t i;

...

for (i=0; i<bytes;) {

*v = *v1+*v2;

i+=SIMD_SIZE, v1++, v2++, v++;

}

}

Figure 11: The C-level implementation of the vector
loop of df+v in Gforth. The resulting assembly code
is shown in Fig. 6.

genv-binary-c dfplusv_ vdf *v1+*v2

genv-binary df+v dfplusv_ df-type f+

Figure 12: Generating words: The first line gen-
erates the C function dfplusv shown in Fig. 11
(note how the C expression from this line appears
in the function), the second line generates the Forth
vector word (including memory management) df+v,
calling dfplusv if available, otherwise generating
a trivial implementation that uses f+.

(instead of or in addition to unrolling the vector
loop). Figure 10 shows the inner do loop of the vec-
tor version of matrix multiplication, as well as the
vector loop generated from an unrolled (factor 2) do
loop body. In addition to reducing the vector loop
overhead, the unrolling reduces the number of vtos
accesses (only one load and one store vs. two each
for the two iterations without unrolling). However,
this kind of unrolling requires dealing with left-over
iterations.

4.4 Current implementation

The current implementation of the vector wordset
supports different implementation options: It sup-
ports choosing between linear and refcount options
(independent of the other options), it includes a
trivial implementation (for all systems that don’t
have anything better yet), and it has a simple imple-
mentation for Gforth that is based on GNU C’s vec-
tor extensions (see Fig. 11). There are further con-
figuration options for this variant: You can define
the SIMD size (default 16 bytes), and the vector-
loop unroll factor (default 1).

Given the large number of vector words, all fol-
lowing a few patterns, plus these configuration op-
tions, the words are not hand-coded, but are in-

C_scalar:

movsd (%rdi),%xmm1

add %rsi,%rdi

mulsd %xmm0,%xmm1

addsd (%rdx),%xmm1

movsd %xmm1,(%rdx)

add %rcx,%rdx

sub $0x1,%r8

jne C_scalar

Figure 13: The inner loop of the C scalar implemen-
tation; it allows different strides for the involved
vectors and therefore has separate increments for
the addresses.

stead generated. Figure 12 shows the lines generat-
ing df+v. The dfplusv_ function and Forth word
is generated only on Gforth. Another system could
provide its own (e.g. code) version of dfplusv_ (the
core vector loop), and this would then be called by
df+v, upgrading this word from a trivial implemen-
tation to a simple implementation.

5 Results

This section gives some idea of the speedups achiev-
able by using various vector word implementation
approaches. We enhance the existing matrix mul-
tiplication code14 with variants that use the vector
wordset.

Note that while the vector wordset shows nice
speedups over scalar code on large-matrix multipli-
cation, calling a specialized matrix multiplication
library probably shows even better performance,
so this is not the ideal application area for vec-
tors; but there are areas where no specialized li-
braries are available, and the vector wordset can be
useful there. Here I use matrix multiplication for
benchmarking, because it is vectorizable, because
we already have a matrix multiplication benchmark,
and because it allows scaling for arbitrary vector
lengths.

We compared the following vector implementa-
tions and matrix multiplication variants:

trivial Vector words are implemented using scalar
Forth words without loop unrolling (Fig. 5).

simple Matrix multiplication uses f*vs and f+v,
each of which is implemented as a separate
loop, with the intermediate vector stored in
memory. The vector loops are written C with
the GNU C vector extension and compiled to
use AVX instructions (Fig. 6); the rest of the
vector words is written in Forth.

14http://theforth.net/package/matmul

http://theforth.net/package/matmul

simple refcount 32 1

simple linear 16 1
simple linear 32 1

sophisticated refcount 32 1

sophisticated linear 16 1

sophisticated linear 32 1

soph.-unrolled refcount 32 1

soph.-unrolled linear 32 1

Gforth trivial refcount

VFX trivial refcount

VFX scalar Gforth C scalar

Gforth scalar

n

cycles

1 1632 64 125 250 500
0G

1G

2G

3G

4G

5G

6G

7G

Figure 14: Timings for 20 matrix multiplications, each performing 250,000 times f*vs f+v (or equivalent)
for n-wide vectors

sophisticated We have no sophisticated compiler,
so we fake the effect by implementing a word
f*+vvs and use that instead of the sequence
f*vs f+v; f*+vvs combines Forth and GNU
C in the same way as simple (Fig. 7).

soph.-unrolled We fake the effect of a sophis-
ticated compiler with unrolling (factor 2) by
writing a word that combines the effect of v@

f*vs f+v v@ f*vs f+v, resulting in the code
shown in Fig. 10.

scalar The matrix multiplication code written in
scalar Forth code, otherwise using the same al-
gorithm. Unlike trivial, this version unrolls the
loop by a factor of 4, providing a significant
speedup on VFX (where the loop counter up-
date otherwise limits performance).

C scalar The inner loop of the matrix multiplica-

tion uses scalar C code (Fig. 13). This is mostly
useful for determining how good the (Forth)
scalar implementation perfroms.

For all the vector (i.e., not scalar) variants, both
linear and refcount was measured. For simple,
sophicticated, and soph.-unrolled, SIMD sizes of 16
(AVX128) and 32 (AVX256) were measured, and
vector-loop unrolling factors of 1, 2, and 4.

The benchmarks were run on a 4GHz Core i5-
6600K (Skylake) running Debian 8 (glibc 2.19).
Two Forth systems were used: gforth-fast (de-
velopment version from August 2017) was used for
all variants, VFX Forth 4.72 was used for trivial
and scalar.

The benchmark multiplies a 500×500 matrix with
a 500×n matrix for varying n; given the algorithm
of the benchmark, this always produces 250,000 in-
stances of f*vs f+v (or the scalar equivalent), with

vector length n. I.e., for all n the overheads were the
same. For a single matrix multiplication, compiling
the vector wordset takes longer than some of the
benchmark instances, so the benchmark performs
20 such matrix multiplications to mitigate this ef-
fect. Overall, the benchmark loads 10M×n FP val-
ues, stores 5M×n FP values, performs 5M×n FP
additions and 5M×n FP multiplications.

Figure 14 shows a selection of the results. Show-
ing all results would have overloaded the graph, so
we only show the most relevant ones, but also dis-
cuss the other results here.

Unrolling the vector loop had little effect on per-
formance, so here we show only unrolling factor 1.

SIMD size did not have the big effect I expected.
SIMD size 16 (AVX128) was often slightly slower
than SIMD size 32 (AVX256), but occasionally
faster (some cases where it is faster are shown in
Fig. 14). SIMD size 32 apparently produces some
non-linear effects, especially for the variants that
allocate and free memory, so I suspect some in-
terference between AVX256 and the memory alloca-
tor. The AVX128 variants of the same benchmarks
are closer to linear.

Refcount clearly beats linear for this benchmark,
across all vector sizes. Apparently the overhead of
allocate and free is much larger than that of ref-
erence counting, and for the larger vector sizes, you
also have to pay for copying quite a bit of vector
data on each v@. Still, the slowdown of soph.-
unrolled linear 32 1 over soph.-unrolled refcount
32 1 is surprisingly large; one contributing factor
is probably that sophisticated and soph.-unrolled
with refcount doe not perform a single allocate

or free in the core of the matrix multiplication.
For the trivial implementations, we show only the
refcount variants; the linear variants are slightly
slower.

Given that much of the time is apparently spent
in allocate and free for many of the results, re-
peating the benchmark on a platform with a differ-
ent implementation of these words might give quite
different results; in particular, a per-thread cache
has been added to malloc() in glibc 2.26.15 In the
present case all the allocated and freed vectors
have the same size, so such a cache should work
very well. One could also add such a cache to the
vector wordset implementation, to reduce the per-
formance dependency on the underlying allocate

and free implementation.

Overall, as expected, for the larger vector sizes
we have a big performance increase from trivial
through simple, sophisticated up to soph.-unrolled,
with the scalar results being between trivial and
simple. The performance of C scalar is interesting,
because it is faster than everything except sophis-

15https://lwn.net/Articles/729761/

ticated and soph.-unrolled (at small vector sizes, C
scalar beats even them); however, when program-
ming in Forth, we usually don’t have a scalar C
version at hand, so the (Forth) scalar results are
more relevant.

By looking where the scalar lines cross those of
various vector implementations, we can determine
at what vector length using vector words starts pay-
ing off. For Gforth scalar, the crossover point with
soph.-unrolled refcount 32 1 is at vector length 3,
with sophisticated refcount 32 1 at vector length 4,
simple refcount 16 1 is faster at vector length 16
and simple refcount 32 1 is faster at length 32.

VFX scalar is quite a bit faster, crossing over
soph.-unrolled refcount 32 1 only between vector
lengths 16 and 32, and crossing over simple refcount
32 1 between 125 and 250. However, these vector
implementations all run on Gforth, and I expect
that a SIMD-based vector implementation in VFX
will run faster and reach crossover sooner.

Overall, we see that the vector words can pro-
vide a speedup, especially if the scalar code is not
compiled optimally (whereas the inner loops of the
vector words can be written in assembly language).
However, vector words have an additional overhead,
and that means that, for short vector lengths, using
the vector words will produce a slowdown.

6 Related work

Related work in other languages has been intro-
duced in Section 2.

The most significant difference between the vec-
tor wordset and the Fortran array sublanguage is
that our vectors are stored separately from ordi-
nary memory, avoiding alias problems, whereas the
Fortran array sublanguage operates on arrays and
subarrays that can be accessed in other ways, too,
and therefore has to worry about alias problems.

The most significant difference between GNU C’s
vector extensions and the vector wordset is that
GNU C’s vector types have a fixed size that is re-
stricted to be a power of 2, and in practice should be
the same as the SIMD size; so it is essentially a way
to express SIMD operations without resorting to
architecture-specific intrinsics or assembler. In con-
trast, the vector words process vectors of arbitrary
length, which does not even have to be a multiple
of the SIMD length, thus providing a higher-level
programming interface.

APL is much more sophisticated than the vector
words, and includes operations that do not benefit
from current SIMD instructions, and are hard to
implement efficiently. If the vector words become
popular and such features are asked for, the vector
wordset may grow in the direction of APL in the
future. Of course, you can instead use APL or J

https://lwn.net/Articles/729761/

today (but then have to live without the features of
Forth).

Closer to Forth, there is a Forth dialect designed
for genetic programming that includes vector and
matrix operations [HRvR07] in order to let the ge-
netic programming system discover programs that
benefit from such operations, such as signal process-
ing. The Forth dialect uses a combined stack for all
the types (including vectors and matrices), static
type checking, and overloading resolution. Apart
from that, the paper is very superficial in its de-
scription of the vector words. Our vector words
are oriented towards the traditional Forth model of
not performing type checking. The separate vector
stack is a direct consequence of this model, espe-
cially because we want to treat vectors as opaque
data type (unlike, traditionally, strings [Ert13]) to
avoid aliasing.

7 Conclusion

By having opaque vectors and a wordset for them,
we can make use of SIMD instructions without un-
reliable compiler complications such as alias analy-
sis or auto-vectorization. The wordset can be imple-
mented in different ways: The simple implementa-
tion is easy to implement; its performance for large
vector sizes is better in our benchmark than us-
ing scalar Forth code on VFX. The sophisticated
implementation provides a better speedup, but re-
quires more implementation effort. The source code
can be found on https://github.com/AntonErtl/

vectors.

Acknowledgments

Herbert Pohlai provided valuable knowledge about
APL and J. Marcel Hendrix and the anonymous
reviewers provided valuable feedback on the pa-
per. Marcel Hendrix provided information on fur-
ther generate patterns.

References

[Bak94] Henry Baker. Linear logic and per-
mutation stacks — the Forth shall
be first. ACM Computer Architecture
News, 22(1):34–43, March 1994.

[Cha81] Alan E. Charlesworth. An approach to
scientific array processing: The archi-
tectural design of the AP-120B/FPS-
164 family. Computer, pages 18–27,
September 1981.

[Ert13] M. Anton Ertl. Standardize strings now!
In 29th EuroForth Conference, pages
39–43, 2013.

[Ert14] M. Anton Ertl. Region-based memory
allocation in Forth. In 30th EuroForth
Conference, pages 45–49, 2014.

[For14] Forth 200x Standardization Committee.
Forth Standard 2012, 2014.

[HRvR07] Kenneth Holladay, Kay Robbins, and
Jeffery von Ronne. FIFTHTM: A stack
based GP language for vector process-
ing. In Marc Ebner et al., editor,
Genetic Progamming (EuroGP), pages
102–113. Springer LNCS 4445, 2007.

[MLC+92] Scott A. Mahlke, David C. Lin,
William Y. Chen, Richard E. Hank, and
Roger A. Bringmann. Effective compiler
support for predicated execution using
the hyperblock. In 25th Annual Interna-
tional Symposium on Microarchitecture
(MICRO-25), pages 45–54, 1992.

[SKAH91] Mark Smotherman, Sanjay Krishna-
murthy, P. S. Aravind, and David Hun-
nicutt. Efficient DAG construction
and heuristic calculation for instruction
scheduling. In MICRO-24, 24th Annual
Intl. Symp. on Microarchitecture, pages
93–102, 1991.

https://github.com/AntonErtl/vectors
https://github.com/AntonErtl/vectors

	Introduction
	Background
	Forth Vector Wordset
	Vectors
	Vector Stack
	Data types
	Vector operation patterns
	Words
	Memory

	Implementation
	Vectors
	Vector stack
	Computations
	Trivial implementation
	Simple implementation
	Sophisticated implementation
	Unrolling
	Beyond basic blocks

	Current implementation

	Results
	Related work
	Conclusion

