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Abstract

A conceptual generalization of the FORTH return stack is obtained by complementing it

with one or more additional stacks that are tightly synchronized in operation according to some

precise logical rules. With additional stacks speci�cally deployed to support subroutine and

exception handling, a model is obtained whereby CATCH and THROW can be implemented

as single machine language instructions and a number of other features emerge that enhance

the �exibility, speed, and robustness of subroutine and exception handling in FORTH. The

extended return stack model has been successfully implemented on the N.I.G.E. Machine.

1 Introduction

This paper discusses the concept and implementation of an extended return stack in FORTH. The
traditional stack data structure comprises an array of cells in memory with a movable stack pointer.
Push and pop operations are de�ned for placing data onto the stack or removing data from the
stack. Typical FORTH implementations utilize two stacks: the parameter stack (generally used
for program data) and the return stack (generally used for �ow control and holding a subroutine
return address). This paper describes a conceptual generalization to the return stack and its
implementation on the N.I.G.E. Machine.

The key conceptual idea is that additional stacks can be linked to return stack in a structured
arrangement. These additional stacks can be leveraged to support enhanced �exibility, speed, and
robustness of subroutine and exception handling in FORTH.

The N.I.G.E. Machine is a complete computer system implemented on an FPGA development
board [1]. It comprises a 32 bit softcore processor optimized for the FORTH language, a set of
peripheral hardware modules, and FORTH system software. The N.I.G.E. Machine was presented
at EuroFORTH in 2012 and 2013 [2, 3] and is available open source [4]. It follows in the footsteps
of a number of signi�cant FORTH processors [5, 6, 7, 8, 9, 10].

2 Review of prior work

Flexibility, speed and robustness are critical in all aspects of computer science. Much prior work
has been done to apply these topics to subroutine and exception handling in FORTH.
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Klaus Schleisiek conducted some of the �rst research into error trapping in FORTH and noted that
�everything to do with a subroutine belongs on the return stack� [27, 28]. Klaus's comment inspired
the author's thinking on the topic and is the intellectual germ of this project. Brad Rodriguez was
also one of the pioneers of FORTH exception handling in the era before CATCH and THROW,
including applying stack frames to FORTH [29, 30]. The development of the standard words,
CATCH and THROW has been explained by Michael Milendorf who also provides a reference
implementation [16].

Many authors have discussed ways to enhance the reliability of FORTH software. The ideas
presented in this paper build o� several:

Jaanus Pöial studied stack e�ects at a conceptual level and developed an algebraic formalism for
validating FORTH code [21, 22].

Paul Bennett and Malcolm Bulger discussed the certi�cation of high integrity software and ex-
plained that in order to be able to fully certify an application, then it is �rst required to certify the
programming surface. They made the point that this would only need certifying once, and then
could be used as the platform for many products [12]. This is especially relevant if the programming
surface can be built into the base hardware.

Anton Ertl introduced a construct that guarantees that the cleanup code associated with resource
usage is always completed, and demonstrated a more e�cient implementation approach for cleanup
code than using a full exception frame [13].

Nick Nelson contrasted approaches in the search for reliability of a large and complex FORTH
system, including the idea of developing system which tries to struggle on despite programming
errors [17].

Bill Stoddart and Peter Knaggs have contributed signi�cantly to making FORTH robust [23, 24,
25, 26].

Considering the topic of subroutine local variables, Bailey, Sotudeh and Ould-Khaoua identi�ed
that local variable management and its e�cient support in hardware is a prime concern in devel-
oping e�cient stack based computation [11]. Anton Ertl stressed that the appropriate use of local
variables has the potential to signi�cantly unburden the data stack [14].

The use of a third stack for local variable storage is not new. Philip Koopman pointed out that
this idea has often been proposed, but he suggests a better solution to support local variables may
be a frame pointer into a software-managed program memory stack [19].

Lastly, regarding �exibility in subroutine handling, Glassanenko discussed programming techniques
using return stack manipulations such as the implementation of new control structures and back-
tracking [15].

3 Two linked stacks as a conceptual model of subroutine and

exception handling behavior

The motivation for starting with a conceptual scheme (rather than with a design speci�cation for
some desired output) was to �nd a straightforward logical model of the behaviors that occur in
subroutine and exception handling as an intellectual goal in itself. The approach taken to �nding
a suitable model was an iterative series of thought experiments and pen and paper investigations.
(The author accepts that this approach has the weakness of missing a formal proof. Therefore, as
with the N.I.G.E. Machine overall, structured and extensive testing is a prerequisite to use in any
critical system.)

This section presents the key features of the logical model that was found to represent subroutine
and exception handling (the extended return stack) at a purely conceptual level. The section
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Figure 1: Illustration of basic conceptual scheme of the extended return stack. The current position
of the stack pointer is highlighted in gray.

following will explain exactly how this conceptual scheme has a direct relationship with subroutine
and exception handling in FORTH.

Consider a simple, traditional stack that has been extended by making available an additional
stack and creating certain logical connections between the two. In this paper the diagrammatic
convention will be that the original stack is shown on the right and the additional stack on the
left. The additional stack is structured as follows (�gure 1):

The additional stack is at least two cells wide. Each cell can be read independently. The data con-
tents of all cells change simultaneously when the stack pointer moves. The �rst cell (by convention
shown as the rightmost cell in this paper) of the additional stack holds a copy of the stack pointer
to the original stack. This stack pointer copy is read and written on certain events as described
below. The second cell of the additional stack is the conventional part of the stack; it is where
data that is PUSHed to the stack will be placed. The remaining cells of the additional stack are
mapped to registers at �xed locations in system memory. This is con�gured in such a way that
regardless of the position of the stack pointer, the top of stack values are always found at the same
physical addresses in system memory.

The rules for interaction between the original stack and the additional stack are as follows (illus-
trated in �gures 2, 3, 4, 5, 6):

1. Push and pop operations are separately available for each stack. (Looking ahead, it is the
mapping of these push and pop operations on separate stacks to an appropriate set of machine
language instructions that makes for e�cient support of subroutine and exception handling).

2. When the original stack is pushed then there is no impact on the additional stack.

3. When the original stack is popped then there is no impact on the additional stack unless the
value of the original stack pointer after the pop would be less than the copy value held on
the additional stack. In this case the additional stack is simultaneously also popped.

4. When the additional stack is pushed then two additional operations occur simultaneously:
�rstly the current value of the original stack's stack pointer is pushed to the �rst (rightmost)
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Figure 2: Illustrating the rule that when the original stack is pushed then there is no impact on
the additional stack. The �before� state of the stacks is shown above and the �after� below.

cell on the additional stack and secondly the original stack is a pushed with the same value
as was pushed to the additional stack.

5. When the additional stack is popped then the original stack's stack pointer is reset to the
copy value held on the additional stack before the pop.

The conceptual scheme may be extended with multiple additional stacks as follows:

Each new additional stack is added on the �left�, so that it has the same relationship with the current
�leftmost� additional stack as the �rst additional stack has with the original stack according to the
rules above. When an additional stack is pushed, all of the stacks on its right are simultaneously
pushed with the same value. When an additional stack is popped, the reset of stack pointers �ows
to each stack on its right in a chain sequence until the reset of the stack pointer of the original
stack. When a stack is popped to such a position that it causes a pop of the additional stack on
its �left�, then it is not necessary to propagate that behavior further to the left.

4 High level application to the FORTH programming lan-

guage

To apply this conceptual model to the FORTH programming language the following arrangement
is made. The FORTH return stack is the �original stack� in the terminology of the previous section
and two additional stack are added (�gure 7). The �rst additional stack is termed the subroutine
stack and the second additional stack is termed the exception stack. PUSH and POP operations on
each of the three stacks are mapped to FORTH primitives as follows: >R and R> operate on the
return stack. EXECUTE and EXIT operate on the subroutine stack and CATCH and THROW
operate on the exception stack (table 1).

The �rst cell on the subroutine stack holds a copy of the return stack's stack pointer. The second
cell on the subroutine stack is reserved for storing the return address of a subroutine call. There
are at least an additional 16 cells on the subroutine stack that are memory-mapped to the system
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Figure 3: Illustrating the rule that when the original stack is popped then there is no impact on
the additional stack provided that the value of the original stack pointer after the pop is not less
than the copy value held on the additional stack.

Figure 4: Illustrating the rule that when the original stack is popped then the additional stack is
also popped if the value of the original stack pointer after the pop is less than the copy value held
on the additional stack.
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Figure 5: Illustrating the rule that when the additional stack is pushed then two additional op-
erations occur: �rstly the current value of the original stack's stack pointer is copied to the �rst
(rightmost) cell on the additional stack and secondly the original stack is also pushed with the
same value as was pushed to the additional stack.

Figure 6: Illustrating the rule that when the additional stack is popped then the original stack's
stack pointer is reset to the copy value held on the additional stack.
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Figure 7: Application of the extended return stack model to FORTH with an exception, subroutine
and return stack. The additional memory-mapped cells on the subroutine and exception stacks
are shown narrower for clarity of the diagram only.

address space via registers in such a way that the top-of-stack values are always visible at �xed
addresses regardless of the position of the stack pointer. These cells are used to hold subroutine
local variables. Because of the way the subroutine stack operates with EXECUTE and EXIT, the
correct set of local variables will always be available at the relevant memory addresses. (The choice
of 16 cells for local variables is made to comply with the minimum ANSI FORTH requirement,
but in the case of the N.I.G.E. Machine su�cient FPGA BLOCK RAM is available to allow for
more cells if desired, table 2.)

The �rst cell on the exception stack holds a copy of the subroutine stack's stack pointer. The
second cell on the exception stack holds a copy of the exception return address. The exception
stack also has a number of additional cells that are memory-mapped to �xed addresses. Just as
with subroutine local variables on the subroutine stack, these memory mapped cells are used to
hold local variables that have scope within a single exception.

Instruction Exception stack Subroutine stack Return stack

PUSH CATCH EXECUTE >R

POP THROW EXIT R>

Table 1: Mapping of PUSH and POP operations on the exception stack, subroutine stack and
return stack to FORTH primitives

The operation of the extended return stack as concerns execution �ow control will be discussed in
relation to the following code example (reordered to match the �ow of the text). The stack e�ects
are also illustrated in �gure 8.
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: mainloop

' innerloop CATCH

if .� Error code� . then

;

: innerloop

sub1

\ code omitted

;

: sub1

sub2

255 THROW

\ code omitted

;

: sub2

10 >R

;

Within the FORTH word mainloop the �rst action is to call the word innerloop by way of a
CATCH statement. CATCH is mapped to a PUSH instruction on the exception stack. The e�ect
of the CATCH is to increment the exception stack pointer. Because the exception stack is the
�leftmost� additional stack, a PUSH to this stack also increments the subroutine stack pointer
and the return stack pointer. The �rst cell of the exception stack is pushed with the value of the
subroutine stack pointer as it is before being incremented. The second cell of the exception stack
is pushed with the return address for this CATCH statement. Since a PUSH operation has also
been applied to the subroutine stack, the �rst cell of the subroutine stack is pushed with the value
of the return stack pointer as it is before being incremented. The second cell of the subroutine
stack is pushed with the return address for this CATCH statement. The return address for this
CATCH is also pushed onto the return stack. At this point control has been passed to the word
innerloop.

The �rst action of the word innerloop is to call the word sub1 with an implied EXECUTE
statement. EXECUTE is mapped to a PUSH instruction on the subroutine stack. The e�ect of
the EXECUTE is to increment the subroutine stack pointer and, since the subroutine stack is �left�
of the return stack, to also increment the return stack pointer. The �rst cell of the subroutine stack
is pushed with the value of the return stack pointer as it is before being incremented. The second
cell of the subroutine stack is pushed with the subroutine return address. The subroutine return
address is also placed onto the return stack. The exception stack is not a�ected by a subroutine
call, consistent with the conceptual scheme as outlined. At this point control has been passed
to the word sub1. The �rst action of the word sub1 is to call the word sub2. The mechanism
involved is the same again with the result that both the subroutine and return stack pointers are
incremented a second time.

The word sub2 places the value 10 on the return stack above the current return address before
calling the implied EXIT. In a typical FORTH implementation exiting a subroutine after placing
an arbitrary value on the top of the return stack could result in an unstable condition because
the arbitrary value could be taken as the subroutine return address. However in the extended
return stack arrangement as described here the EXIT statement is mapped to a POP instruction
on the subroutine stack. The e�ect of the POP on the subroutine stack is to return execution to
the return address as read from the subroutine stack (the second cell position), reset the return
stack's stack pointer to the value as read from the subroutine stack (the �rst cell position) and
then decrement the subroutine stack pointer. As a result EXIT will return the �ow of execution
to sub1 and the return stack pointer will return to the position that it was in when the subroutine
call to sub2 was originally made.

The following action is to call the word THROW with the value 255 on the top of the parameter
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stack. THROW with a non-zero parameter is mapped to a POP operation on the exception stack.
The e�ect of THROW at this point is to return the �ow of control to the exception return address
that was copied on to the exception stack when the corresponding CATCH was called. In addition,
the subroutine stack is reset to the position that it was in when CATCH was called since the copy of
the subroutine stack pointer that was copied to the exception stack at that time is now written back
to the subroutine stack pointer. Following this, the return stack is also reset to the position that
it was in when CATCH was called as the copy of the return stack pointer on the reset subroutine
stack is written back to the return stack.

5 Additional FORTH requirements for subroutine and excep-

tion handling

The conceptual scheme for additional return stacks as described in the previous two sections pro-
vides almost all of the functionality that is needed to implement exception handling in FORTH.
However to implement fully all of the required ANSI FORTH functionality in CATCH and THROW,
some further mechanisms are required in addition to the additional stacks as described in the pre-
vious section.

Subroutine calls and exception handling could be operated by the additional stacks without any
need for the return address of a subroutine call to be placed on the top of return stack. This
is because as described, both the subroutine stack and the exception stack hold return addresses
for subroutine and exception calls. However for comparability with existing FORTH code a copy
of the subroutine return address should be placed on the return stack. There is a further point
here. FORTH subroutines may remove the subroutine return address from the top of the return
stack so that when an EXIT instruction is subsequently encountered, �ow control is returned to
the caller of the caller of that subroutine. This behavior, known as backtracking, may be used in
implementations of CREATE DOES> and in other applications [15]. Since the conceptual scheme
for the additional stacks already requires that if a stack is popped above the level of the copy
of its stack pointer held by the additional stack to its right, traditional FORTH code that takes
advantage of backtracking can run without alteration in the extended return stack scheme. (Note
that backtracking in this form is environmentally dependent.)

Another issue that needs to be dealt is that EXIT (including an implied exit at the end of a FORTH
word de�nition) needs to place a value of zero on the parameter stack if the subroutine was called
with CATCH, but does not place any value on the parameter stack if the subroutine was called with
EXECUTE (including an implied execute when a FORTH word is complied inside a de�nition).
The conceptual scheme as discussed in the previous sections maps EXIT to a POP operation on
the subroutine stack with �ow control passing to the return address held on the subroutine stack.
The di�culty is that subroutine stack doesn't �know� whether the current FORTH word was called
with EXECUTE or CATCH.

A solution is achieved by having the return address that is stored on the exception stack to be
one instruction ahead of the return address that is stored on the subroutine stack and arranging
that a CATCH machine language instruction will always be followed by a ZERO machine language
instruction (i.e. the instruction that places ZERO on the top of the parameter stack). As a result
EXIT will direct execution �ow, via the subroutine return address, to the ZERO instruction in a
subroutine that was called by CATCH. On the other hand THROW, when called with a non-zero
parameter, will direct execution �ow via the exception return address and to the next following
instruction and therefore skip the ZERO instruction. This is illustrated in the machine language
excerpt below:
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Figure 8: Illustration of the e�ect of some FORTH code on the exception, subroutine and return
stacks. The current position of each stack pointer is show in grey. For clarity the memory-mapped
cells for local variable storage on the subroutine and exception stacks have been omitted from the
diagram.
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PC address Instruction Comment

100 #.l <sub addr> ; load the subroutine address on stack

105 CATCH

106 ZERO ; 106 is the return address for EXIT

107 <next> ; 107 is the return address for THROW

Although the �rst two cells on the subroutine and control stack are used for control purposes, both
of the stacks are multiple cells wide and the remaining cells are intended to be used for variable
storage. As previously mentioned, the conceptual scheme and its implementation is such that the
contents of the cells at the top of the subroutine and exception stacks are always available at �xed
memory locations regardless of the value of the return stack pointer.

The remaining available cells on the subroutine stack are used to hold variables that are local to a
subroutine call. As the subroutine stack is pushed down with EXECUTE or CATCH instructions,
new variable storage is exposed. As the subroutine stack is popped up with EXIT or THROW
instructions, the set of local variables reverts to those applicable to the appropriate subroutine
level. In order to take best advantage of the cells on the subroutine stack that provide storage for
locals it may be arranged that each time the subroutine stack is pushed, these cells will be written
with a default value of zero.

The remaining available cells on the exception stack are used to hold variables that have scope
within a particular exception. Suitable candidates for variables to hold on the exception stack are
discussed in section 7.1. It should be arranged that each time the exception stack is pushed, these
cells will be written with a copy of the cells immediately above them on the exception stack. In
this way exception level variables will persist through subsequent CATCH statements unless they
are explicitly changed.

The ANSI FORTH standard requires that THROW (with a non-zero parameter) also restore the
parameter stack pointer to the value that it held at the time of the relevant CATCH statement.
To accommodate this behavior one cell on the exception stack should hold a copy of the parameter
stack pointer and automatically be updated at the time of a CATCH statement. Additional logic
should reset the parameter stack pointer to the value as held on the exception stack at the time
of a non-zero THROW. In this way CATCH and THROW can produce all of the required ANSI
FORTH functionality simply by operation of the additional stacks without the need for supporting
FORTH code. This is how the additional return stacks have been implemented on the N.I.G.E.
Machine.

6 Implementation on the N.I.G.E. Machine

A number of design enhancements have been made to the N.I.G.E. Machine since it was demon-
strated at EuroFORTH 2013. These are brie�y summarized here for context. Firstly the overall
design was ported from a Xilinx Spartan 3E FPGA on the Diligent Nexys 2 development board
to a Xilinx Artix 7 FPGA on a Digilent Nexys 4 development board. In the process of porting
the design the direct memory access (DMA) controller that mediates access to the o�-chip 16 M
byte pseudo-static dynamic RAM (PSDRAM) chip was completely re-written to conform to the
AXI-4 protocol, the system clock speed was increased from 50MHz to 100MHz, and the program
memory space was increased from 48K bytes to 128K bytes. (16M bytes of data memory is addi-
tionally available in PSDRAM). The native FAT �le system software was also upgraded to support
SD cards formatted with partition tables (as is common with higher capacity micro-SD cards).
Finally a new video mode was added with 1024*768 resolution. A revised user manual has been
produced that includes a quick start guide and documentation of the system features.

The subroutine and exception stacks described in section 4 and the further FORTH functionality
described in section 5 were successfully implemented on the Nexys 4 version of the N.I.G.E. Ma-
chine. Three new machine language instructions were created: CATCH, THROW and RESETSP.
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CATCH completes execution in 2 clock cycles (table 3). THROW completes execution in 3 cy-
cles for a non-zero parameter and in 1 cycle if the parameter is zero. RESETSP resets all of the
parameter stack pointer, the return stack pointer, the subroutine stack pointer and the exception
stack pointer to zero. It completes execution in 1 clock cycle. The intended use of RESETSP is
to return the machine to a known con�guration upon reset. Three machine language instructions
were removed from the instruction set, partly so that their opcodes could be reused in the three
new instructions and partly because their use would interfere with the proper operation of the ex-
tended return stack. The removed instructions were: RSP@, RSP!, PSP! which respectively read
and wrote the return stack pointer and wrote the parameter stack pointer. The original instruction
PSP@ remains in the instruction set and is used within the implementation of the FORTH word
PICK.

The subroutine and exception stacks were implemented as FPGA BLOCK RAM. The subroutine
stack is 17 cells wide (544 bits) and 512 cells deep. The �rst 32 bit cell is subdivided into a 9
bit cell that holds a copy of the return stack pointer and a 23 bit cell that holds the subroutine
return address. There are 16 cells available for the storage of subroutine local variables. 36 K
bytes of BLOCK RAM are allocated to the subroutine stack. The exception stack is 9.5 cells wide
(304 bits) and 512 cells deep. The �rst 32 bit cell is also subdivided into a 9 bit cell that holds
a copy of the subroutine stack pointer and a 23 bit cell that holds the exception return address.
There is next a 16 bit wide cell that holds a copy of the parameter stack pointer. There are 8
cells available for the storage of exception variables. (The value of 8 cells was chosen somewhat
arability with the expectation that it can easily be adjusted depending on future needs). 19 K
bytes of BLOCK RAM are allocated to the exceptions stack, so that the total BLOCK RAM used
for both additional stacks is 55 K bytes.

The N.I.G.E. Machine uses microcode to control the datapath. In this scheme the lowest 5 bits of
each machine language opcode are interpreted as an address and access a BLOCK RAM element.
The data value returned from the BLOCK RAM element at that address are the control lines used
to con�gure the multiplexers in the datapath . To accommodate the extended return stack the
number of control lines was extended from 14 to 21. For example, 3 bits are used to control the
subroutine stack pointer. Of the allowed 8 possible con�gurations available in 3 bits, 5 con�gu-
rations are used: no change, decrement, increment, reset to the copy value held on the exception
stack, reset to zero. The exception stack pointer and return stack pointer are similarly controlled
by microcode. An additional con�guration was added to the control of the parameter stack pointer:
reset to the copy held on the exception stack. This con�guration is used by THROW.
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Figure 9: System diagram of the extended return stack implementation on the N.I.G.E. Machine

In order to make the subroutine and exception stacks available within the system memory space
VDHLmodules were created that interface the system memory space address lines with the BLOCK
RAM elements holding the stacks. In each case the interface operated so that regardless of the
position of the subroutine and exception stack pointers, the top of stack values are found at
�xed memory locations. (The interface does not allow any other access from the system memory
space into the subroutine and exception stacks, except to the at top of the stack values). These
modules are also responsible for setting the newly exposed cells on the subroutine stack to zero
and for �copying down� the values on the exception stack when a PUSH occurs, as described in
the previous section.

Lastly, THROWwas con�gured so that it would also signal the CPU to cancel any current interrupt
condition. Thus if a non-zero THROW occurs within interrupt code the interrupt condition will
be canceled when �ow control is returned to the exception address. This is important since in the
N.I.G.E. Machine an interrupt condition blocks further interrupts from occurring.

Making CATCH and THROWmachine language instructions comes at the expense of implementing
the subroutine and exception stacks in hardware. With the Artix 7 FPGA (device XC7A100T),
the additional resources consumed are quite modest (table 2).
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Version of N.I.G.E. Machine BLOCK RAM FPGA fabric logic

With extended return stack 32% 8.7%

Without extended return stack 22% 7.0%

Table 2: Artix 7 FPGA resource consumption comparing versions of the N.I.G.E. Machine with
and without the extended return stack.

All of the required functionality was therefore achieved by adding BLOCK RAM elements to serve
as the additional stacks, by extending the microcode used to control the datapath, by adding
the required multiplexers to control the stacks within the datapath, and by making the top of
stack values on the subroutine and exception stacks available in the system memory space. There
was no need to resort to any unstructured �glue logic� to complete the design. Consequently the
timing performance of the N.I.G.E. Machine was not a�ected and the design can be comfortably
implemented at a clock speed of 100MHz.

The syntax for local variables implemented in the N.I.G.E. Machine system software follows VFX
FORTH [20] and is documented in more detail in the N.I.G.E. Machine user reference manual [4].
The compiler utilizes a recognizer to identify local variable names ahead of searching the main
dictionary, and is aware of the �xed memory addresses where local variables are stored on the
subroutine stack.

7 Discussion

This section will examine the advantages and limitations of the extended return stack as compared
with traditional approaches to subroutine and exception handling.

7.1 Flexibility

Using the exception stack to hold variables that have scope within a single CATCH statement
ensures that if a THROW occurs all of these variables are guaranteed to be restored to their values
prior to the CATCH. This restoration happens as an atomic operation inside a single machine
language instruction. The feature can be leveraged for considerable utility as is illustrated by the
following example. Anton Ertl has shown several models for a word hex. that prints a number in
hexadecimal without changing BASE [13]. A new model that can be adopted with the extended
return stack is as follows:

: hex.-helper

hex \ the variable BASE is located on the exception stack

u.

;

: hex.

['] hex.-helper catch throw \ no exception frame needed with extended

return stack. CATCH is as fast at EXECUTE

;

The word hex. calls hex.-helper using CATCH, thus pushing the exception stack. Within
hex.-helper the word hex stores the value of 16 to the variable BASE, which is located on the
exception stack. Regardless of how hex.-helper exits, either at the implicit EXIT statement or
due to a THROW during u., the exception stack will be popped at that time and the value of
BASE will be restored to the value that it held prior to the call to hex.-helper.

This model can be extended to a more general case with a word debug. that prints a number
to the RS232 port in hexadecimal without changing BASE or redirecting output. The point is
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that any variables that have scope within a single exception will be automatically restores to their
former values upon EXIT or THROW.

: debug.-helper

hex \ the variable BASE is located on the exception stack

>remote \ the character output vector is updated

u.

;

: debug.

['] debug.-helper catch throw

;

Anton Ertl has developed various models for region based memory allocation [18]. This system
could likely be used to support region based memory allocation if the critical references are held
on the exception stack. A complete model for region based memory allocation using the extended
return stack is a topic for further research.

An additional point of �exibility concerns local variables. FORTH implementations typically favor
VALUE �avored locals because these can be implemented using index o�set load/store instructions.
VARIABLE �avored locals may be less suitable for typical FORTH implementations because they
require a memory address to be explicitly calculated on each reference. By contrast, the extended
return stack makes it straightforward and e�cient to implement VARIABLE �avored locals because
the memory addresses of the local variables are �xed. The relocation of local variables onto the
subroutine stack also removes the possibility of interference with DO LOOP operations that may
occur when the return stack is used for local storage.

However the extended return stack approach to local variables has its constraints. Firstly the
number of local variables available is limited to the cells provided in hardware on the subroutine
stack. In the current implementation of the N.I.G.E. Machine there are 16 cells available for local
variables on the subroutine stack and 8 on the exception stack and this could be extended relatively
easily. Secondly, since most FORTH subroutines do not use local variables the approach of keeping
them on the subroutine stack may seem wasteful of memory resources. However this is more of a
trade-o� decision, since the prize obtained by adopting this approach is the ability to implement
CATCH and THROW as single machine language instructions. Depending on the chosen FPGA,
this trade-o� may not be a signi�cant concern (table 2).

In the N.I.G.E. Machine system software, the variable BASE, and vectors for redirecting keyboard
and screen input/output to the RS232 port are held on the exception stack.

7.2 Speed of code execution

Fast subroutine execution is important in FORTH because of the highly factored nature of FORTH
code. The speed of subroutine execution on the N.I.G.E. Machine is unchanged by the implemen-
tation of the extended return stack. Fast exception handling may also be important. Although
CATCH and THROW were not implemented on the N.I.G.E. Machine prior to the extended return
stack, considering the reference implementation of CATCH and THROW it is likely that executing
CATCH in 2 clock cycles and THROW in 3 clock cycles will be an order of magnitude faster than
implementing these constructs in software (table 3).
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Version of N.I.G.E. Machine EXECUTE EXIT CATCH THROW

With extended return stack 2 2 2 3

Without extended return stack 2 2 n/a n/a

Table 3: Speed of subroutine and exception execution measured in clock cycles the N.I.G.E. Ma-
chine with and without the extended return stack implemented. CATCH and THROW were not
implemented on the original N.I.G.E. Machine

Speed of local variable access is also important: arguably local variables are expected by program-
mers to be the fastest-to-access storage available. This will be the case if local variables are held in
CPU registers rather than system memory, as is likely to be the case with implementations of the C
programming language or with certain native FORTH implementations. However if local variables
are held in registers then there will be a time penalty on subroutine entry and exit due to the
need to save and restore the register set. Alternatively, holding local variables in system memory
dispenses with this penalty, but access to system memory will likely be signi�cantly slower than
access to registers. The extended return stack o�ers the best of both worlds. Speci�cally allocated
local variable storage on the subroutine stack means that there is no requirement to save or restore
a register set. At the same time access to local variables is directly mediated by FPGA fabric logic.
On the N.I.G.E. Machine all load/store operations to local variables complete execution in 2 clock
cycles (as is the case with access to the N.I.G.E. Machine's BLOCK RAM in general).

7.3 Robustness / fault tolerance

Four arguments are made why the extended return stack concept, implemented in hardware, o�ers
signi�cant bene�ts for robustness and fault tolerance for FORTH programmes:

The hardware based extended return stack provides an absolute guarantee that variables held
on the exception stack will be returned to their former (prior to CATCH) values upon EXIT or
THROW. This occurs as an atomic operation within a single machine language instruction. This
guarantee means that no further software problem solving is needed to ensure the safe handling
of these variables in the event of an exception. This is valuable in high integrity software both as
a feature in its own right and because, as Paul Bennett and Malcolm Bugler explain [12], once a
programming surface is certi�ed then it serves as a extensible platform for further applications.

A subroutine EXIT will execute correctly even if the subroutine has left spurious values on the top
of the return stack (for example by leaving a DO LOOP without UNLOOP). This was demonstrated
in section 4. Whilst it might raise a concern for the moral hazard of programmer complacency
in managing the return stack, in critical situations the avoidance of the serious error that would
have occurred otherwise may be a signi�cant bene�t. As Nick Nelson points out, a system that
struggles on despite programming errors is a valid strategy for avoiding failures [17].

Although the literature does not suggest that exception processing is currently a bottleneck for
FORTH programs[13], the extended return stack o�ers very fast exception processing in hardware
(i.e. as fast as an ordinary subroutine call and return). This assurance on performance may
encourage programmers to increase their use of CATCH and THROW, this improving software
integrity.

As a �nal point, since the exception stack does not rely on a global variable to anchor its execution,
the possibility that this variable could be corrupted, with catastrophic consequences for subsequent
exception �ow control, is avoided.

However on a practical level, and as also noted in section 3, before the N.I.G.E. Machine could be
used in any critical systems an extensive program of structured testing (or some other approach)
would be needed to certify the integrity of the N.I.G.E. Machine itself.
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8 Conclusion

The extended return stack starts with a conceptual scheme for additional stacks that is not depen-
dent on any particular hardware or FORTH implementation. The straightforward way in which
this structure is able to handle exception and subroutine processing, and the one-to-one correspon-
dence of the CATCH, THROW, EXECUTE, EXIT, >R, and R> FORTH primitives with PUSH
and POP operations on the exception, subroutine and return stacks suggests that the conceptual
stack scheme has a natural correspondence to the underlying logic structure of exceptions and
subroutines in FORTH. The additional tweaks to this conceptual scheme that are needed to fully
implement the requirements of ANSI FORTH are not extensive.

Implementation on the N.I.G.E. Machine was straightforward because the N.I.G.E. Machine's
softcore is microcode based. The additional functionality is obtained by extending the number of
control lines set by microcode and adding appropriate multiplexers to the datapath. The FPGA
resource requirements for the extended return stack are minimal on an Artix 7.

The availability of variables on the exception stack that are guaranteed to be restored to their
pre-CATCH value upon EXIT or THROW may be a genuine innovation. In addition, the im-
plementation of CATCH and THROW as single machine language instructions makes exception
processing very fast. Overall this paper has argued that the extended return stack o�ers signi�-
cantly enhanced �exibility, speed, and robustness of subroutine and exception handling in FORTH.

Further work is intended in three areas:

• preparing additional veri�cations that the additional return stack design works correctly for
subroutine and exception handling in all corner cases

• developing applications for variable storage on the exception stack, for example complement-
ing with Anton Ertl's models for region based memory allocation [18]

• seeking further ways in which the extended return stack could drive further improvements in
robustness and fault tolerance of FORTH software

The author sincerely wishes to thank the anonymous academic reviewers for their time and e�ort in
providing feedback. Their comments on content and calibration have been very helpful in clarifying
the author's thinking and improving the presentation of the paper.
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