
Fachhochschule Wedel Technical Report Nr. 2016-09

Implementing the Forth Inner Interpreter in High Level Forth

Ulrich Hoffmann <uh@fh-wedel.de>

Abstract

This document defines a Forth threaded code (inner) interpreter written entirely in
high level standard Forth. For this it defines a specific threaded code structure of colon
definitions, a compiler from high level Forth to this threaded code and a corresponding
inner interpreter to execute it. This inner interpreter can run in a stepwise way and so gives
the surrounding environment control of its execution behavior. A real time environment
thus might slice the execution of threaded code in small pieces and provide an interactive
command shell while still meeting its real time requirements.

1 Introduction

Forth 94 and Forth 2012 define the semantics
of many Forth words. As this opens the space
for various implementations and optimizations
they do not however specify much of the dic-
tionary structure: words are identified by their
so called execution token (xt) and later exe-
cuted; given a word name the xt can be iden-
tified (FIND) along with its immediacy status.

For words defined via CREATE, the execution
token can be transformed into the memory ad-
dress of its parameters by means of >BODY.
Standard programs must not assume a specific
header structure or the structure of colon def-
initions, nor must they rely on a specific way
the system uses the return stack. Certain pro-
gramming techniques that are based on such
assumptions cannot be expressed in standard
programs. That’s ok.

Traditionally Forth is implemented as
threaded code [2]. The body of colon defini-
tions contains a list of addresses of the words
it invokes. There are primitives expressed in
machine code and high level definitions that
are defined in threaded code.

This document defines a threaded code inter-
preter written entirely in standard Forth. It de-
fines a specific threaded code structure of colon
definitions. This allows to also define an inner
interpreter (traditionally known as NEXT) for
this threaded code in high level Forth. The in-
ner interpreter defined below can run in a step-
wise way so the execution of threaded code can
be sliced in small pieces in a real time environ-
ment.

The primitives of this threaded code inter-
preter are all the words that the underlying
Forth system defines (be they machine code or

body

of sq

|-----------+---------+-------------|

| xt of dup | xt of * | xt of ~exit |

|-----------+---------+-------------|

^

|

|

|----|

| IP | Interpreter pointer

|----|

Figure 1: Threaded code of the definition ~: sq (x -- x) dup * ~;

Ulrich Hoffmann Page 1 of 8 2016-09-09

Fachhochschule Wedel Technical Report Nr. 2016-09

body

of test

|------------+---+------------+---+---------+-------------|

| xt of ~lit | 3 | xt of ~lit | 4 | xt of + | xt of ~EXIT |

|------------+---+------------+---+---------+-------------|

Figure 2: Threaded code for literals ~: test (-- u) 3 4 + ~;

colon words there). Threaded code high level
words are defined by a special version of colon
(thread-colon ~:). Its definition is given and
explained in section 3.

Also, an outer compiler that compiles to
threaded code as well as an outer interpreter
defined in threaded code is defined below giv-
ing an interactive shell to real time systems.

The current implementation does not define
dictionary/header structures but leaves these
as unspecified as the standards do. We still
get an interactive system with a well de-
fined threaded code structure. If more specific
knowledge about a system is required, it would
of course be possible to also specify the exact
structure of headers and the dictionary layout
and to define appropriate operations on these
structures.

2 Threaded Code

This section describes the chosen threaded
code structure of colon definitions. We will look
at simple words with invocation of primitives,
at string and number literals, and at control
structures.

Let’s assume the definition:

~: sq (x -- x) dup * ~;

then the threaded code for sq looks as shown in

figure 1 on the preceding page. For each word,
that is referenced by sq a corresponding exe-
cution token is stored. A thread-colon defini-
tion ends with the execution token of ~exit

compiled by ~; (thread-semicolon). sq invokes
only primitives, but the threaded code struc-
ture would be identical if thread-colon words
were invoked: They also have execution tokens
and these would be stored in the body of the
newly defined word.

An interpreter pointer IP references the cur-
rent point of execution. The threaded code in-
terpreter will modify IP while executing the
code.

2.1 Number literals

When there is a number literal in the source
code, it is later processed by means of ~lit:

~: test (-- u) 3 4 + ~;

as can be seen in figure 2 on the top of this
page.

2.2 Printing string literals

Printing string literals (used by ~.") is handled
by (~.", see figure 3 below.

~: test3 (--) ~." it works" ~;

body

of test3 aligned

|------------+---+-----+-----+-----+-----+-----+---+-------------|

| xt of (~." | 8 | ’i’ | ’t’ | ’ ’ | ... | ’s’ | | xt of ~exit |

|------------+---+-----+-----+-----+-----+-----+---+-------------|

Figure 3: Threaded code for string literals ~: test3 (--) ~." it works" ~;

Ulrich Hoffmann Page 2 of 8 2016-09-09

Fachhochschule Wedel Technical Report Nr. 2016-09

|------------+---+------------+----|

A | xt of ~lit | 0 | xt of ~lit | 10 |

|------------+---+------------+----|

|----------+-----------+----------------+--------------|

B | xt of 1- | xt of dup | xt of ~?branch | address of D |

|----------+-----------+----------------+--------------|

|---------+------------+---------+------------+---------------+--------------|

C | xt swap | xt of over | xt of + | xt of swap | xt of ~branch | address of B |

|---------+------------+---------+------------+---------------+--------------|

|---------+-------------|

D | xt drop | xt of ~exit |

|---------+-------------|

Figure 4: Threaded code for a BEGIN WHILE REPEAT loop

A counted string with string length and the
string characters is placed inline in the code
. In order to place the following token on an
aligned address the bytes after the inline string
are padded.

Our threaded code is (arbitrarily) restricted to
just printing strings. A more general approach
could easily define threaded string literal words
corresponding to S".

2.3 Control structures

Control structures compile unconditional and
conditional absolute branches:

For illustration let’s define the word looptest

with a BEGIN WHILE REPEAT loop:

: looptest (--)

0 10

~BEGIN

1- dup

~WHILE

swap over + swap

~REPEAT drop ~;

Figure 4 shows the corresponding threaded
code. There are 4 basic blocks labeled A
through D with appropriate branches at the
end of basic block B (conditional) and C
(unconditional). The threaded code primitives
~?branch and ~branch modify the interpreter
pointer IP appropriately.

2.4 Limitations

The current threaded code defines just as much
structure so that a simple interactive Forth
outer interpreter can be defined on top.

It does not define a code for a complete stan-
dard system. Specifically the current threaded
code does not contain

• (user) variables or constants. However
because definitions of the underlying sys-
tem become primitives of threaded code,
it inherits variables and constants.

• DO LOOPs. Adding this would be similar
to the branching words already available.

• Neither defining words nor DOES> as they
are not required to program an interac-
tive outer interpreter.

• a primitive for pushing address and
length of string literals on the stack. It
could easily be defined similar to the in-
line string printing word.

3 Implementation

This section explains how standard Forth defi-
nitions will allow to interpret and construct the
threaded code structure explained above. As a
general naming convention, names that start

Ulrich Hoffmann Page 3 of 8 2016-09-09

Fachhochschule Wedel Technical Report Nr. 2016-09

\ Perform a single interpretation step

: step (i*x -- j*x)

IP @ dup cell+ IP !

@ catch

?dup IF cr ." Error " . reset THEN ;

\ Loop steps

: run (i*x -- j*x)

BEGIN IP @ WHILE step REPEAT ;

Figure 5: The threaded code inner interpreter

with the tilde-character ˜ denote threaded
code words. They often have corresponding
words in the underlying system with similar
functionality.

The state of the threaded code interpreter has
the following components:

• the already mentioned Interpreter
Pointer IP:

Variable IP 0 IP !

• a return stack ~RP with its corresponding
return stack pointer RP.

Create ~R0 20 cells allot

Variable RP ~R0 RP !

Having a return stack of our own, allows
us to explicitly define the return stack be-
havior when nesting. Using that knowl-
edge return stack tricks can work (we
make no use of them here, though).

• a data stack shared with the underlying
system, and

• memory (code and data) also shared with
the underlying system.

Also headers, wordlists and the dictionary
structure is shared with the underlying system.

3.1 Inner Interpreter

We now define the threaded code inner inter-
preter. It is defined in Figure 5. It works very
similar to the NEXT code in classical Forth im-
plementations:

step first gets the address of the next execu-
tion token and increments IP. It then fetches
the execution token and executes it, which
modifies the interpreter state as desired. In
case of an error the word reset is invoked,
which re-initializes the interpreter.

In traditional Forth implementations every in-
voked word ends in a jump to the NEXT code
(or inlines it, if short enough) which results
in continuous threaded code interpretation. In
our case, as step invokes words via catch, they
return to step and no continuous interpreta-
tion takes place. This has the benefit, that we
can stepwise interpret threaded code (thus the
name step) and gain control after each step.
Continuous interpretation is handled by run in
simple cases which calls step in a loop. Setting
IP to 0 in one of the invoked words would stop
run. Note, that IP had been initialized to 0 so
that a ~exit from the top level word will set IP
to 0 as well and thus also stop threaded code
interpretation. A real time environment would
not call run but would do single interpretation
steps when appropriate.

3.2 Return stack operations

The return stack we defined above grows to-
wards increasing addresses. It should operate

Ulrich Hoffmann Page 4 of 8 2016-09-09

Fachhochschule Wedel Technical Report Nr. 2016-09

: ~>r (x --)

\ push a cell to the return stack

RP @ ! 1 cells RP +! ;

: ~r> (-- x)

\ pop a cell from the return stack

-1 cells RP +! RP @ @ ;

Figure 6: Return stack operations

using post increment and pre decrement op-
erations. RP is supposed to point to the next
available cell. Figure 6 shows the appropriate
definitions for ~>r and ~r>.

3.3 Inline number literals

Inline number literals are prefixed with the
~lit instruction as shown in figure 7. Its defi-
nition is

: ~lit (-- n)

\ extract inline number literal

IP @ @ 1 cells IP +! ;

Before execution, the interpreter pointer points
to the code cell that contains val (solid line).
Execution extracts the value val and puts it
on the stack. After execution the interpreter
pointer points past the literal (dotted line).
This threaded code structure is generated by
the threaded code outer interpeter, that we will
define in section 3.6.

3.4 Printing inline string literals

Inline string literals are handled similar to
number literals by (~." as shown in figure 8

on the next page. Note, that we are only inter-
ested in printing inline string literals here:

: (~." (--)

\ extract inline string

\ literal and print it

IP @ count 2dup + aligned IP !

type ;

Moving the interpreter pointer past the inline
string requires alignement as specified for our
threaded code structure.

The threaded code of figure 8 is generated by
the compiling word ~." that is defined like this:

: ~." (<ccc >" --)

\ Compile inline string to be

\ printed later when executed.

\ Like ." but for threaded code

[’] (~." ,

[char] " word count

here over 1+ chars allot place align

; immediate

It first compiles (~.", then the counted string
and also takes care of the required alignment.

3.5 Control structures

Up to now threaded code execution is sequen-
tial. step moves the interpreter pointer suc-

|----|

| IP |--------------+......

|----| | .

| .

V V

|-----+------------+-----+-----|

| ... | xt of ~lit | val | ... |

|-----+------------+-----+-----|

Figure 7: The execution of ~lit

Ulrich Hoffmann Page 5 of 8 2016-09-09

Fachhochschule Wedel Technical Report Nr. 2016-09

|----|

| IP |--------------+...........................

|----| | .

| .

V V

|-----+------------+-----+----+----+-----+----+-----|

| ... | xt of (~." | len | c1 | c2 | ... | cn | ... |

|-----+------------+-----+----+----+-----+----+-----|

Figure 8: The execution of (~."

cessively over threaded code cell by cell. No
branches take place.

Defining branches and control structures is
simple. As in traditional Forth implementa-
tions we define unconditional (~branch) and
conditional (~?branch) branches. For the sake
of simplicity they branch to absolute addresses.
Other branching regimes or additional branch-
ing instructions such as DO-LOOP primitives
would easy to add.

: ~branch (--)

\ absolute unconditional jump

IP @ @ IP ! ;

: ~? branch (f --)

\ absolute conditional jump

IF 1 cells IP +!

ELSE ~branch THEN ;

The interpreter pointer is adjusted appropri-
ately. After execution it points to the branch
target or (in case of a non taken conditional
branch) to the instruction following ~?branch

(skipping the branch address).

In order to compile branches in a structured
way we define the zoo of Forth control struc-

ture as depicted in figure 9.

These correspond to the standard control
structures but compile threaded code branches
with embedded absolute threaded code ad-
dresses.

3.6 Compiler to threaded code

In section 3.3 we saw the handling of inline
number literals. It is still open, how the appro-
priate threaded code structure (figure 7 on the
previous page) is generated. As in a traditional
implementation this is done by the Forth text
interpreter.

In figure 10 on the following page we define
a variant of the classical outer compiler that
looks for words in the dictionary, executes
them when they are immediate or compiles
them when not.

If a word is not found in the dictionary, the
compiler tries to see if it is a number and then
compiles it as number literal if so, or else raises
an error. Note, that this compiler does not han-
dle double numbers or base prefixes.

: ~IF (-- x) [’] ~? branch , here 0 , ; immediate

: ~AHEAD (-- x) [’] ~branch here 0 , ; immediate

: ~ELSE (x -- x’) [’] ~branch , here 0 , swap here swap ! ; immediate

: ~THEN (x --) here swap ! ; immediate

: ~BEGIN (-- x) here ; immediate

: ~WHILE (x1 -- x2 x1) [’] ~? branch , here 0 , swap ; immediate

: ~AGAIN (x --) [’] ~branch , , ; immediate

: ~UNTIL (x --) [’] ~? branch , , ; immediate

: ~REPEAT (x2 x1 --) postpone ~AGAIN postpone ~THEN ; immediate

Figure 9: Threaded code control structures

Ulrich Hoffmann Page 6 of 8 2016-09-09

Fachhochschule Wedel Technical Report Nr. 2016-09

variable ~state ~state off \ threaded code outer interpreter state

-13 Constant #notfound

: ~] (--) ~state on

BEGIN ()

BEGIN ()

bl word dup c@ \ scan next token

WHILE (c-addr) \ another token found

find ?dup \ look up in dictionary

IF -1 = IF , ELSE execute THEN ~state @ 0= IF EXIT THEN \ found

ELSE 0 0 rot count

over c@ [CHAR] - = dup >r IF 1- swap char+ swap THEN \ word not found

>number IF #notfound throw THEN

drop drop r> IF negate THEN

[’] ~lit , , \ compile threaded code literal

THEN

REPEAT (c-addr) \ no more tokens in input stream

DROP

SOURCE -ID 0= IF CR ."] " THEN

REFILL 0= \ read more from input stream

UNTIL ; \ input stream exhausted

: ~[(--) ~state off ; immediate \ stop threaded code compiler

: ~: (<name > --)

\ push IP to return stack and set IP to start of threaded code.

Create ~] Does > IP @ ~>r IP ! ;

: ~EXIT (--)

\ Pop IP from return stack

~r> IP ! ;

: ~; (--)

\ Compile end of definition and leave threaded code outer compiler

[’] ~EXIT , ~state off ; immediate

Figure 10: Compiler to threaded code

Threaded code words are defined with

~: name ~;

~: invokes ~] that compiles the following
source code until ~state becomes false (by
executing ~; or ~]) or the input stream is ex-
hausted. Inside the definition we have to use
corresponding threaded code words (e. g. con-
trol structurres) to compile the right code.

We can then interactively execute the threaded
code definition with

name run

The (normal) Forth word name sets the inter-

preter pointer to the beginning of its threaded
code. run then interprets this code. If the in-
terpreter executes name’s ~exit IP will become
zero (being initialized to zero and pushed on
the return stack) and the run loop terminates.
We return to the underlying system.

As dictionary structure and headers are shared
with the underlying system, the headers for
threaded code are just defined in the base
Forth system.

Note also that execution of a threaded code
word is split into two parts. On execution of the
word in the underlying system interpretation

Ulrich Hoffmann Page 7 of 8 2016-09-09

Fachhochschule Wedel Technical Report Nr. 2016-09

~: ~interpret (--)

~BEGIN ()

bl word dup c@ \ scan next token

~WHILE (c-addr) \ another token found

find \ lookup in dictionary

dup 1 = ~IF drop execute ~ELSE \ immediate

dup -1 = ~IF drop state @ ~IF compile , ~ELSE execute ~THEN ~ELSE

\ word not found , number?

drop 0 0 rot count over c@ 45 = dup ~>r ~IF 1- swap char+ swap ~THEN

>number ~IF #notfound throw ~THEN drop drop \ maybe number

~r> ~IF negate ~THEN

state @ ~IF postpone LITERAL ~THEN \ compile literal

~THEN ~THEN

~REPEAT (c-addr)

drop ~;

~: ~quit (--) clear -stack ~R0 RP ! ~state off interpret -mode

~BEGIN cr state @ ~IF ~."] " ~THEN ~query ~interpret ~." ~ok" ~AGAIN ~;

Figure 11: Interpreter in threaded code

does not start immediately but only the inter-
preter pointer is adjusted appropriately (sav-
ing its old content to the return stack). By this
we can explicitly control execution by step and
run.

3.7 Interpreter in threaded code

Ultimately we want to have a Forth outer inter-
preter that is defined in threaded code so that
we can have an interactive shell which can be
executed via step and run. Up to now we just
have a compiler to threaded code, but this is
defined in the underlying Forth system and we
cannot control its execution.

So — here we go. We define a Forth outer inter-
preter in threaded code. Figure 11 shows a FIG
forth style interpreter loop that combines inter-
pretation and compilation state. It compiles to
code of the base system (using compile, and
Literal). So — it is similar in function to the
base system outer interpreter but is itself com-

piled to threaded code using the threaded code
compiler ~[defined above. And so, we can con-
trol its execution via step.

~quit is the corresponding quit loop that suc-
cessively expects user input and interprets it.
(~query is an appropriate query implementa-
tion in threaded code, not shown).

4 Conclusion

In this document we defined a threaded code
structure for Forth colon definitions and an in-
ner interpreter, step, in high level Forth. Step-
wise execution of threaded code can be con-
trolled by periodicaly invoking step.

We constructed a compiler to generate this
threaded code and also an interactive outer in-
terpreter in threaded code. As step can con-
trol the execution of this outer interpreter, its
execution time can be distributed according to
the requirements of a real time system, such as
the synchronous Forth framework in [1].

References

[1] A synchronous FORTH framework for hard real-time control, U. Hoffmann and A. Read, euroForth 2016

[2] Threaded Interpretive Languages: Their Design and Implementation, R. G. Loeliger, McGraw Hill, 1981

Ulrich Hoffmann Page 8 of 8 2016-09-09

