
30th EuroForth Conference

September 26-28, 2014

Hotel Amic Horizonte
Palma de Mallorca

Spain

(Preprint Proceedings)

Preface

EuroForth is an annual conference on the Forth programming language, stack
machines, and related topics, and has been held since 1985. The 30th Euro-
Forth finds us in Palma de Mallorca for the first time. The two previous Eu-
roForths were held in in Oxford, England (2012) and in Hamburg, Germany
(2013). Information on earlier conferences can be found at the EuroForth
home page (http://www.euroforth.org/).

Since 1994, EuroForth has a refereed and a non-refereed track. This year
there was one submission to the refereed track, and one was accepted (100%
acceptance rate). For more meaningful statistics, I include the numbers
since 2006: 17 submissions, 10 accepts, 59% acceptance rate. The paper was
sent to three program committee members for review, and they all produced
reviews. The reviews of all papers are anonymous to the authors. I thank
the authors for their papers and the reviewers and program committee for
their service.

Several papers were submitted to the non-refereed track in time to be
included in the printed proceedings.

These online proceedings (http://www.euroforth.org/ef14/papers/)
also contain papers and presentations that were too late to be included in
the printed proceedings. Also, some of the papers included in the printed
proceedings were updated for these online proceedings.

Workshops and social events complement the program.
This year’s EuroForth is organized by Janet and Nick Nelson.

Anton Ertl

Program committee

M. Anton Ertl, TU Wien (chair)
Peter Knaggs
Phil Koopman, Carnegie Mellon University
Jaanus Pöial, Estonian Information Technology College, Tallinn
Bradford Rodriguez, T-Recursive Technology
Bill Stoddart
Reuben Thomas, Adsensus Ltd.

3

Contents

Refereed papers

Andrew Read: Concept and implementation of an extended return stack to
enhance subroutine and exception handling in FORTH 5

Non-refereed papers

Stephen Pelc: Compiling to Flash . 23
Stephen Pelc: VFX Forth for ARM Linux . 26
Paul E. Bennet: High Integrity Systems — CODE . 30
Bill Stoddart: HiTex — LATEX gets a helping hand from Forth 35
M. Anton Ertl: Region-Based Memory Allocation in Forth45

Late non-refereed papers

Klaus Schleisiek: Doing C-style structs on cell addressed uCore 50
Gerald Wodni: Forth — The Next Generation . 52

Presentations

Ulrich Hoffmann: Saturation Arithmetic . 54
Bernd Paysan: net2o: Command Language . 57
Paul Bennet: Forth in Education — Spreading the word 61
Anton Ertl: How to get rid of C . 63

4

Concept and implementation of an extended return stack to

enhance subroutine and exception handling in FORTH

Andrew Read

June 2014

andrew81244@outlook.com

Abstract

A conceptual generalization of the FORTH return stack is obtained by complementing it

with one or more additional stacks that are tightly synchronized in operation according to some

precise logical rules. With additional stacks speci�cally deployed to support subroutine and

exception handling, a model is obtained whereby CATCH and THROW can be implemented

as single machine language instructions and a number of other features emerge that enhance

the �exibility, speed, and robustness of subroutine and exception handling in FORTH. The

extended return stack model has been successfully implemented on the N.I.G.E. Machine.

1 Introduction

This paper discusses the concept and implementation of an extended return stack in FORTH. The
traditional stack data structure comprises an array of cells in memory with a movable stack pointer.
Push and pop operations are de�ned for placing data onto the stack or removing data from the
stack. Typical FORTH implementations utilize two stacks: the parameter stack (generally used
for program data) and the return stack (generally used for �ow control and holding a subroutine
return address). This paper describes a conceptual generalization to the return stack and its
implementation on the N.I.G.E. Machine.

The key conceptual idea is that additional stacks can be linked to return stack in a structured
arrangement. These additional stacks can be leveraged to support enhanced �exibility, speed, and
robustness of subroutine and exception handling in FORTH.

The N.I.G.E. Machine is a complete computer system implemented on an FPGA development
board [1]. It comprises a 32 bit softcore processor optimized for the FORTH language, a set of
peripheral hardware modules, and FORTH system software. The N.I.G.E. Machine was presented
at EuroFORTH in 2012 and 2013 [2, 3] and is available open source [4]. It follows in the footsteps
of a number of signi�cant FORTH processors [5, 6, 7, 8, 9, 10].

2 Review of prior work

Flexibility, speed and robustness are critical in all aspects of computer science. Much prior work
has been done to apply these topics to subroutine and exception handling in FORTH.

1

5

Klaus Schleisiek conducted some of the �rst research into error trapping in FORTH and noted that
�everything to do with a subroutine belongs on the return stack� [27, 28]. Klaus's comment inspired
the author's thinking on the topic and is the intellectual germ of this project. Brad Rodriguez was
also one of the pioneers of FORTH exception handling in the era before CATCH and THROW,
including applying stack frames to FORTH [29, 30]. The development of the standard words,
CATCH and THROW has been explained by Michael Milendorf who also provides a reference
implementation [16].

Many authors have discussed ways to enhance the reliability of FORTH software. The ideas
presented in this paper build o� several:

Jaanus Pöial studied stack e�ects at a conceptual level and developed an algebraic formalism for
validating FORTH code [21, 22].

Paul Bennett and Malcolm Bulger discussed the certi�cation of high integrity software and ex-
plained that in order to be able to fully certify an application, then it is �rst required to certify the
programming surface. They made the point that this would only need certifying once, and then
could be used as the platform for many products [12]. This is especially relevant if the programming
surface can be built into the base hardware.

Anton Ertl introduced a construct that guarantees that the cleanup code associated with resource
usage is always completed, and demonstrated a more e�cient implementation approach for cleanup
code than using a full exception frame [13].

Nick Nelson contrasted approaches in the search for reliability of a large and complex FORTH
system, including the idea of developing system which tries to struggle on despite programming
errors [17].

Bill Stoddart and Peter Knaggs have contributed signi�cantly to making FORTH robust [23, 24,
25, 26].

Considering the topic of subroutine local variables, Bailey, Sotudeh and Ould-Khaoua identi�ed
that local variable management and its e�cient support in hardware is a prime concern in devel-
oping e�cient stack based computation [11]. Anton Ertl stressed that the appropriate use of local
variables has the potential to signi�cantly unburden the data stack [14].

The use of a third stack for local variable storage is not new. Philip Koopman pointed out that
this idea has often been proposed, but he suggests a better solution to support local variables may
be a frame pointer into a software-managed program memory stack [19].

Lastly, regarding �exibility in subroutine handling, Glassanenko discussed programming techniques
using return stack manipulations such as the implementation of new control structures and back-
tracking [15].

3 Two linked stacks as a conceptual model of subroutine and

exception handling behavior

The motivation for starting with a conceptual scheme (rather than with a design speci�cation for
some desired output) was to �nd a straightforward logical model of the behaviors that occur in
subroutine and exception handling as an intellectual goal in itself. The approach taken to �nding
a suitable model was an iterative series of thought experiments and pen and paper investigations.
(The author accepts that this approach has the weakness of missing a formal proof. Therefore, as
with the N.I.G.E. Machine overall, structured and extensive testing is a prerequisite to use in any
critical system.)

This section presents the key features of the logical model that was found to represent subroutine
and exception handling (the extended return stack) at a purely conceptual level. The section

2

6

Figure 1: Illustration of basic conceptual scheme of the extended return stack. The current position
of the stack pointer is highlighted in gray.

following will explain exactly how this conceptual scheme has a direct relationship with subroutine
and exception handling in FORTH.

Consider a simple, traditional stack that has been extended by making available an additional
stack and creating certain logical connections between the two. In this paper the diagrammatic
convention will be that the original stack is shown on the right and the additional stack on the
left. The additional stack is structured as follows (�gure 1):

The additional stack is at least two cells wide. Each cell can be read independently. The data con-
tents of all cells change simultaneously when the stack pointer moves. The �rst cell (by convention
shown as the rightmost cell in this paper) of the additional stack holds a copy of the stack pointer
to the original stack. This stack pointer copy is read and written on certain events as described
below. The second cell of the additional stack is the conventional part of the stack; it is where
data that is PUSHed to the stack will be placed. The remaining cells of the additional stack are
mapped to registers at �xed locations in system memory. This is con�gured in such a way that
regardless of the position of the stack pointer, the top of stack values are always found at the same
physical addresses in system memory.

The rules for interaction between the original stack and the additional stack are as follows (illus-
trated in �gures 2, 3, 4, 5, 6):

1. Push and pop operations are separately available for each stack. (Looking ahead, it is the
mapping of these push and pop operations on separate stacks to an appropriate set of machine
language instructions that makes for e�cient support of subroutine and exception handling).

2. When the original stack is pushed then there is no impact on the additional stack.

3. When the original stack is popped then there is no impact on the additional stack unless the
value of the original stack pointer after the pop would be less than the copy value held on
the additional stack. In this case the additional stack is simultaneously also popped.

4. When the additional stack is pushed then two additional operations occur simultaneously:
�rstly the current value of the original stack's stack pointer is pushed to the �rst (rightmost)

3

7

Figure 2: Illustrating the rule that when the original stack is pushed then there is no impact on
the additional stack. The �before� state of the stacks is shown above and the �after� below.

cell on the additional stack and secondly the original stack is a pushed with the same value
as was pushed to the additional stack.

5. When the additional stack is popped then the original stack's stack pointer is reset to the
copy value held on the additional stack before the pop.

The conceptual scheme may be extended with multiple additional stacks as follows:

Each new additional stack is added on the �left�, so that it has the same relationship with the current
�leftmost� additional stack as the �rst additional stack has with the original stack according to the
rules above. When an additional stack is pushed, all of the stacks on its right are simultaneously
pushed with the same value. When an additional stack is popped, the reset of stack pointers �ows
to each stack on its right in a chain sequence until the reset of the stack pointer of the original
stack. When a stack is popped to such a position that it causes a pop of the additional stack on
its �left�, then it is not necessary to propagate that behavior further to the left.

4 High level application to the FORTH programming lan-

guage

To apply this conceptual model to the FORTH programming language the following arrangement
is made. The FORTH return stack is the �original stack� in the terminology of the previous section
and two additional stack are added (�gure 7). The �rst additional stack is termed the subroutine
stack and the second additional stack is termed the exception stack. PUSH and POP operations on
each of the three stacks are mapped to FORTH primitives as follows: >R and R> operate on the
return stack. EXECUTE and EXIT operate on the subroutine stack and CATCH and THROW
operate on the exception stack (table 1).

The �rst cell on the subroutine stack holds a copy of the return stack's stack pointer. The second
cell on the subroutine stack is reserved for storing the return address of a subroutine call. There
are at least an additional 16 cells on the subroutine stack that are memory-mapped to the system

4

8

Figure 3: Illustrating the rule that when the original stack is popped then there is no impact on
the additional stack provided that the value of the original stack pointer after the pop is not less
than the copy value held on the additional stack.

Figure 4: Illustrating the rule that when the original stack is popped then the additional stack is
also popped if the value of the original stack pointer after the pop is less than the copy value held
on the additional stack.

5

9

Figure 5: Illustrating the rule that when the additional stack is pushed then two additional op-
erations occur: �rstly the current value of the original stack's stack pointer is copied to the �rst
(rightmost) cell on the additional stack and secondly the original stack is also pushed with the
same value as was pushed to the additional stack.

Figure 6: Illustrating the rule that when the additional stack is popped then the original stack's
stack pointer is reset to the copy value held on the additional stack.

6

10

Figure 7: Application of the extended return stack model to FORTH with an exception, subroutine
and return stack. The additional memory-mapped cells on the subroutine and exception stacks
are shown narrower for clarity of the diagram only.

address space via registers in such a way that the top-of-stack values are always visible at �xed
addresses regardless of the position of the stack pointer. These cells are used to hold subroutine
local variables. Because of the way the subroutine stack operates with EXECUTE and EXIT, the
correct set of local variables will always be available at the relevant memory addresses. (The choice
of 16 cells for local variables is made to comply with the minimum ANSI FORTH requirement,
but in the case of the N.I.G.E. Machine su�cient FPGA BLOCK RAM is available to allow for
more cells if desired, table 2.)

The �rst cell on the exception stack holds a copy of the subroutine stack's stack pointer. The
second cell on the exception stack holds a copy of the exception return address. The exception
stack also has a number of additional cells that are memory-mapped to �xed addresses. Just as
with subroutine local variables on the subroutine stack, these memory mapped cells are used to
hold local variables that have scope within a single exception.

Instruction Exception stack Subroutine stack Return stack

PUSH CATCH EXECUTE >R

POP THROW EXIT R>

Table 1: Mapping of PUSH and POP operations on the exception stack, subroutine stack and
return stack to FORTH primitives

The operation of the extended return stack as concerns execution �ow control will be discussed in
relation to the following code example (reordered to match the �ow of the text). The stack e�ects
are also illustrated in �gure 8.

7

11

: mainloop

' innerloop CATCH

if .� Error code� . then

;

: innerloop

sub1

\ code omitted

;

: sub1

sub2

255 THROW

\ code omitted

;

: sub2

10 >R

;

Within the FORTH word mainloop the �rst action is to call the word innerloop by way of a
CATCH statement. CATCH is mapped to a PUSH instruction on the exception stack. The e�ect
of the CATCH is to increment the exception stack pointer. Because the exception stack is the
�leftmost� additional stack, a PUSH to this stack also increments the subroutine stack pointer
and the return stack pointer. The �rst cell of the exception stack is pushed with the value of the
subroutine stack pointer as it is before being incremented. The second cell of the exception stack
is pushed with the return address for this CATCH statement. Since a PUSH operation has also
been applied to the subroutine stack, the �rst cell of the subroutine stack is pushed with the value
of the return stack pointer as it is before being incremented. The second cell of the subroutine
stack is pushed with the return address for this CATCH statement. The return address for this
CATCH is also pushed onto the return stack. At this point control has been passed to the word
innerloop.

The �rst action of the word innerloop is to call the word sub1 with an implied EXECUTE
statement. EXECUTE is mapped to a PUSH instruction on the subroutine stack. The e�ect of
the EXECUTE is to increment the subroutine stack pointer and, since the subroutine stack is �left�
of the return stack, to also increment the return stack pointer. The �rst cell of the subroutine stack
is pushed with the value of the return stack pointer as it is before being incremented. The second
cell of the subroutine stack is pushed with the subroutine return address. The subroutine return
address is also placed onto the return stack. The exception stack is not a�ected by a subroutine
call, consistent with the conceptual scheme as outlined. At this point control has been passed
to the word sub1. The �rst action of the word sub1 is to call the word sub2. The mechanism
involved is the same again with the result that both the subroutine and return stack pointers are
incremented a second time.

The word sub2 places the value 10 on the return stack above the current return address before
calling the implied EXIT. In a typical FORTH implementation exiting a subroutine after placing
an arbitrary value on the top of the return stack could result in an unstable condition because
the arbitrary value could be taken as the subroutine return address. However in the extended
return stack arrangement as described here the EXIT statement is mapped to a POP instruction
on the subroutine stack. The e�ect of the POP on the subroutine stack is to return execution to
the return address as read from the subroutine stack (the second cell position), reset the return
stack's stack pointer to the value as read from the subroutine stack (the �rst cell position) and
then decrement the subroutine stack pointer. As a result EXIT will return the �ow of execution
to sub1 and the return stack pointer will return to the position that it was in when the subroutine
call to sub2 was originally made.

The following action is to call the word THROW with the value 255 on the top of the parameter

8

12

stack. THROW with a non-zero parameter is mapped to a POP operation on the exception stack.
The e�ect of THROW at this point is to return the �ow of control to the exception return address
that was copied on to the exception stack when the corresponding CATCH was called. In addition,
the subroutine stack is reset to the position that it was in when CATCH was called since the copy of
the subroutine stack pointer that was copied to the exception stack at that time is now written back
to the subroutine stack pointer. Following this, the return stack is also reset to the position that
it was in when CATCH was called as the copy of the return stack pointer on the reset subroutine
stack is written back to the return stack.

5 Additional FORTH requirements for subroutine and excep-

tion handling

The conceptual scheme for additional return stacks as described in the previous two sections pro-
vides almost all of the functionality that is needed to implement exception handling in FORTH.
However to implement fully all of the required ANSI FORTH functionality in CATCH and THROW,
some further mechanisms are required in addition to the additional stacks as described in the pre-
vious section.

Subroutine calls and exception handling could be operated by the additional stacks without any
need for the return address of a subroutine call to be placed on the top of return stack. This
is because as described, both the subroutine stack and the exception stack hold return addresses
for subroutine and exception calls. However for comparability with existing FORTH code a copy
of the subroutine return address should be placed on the return stack. There is a further point
here. FORTH subroutines may remove the subroutine return address from the top of the return
stack so that when an EXIT instruction is subsequently encountered, �ow control is returned to
the caller of the caller of that subroutine. This behavior, known as backtracking, may be used in
implementations of CREATE DOES> and in other applications [15]. Since the conceptual scheme
for the additional stacks already requires that if a stack is popped above the level of the copy
of its stack pointer held by the additional stack to its right, traditional FORTH code that takes
advantage of backtracking can run without alteration in the extended return stack scheme. (Note
that backtracking in this form is environmentally dependent.)

Another issue that needs to be dealt is that EXIT (including an implied exit at the end of a FORTH
word de�nition) needs to place a value of zero on the parameter stack if the subroutine was called
with CATCH, but does not place any value on the parameter stack if the subroutine was called with
EXECUTE (including an implied execute when a FORTH word is complied inside a de�nition).
The conceptual scheme as discussed in the previous sections maps EXIT to a POP operation on
the subroutine stack with �ow control passing to the return address held on the subroutine stack.
The di�culty is that subroutine stack doesn't �know� whether the current FORTH word was called
with EXECUTE or CATCH.

A solution is achieved by having the return address that is stored on the exception stack to be
one instruction ahead of the return address that is stored on the subroutine stack and arranging
that a CATCH machine language instruction will always be followed by a ZERO machine language
instruction (i.e. the instruction that places ZERO on the top of the parameter stack). As a result
EXIT will direct execution �ow, via the subroutine return address, to the ZERO instruction in a
subroutine that was called by CATCH. On the other hand THROW, when called with a non-zero
parameter, will direct execution �ow via the exception return address and to the next following
instruction and therefore skip the ZERO instruction. This is illustrated in the machine language
excerpt below:

9

13

Figure 8: Illustration of the e�ect of some FORTH code on the exception, subroutine and return
stacks. The current position of each stack pointer is show in grey. For clarity the memory-mapped
cells for local variable storage on the subroutine and exception stacks have been omitted from the
diagram.

10

14

PC address Instruction Comment

100 #.l <sub addr> ; load the subroutine address on stack

105 CATCH

106 ZERO ; 106 is the return address for EXIT

107 <next> ; 107 is the return address for THROW

Although the �rst two cells on the subroutine and control stack are used for control purposes, both
of the stacks are multiple cells wide and the remaining cells are intended to be used for variable
storage. As previously mentioned, the conceptual scheme and its implementation is such that the
contents of the cells at the top of the subroutine and exception stacks are always available at �xed
memory locations regardless of the value of the return stack pointer.

The remaining available cells on the subroutine stack are used to hold variables that are local to a
subroutine call. As the subroutine stack is pushed down with EXECUTE or CATCH instructions,
new variable storage is exposed. As the subroutine stack is popped up with EXIT or THROW
instructions, the set of local variables reverts to those applicable to the appropriate subroutine
level. In order to take best advantage of the cells on the subroutine stack that provide storage for
locals it may be arranged that each time the subroutine stack is pushed, these cells will be written
with a default value of zero.

The remaining available cells on the exception stack are used to hold variables that have scope
within a particular exception. Suitable candidates for variables to hold on the exception stack are
discussed in section 7.1. It should be arranged that each time the exception stack is pushed, these
cells will be written with a copy of the cells immediately above them on the exception stack. In
this way exception level variables will persist through subsequent CATCH statements unless they
are explicitly changed.

The ANSI FORTH standard requires that THROW (with a non-zero parameter) also restore the
parameter stack pointer to the value that it held at the time of the relevant CATCH statement.
To accommodate this behavior one cell on the exception stack should hold a copy of the parameter
stack pointer and automatically be updated at the time of a CATCH statement. Additional logic
should reset the parameter stack pointer to the value as held on the exception stack at the time
of a non-zero THROW. In this way CATCH and THROW can produce all of the required ANSI
FORTH functionality simply by operation of the additional stacks without the need for supporting
FORTH code. This is how the additional return stacks have been implemented on the N.I.G.E.
Machine.

6 Implementation on the N.I.G.E. Machine

A number of design enhancements have been made to the N.I.G.E. Machine since it was demon-
strated at EuroFORTH 2013. These are brie�y summarized here for context. Firstly the overall
design was ported from a Xilinx Spartan 3E FPGA on the Diligent Nexys 2 development board
to a Xilinx Artix 7 FPGA on a Digilent Nexys 4 development board. In the process of porting
the design the direct memory access (DMA) controller that mediates access to the o�-chip 16 M
byte pseudo-static dynamic RAM (PSDRAM) chip was completely re-written to conform to the
AXI-4 protocol, the system clock speed was increased from 50MHz to 100MHz, and the program
memory space was increased from 48K bytes to 128K bytes. (16M bytes of data memory is addi-
tionally available in PSDRAM). The native FAT �le system software was also upgraded to support
SD cards formatted with partition tables (as is common with higher capacity micro-SD cards).
Finally a new video mode was added with 1024*768 resolution. A revised user manual has been
produced that includes a quick start guide and documentation of the system features.

The subroutine and exception stacks described in section 4 and the further FORTH functionality
described in section 5 were successfully implemented on the Nexys 4 version of the N.I.G.E. Ma-
chine. Three new machine language instructions were created: CATCH, THROW and RESETSP.

11

15

CATCH completes execution in 2 clock cycles (table 3). THROW completes execution in 3 cy-
cles for a non-zero parameter and in 1 cycle if the parameter is zero. RESETSP resets all of the
parameter stack pointer, the return stack pointer, the subroutine stack pointer and the exception
stack pointer to zero. It completes execution in 1 clock cycle. The intended use of RESETSP is
to return the machine to a known con�guration upon reset. Three machine language instructions
were removed from the instruction set, partly so that their opcodes could be reused in the three
new instructions and partly because their use would interfere with the proper operation of the ex-
tended return stack. The removed instructions were: RSP@, RSP!, PSP! which respectively read
and wrote the return stack pointer and wrote the parameter stack pointer. The original instruction
PSP@ remains in the instruction set and is used within the implementation of the FORTH word
PICK.

The subroutine and exception stacks were implemented as FPGA BLOCK RAM. The subroutine
stack is 17 cells wide (544 bits) and 512 cells deep. The �rst 32 bit cell is subdivided into a 9
bit cell that holds a copy of the return stack pointer and a 23 bit cell that holds the subroutine
return address. There are 16 cells available for the storage of subroutine local variables. 36 K
bytes of BLOCK RAM are allocated to the subroutine stack. The exception stack is 9.5 cells wide
(304 bits) and 512 cells deep. The �rst 32 bit cell is also subdivided into a 9 bit cell that holds
a copy of the subroutine stack pointer and a 23 bit cell that holds the exception return address.
There is next a 16 bit wide cell that holds a copy of the parameter stack pointer. There are 8
cells available for the storage of exception variables. (The value of 8 cells was chosen somewhat
arability with the expectation that it can easily be adjusted depending on future needs). 19 K
bytes of BLOCK RAM are allocated to the exceptions stack, so that the total BLOCK RAM used
for both additional stacks is 55 K bytes.

The N.I.G.E. Machine uses microcode to control the datapath. In this scheme the lowest 5 bits of
each machine language opcode are interpreted as an address and access a BLOCK RAM element.
The data value returned from the BLOCK RAM element at that address are the control lines used
to con�gure the multiplexers in the datapath . To accommodate the extended return stack the
number of control lines was extended from 14 to 21. For example, 3 bits are used to control the
subroutine stack pointer. Of the allowed 8 possible con�gurations available in 3 bits, 5 con�gu-
rations are used: no change, decrement, increment, reset to the copy value held on the exception
stack, reset to zero. The exception stack pointer and return stack pointer are similarly controlled
by microcode. An additional con�guration was added to the control of the parameter stack pointer:
reset to the copy held on the exception stack. This con�guration is used by THROW.

12

16

Figure 9: System diagram of the extended return stack implementation on the N.I.G.E. Machine

In order to make the subroutine and exception stacks available within the system memory space
VDHL modules were created that interface the system memory space address lines with the BLOCK
RAM elements holding the stacks. In each case the interface operated so that regardless of the
position of the subroutine and exception stack pointers, the top of stack values are found at
�xed memory locations. (The interface does not allow any other access from the system memory
space into the subroutine and exception stacks, except to the at top of the stack values). These
modules are also responsible for setting the newly exposed cells on the subroutine stack to zero
and for �copying down� the values on the exception stack when a PUSH occurs, as described in
the previous section.

Lastly, THROW was con�gured so that it would also signal the CPU to cancel any current interrupt
condition. Thus if a non-zero THROW occurs within interrupt code the interrupt condition will
be canceled when �ow control is returned to the exception address. This is important since in the
N.I.G.E. Machine an interrupt condition blocks further interrupts from occurring.

Making CATCH and THROWmachine language instructions comes at the expense of implementing
the subroutine and exception stacks in hardware. With the Artix 7 FPGA (device XC7A100T),
the additional resources consumed are quite modest (table 2).

13

17

Version of N.I.G.E. Machine BLOCK RAM FPGA fabric logic

With extended return stack 32% 8.7%

Without extended return stack 22% 7.0%

Table 2: Artix 7 FPGA resource consumption comparing versions of the N.I.G.E. Machine with
and without the extended return stack.

All of the required functionality was therefore achieved by adding BLOCK RAM elements to serve
as the additional stacks, by extending the microcode used to control the datapath, by adding
the required multiplexers to control the stacks within the datapath, and by making the top of
stack values on the subroutine and exception stacks available in the system memory space. There
was no need to resort to any unstructured �glue logic� to complete the design. Consequently the
timing performance of the N.I.G.E. Machine was not a�ected and the design can be comfortably
implemented at a clock speed of 100MHz.

The syntax for local variables implemented in the N.I.G.E. Machine system software follows VFX
FORTH [20] and is documented in more detail in the N.I.G.E. Machine user reference manual [4].
The compiler utilizes a recognizer to identify local variable names ahead of searching the main
dictionary, and is aware of the �xed memory addresses where local variables are stored on the
subroutine stack.

7 Discussion

This section will examine the advantages and limitations of the extended return stack as compared
with traditional approaches to subroutine and exception handling.

7.1 Flexibility

Using the exception stack to hold variables that have scope within a single CATCH statement
ensures that if a THROW occurs all of these variables are guaranteed to be restored to their values
prior to the CATCH. This restoration happens as an atomic operation inside a single machine
language instruction. The feature can be leveraged for considerable utility as is illustrated by the
following example. Anton Ertl has shown several models for a word hex. that prints a number in
hexadecimal without changing BASE [13]. A new model that can be adopted with the extended
return stack is as follows:

: hex.-helper

hex \ the variable BASE is located on the exception stack

u.

;

: hex.

['] hex.-helper catch throw \ no exception frame needed with extended

return stack. CATCH is as fast at EXECUTE

;

The word hex. calls hex.-helper using CATCH, thus pushing the exception stack. Within
hex.-helper the word hex stores the value of 16 to the variable BASE, which is located on the
exception stack. Regardless of how hex.-helper exits, either at the implicit EXIT statement or
due to a THROW during u., the exception stack will be popped at that time and the value of
BASE will be restored to the value that it held prior to the call to hex.-helper.

This model can be extended to a more general case with a word debug. that prints a number
to the RS232 port in hexadecimal without changing BASE or redirecting output. The point is

14

18

that any variables that have scope within a single exception will be automatically restores to their
former values upon EXIT or THROW.

: debug.-helper

hex \ the variable BASE is located on the exception stack

>remote \ the character output vector is updated

u.

;

: debug.

['] debug.-helper catch throw

;

Anton Ertl has developed various models for region based memory allocation [18]. This system
could likely be used to support region based memory allocation if the critical references are held
on the exception stack. A complete model for region based memory allocation using the extended
return stack is a topic for further research.

An additional point of �exibility concerns local variables. FORTH implementations typically favor
VALUE �avored locals because these can be implemented using index o�set load/store instructions.
VARIABLE �avored locals may be less suitable for typical FORTH implementations because they
require a memory address to be explicitly calculated on each reference. By contrast, the extended
return stack makes it straightforward and e�cient to implement VARIABLE �avored locals because
the memory addresses of the local variables are �xed. The relocation of local variables onto the
subroutine stack also removes the possibility of interference with DO LOOP operations that may
occur when the return stack is used for local storage.

However the extended return stack approach to local variables has its constraints. Firstly the
number of local variables available is limited to the cells provided in hardware on the subroutine
stack. In the current implementation of the N.I.G.E. Machine there are 16 cells available for local
variables on the subroutine stack and 8 on the exception stack and this could be extended relatively
easily. Secondly, since most FORTH subroutines do not use local variables the approach of keeping
them on the subroutine stack may seem wasteful of memory resources. However this is more of a
trade-o� decision, since the prize obtained by adopting this approach is the ability to implement
CATCH and THROW as single machine language instructions. Depending on the chosen FPGA,
this trade-o� may not be a signi�cant concern (table 2).

In the N.I.G.E. Machine system software, the variable BASE, and vectors for redirecting keyboard
and screen input/output to the RS232 port are held on the exception stack.

7.2 Speed of code execution

Fast subroutine execution is important in FORTH because of the highly factored nature of FORTH
code. The speed of subroutine execution on the N.I.G.E. Machine is unchanged by the implemen-
tation of the extended return stack. Fast exception handling may also be important. Although
CATCH and THROW were not implemented on the N.I.G.E. Machine prior to the extended return
stack, considering the reference implementation of CATCH and THROW it is likely that executing
CATCH in 2 clock cycles and THROW in 3 clock cycles will be an order of magnitude faster than
implementing these constructs in software (table 3).

15

19

Version of N.I.G.E. Machine EXECUTE EXIT CATCH THROW

With extended return stack 2 2 2 3

Without extended return stack 2 2 n/a n/a

Table 3: Speed of subroutine and exception execution measured in clock cycles the N.I.G.E. Ma-
chine with and without the extended return stack implemented. CATCH and THROW were not
implemented on the original N.I.G.E. Machine

Speed of local variable access is also important: arguably local variables are expected by program-
mers to be the fastest-to-access storage available. This will be the case if local variables are held in
CPU registers rather than system memory, as is likely to be the case with implementations of the C
programming language or with certain native FORTH implementations. However if local variables
are held in registers then there will be a time penalty on subroutine entry and exit due to the
need to save and restore the register set. Alternatively, holding local variables in system memory
dispenses with this penalty, but access to system memory will likely be signi�cantly slower than
access to registers. The extended return stack o�ers the best of both worlds. Speci�cally allocated
local variable storage on the subroutine stack means that there is no requirement to save or restore
a register set. At the same time access to local variables is directly mediated by FPGA fabric logic.
On the N.I.G.E. Machine all load/store operations to local variables complete execution in 2 clock
cycles (as is the case with access to the N.I.G.E. Machine's BLOCK RAM in general).

7.3 Robustness / fault tolerance

Four arguments are made why the extended return stack concept, implemented in hardware, o�ers
signi�cant bene�ts for robustness and fault tolerance for FORTH programmes:

The hardware based extended return stack provides an absolute guarantee that variables held
on the exception stack will be returned to their former (prior to CATCH) values upon EXIT or
THROW. This occurs as an atomic operation within a single machine language instruction. This
guarantee means that no further software problem solving is needed to ensure the safe handling
of these variables in the event of an exception. This is valuable in high integrity software both as
a feature in its own right and because, as Paul Bennett and Malcolm Bugler explain [12], once a
programming surface is certi�ed then it serves as a extensible platform for further applications.

A subroutine EXIT will execute correctly even if the subroutine has left spurious values on the top
of the return stack (for example by leaving a DO LOOP without UNLOOP). This was demonstrated
in section 4. Whilst it might raise a concern for the moral hazard of programmer complacency
in managing the return stack, in critical situations the avoidance of the serious error that would
have occurred otherwise may be a signi�cant bene�t. As Nick Nelson points out, a system that
struggles on despite programming errors is a valid strategy for avoiding failures [17].

Although the literature does not suggest that exception processing is currently a bottleneck for
FORTH programs[13], the extended return stack o�ers very fast exception processing in hardware
(i.e. as fast as an ordinary subroutine call and return). This assurance on performance may
encourage programmers to increase their use of CATCH and THROW, this improving software
integrity.

As a �nal point, since the exception stack does not rely on a global variable to anchor its execution,
the possibility that this variable could be corrupted, with catastrophic consequences for subsequent
exception �ow control, is avoided.

However on a practical level, and as also noted in section 3, before the N.I.G.E. Machine could be
used in any critical systems an extensive program of structured testing (or some other approach)
would be needed to certify the integrity of the N.I.G.E. Machine itself.

16

20

8 Conclusion

The extended return stack starts with a conceptual scheme for additional stacks that is not depen-
dent on any particular hardware or FORTH implementation. The straightforward way in which
this structure is able to handle exception and subroutine processing, and the one-to-one correspon-
dence of the CATCH, THROW, EXECUTE, EXIT, >R, and R> FORTH primitives with PUSH
and POP operations on the exception, subroutine and return stacks suggests that the conceptual
stack scheme has a natural correspondence to the underlying logic structure of exceptions and
subroutines in FORTH. The additional tweaks to this conceptual scheme that are needed to fully
implement the requirements of ANSI FORTH are not extensive.

Implementation on the N.I.G.E. Machine was straightforward because the N.I.G.E. Machine's
softcore is microcode based. The additional functionality is obtained by extending the number of
control lines set by microcode and adding appropriate multiplexers to the datapath. The FPGA
resource requirements for the extended return stack are minimal on an Artix 7.

The availability of variables on the exception stack that are guaranteed to be restored to their
pre-CATCH value upon EXIT or THROW may be a genuine innovation. In addition, the im-
plementation of CATCH and THROW as single machine language instructions makes exception
processing very fast. Overall this paper has argued that the extended return stack o�ers signi�-
cantly enhanced �exibility, speed, and robustness of subroutine and exception handling in FORTH.

Further work is intended in three areas:

• preparing additional veri�cations that the additional return stack design works correctly for
subroutine and exception handling in all corner cases

• developing applications for variable storage on the exception stack, for example complement-
ing with Anton Ertl's models for region based memory allocation [18]

• seeking further ways in which the extended return stack could drive further improvements in
robustness and fault tolerance of FORTH software

The author sincerely wishes to thank the anonymous academic reviewers for their time and e�ort in
providing feedback. Their comments on content and calibration have been very helpful in clarifying
the author's thinking and improving the presentation of the paper.

References

[1] The author, video demonstrations https://www.youtube.com/channel/UCz_LqPfKT0r2rEID7Av-
Chw

[2] The author, �The N.I.G.E. Machine: an FPGA based micro-computer system for prototyping
experimental scienti�c hardware�, in EuroFORTH, 2012

[3] The author, �Optimizing memory access design for a 32 bit FORTH processor�, in Euro-

FORTH, 2013

[4] The author, Github open source repository https://github.com/Anding/N.I.G.E.-Machine

[5] James Bowman , �J1: a small Forth CPU Core for FPGAs� in EuroFORTH, 2010

[6] K. Schleisiek, �MicroCore,� in EuroFORTH, 2001.

[7] B. Paysan, �b16-small � Less is More,� in EuroFORTH, 2004.

17

21

[8] E. Hjrtland and L. Chen, �EP32 - a 32-bit Forth Microprocessor,� in Canadian Conference on
Electrical and Computer Engineering, pp. 518�521, 2007.

[9] E. Jennings, �The Novix NC4000 Project,� Computer Language, vol. 2, no. 10, pp. 37�46,
1985.

[10] Rible, John, "QS2: RISCing it all," Proceedings of the 1991 FORML Conference, Forth
Interest Group, Oakland, CA (1991), pp. 156-159.

[11] C. Bailey, R. Sotudeh, and M. Ould-Khaoua, �The E�ects Of Local Variable Optimisation In
A C-Based Stack Processor Environment.�, in EuroFORTH, 1994

[12] Paul E. Bennett, Malcolm Bugler, �Certi�cation of High Integrity Software�, in EuroFORTH,
1998

[13] M. Anton Ertl, �Cleaning up after yourself�, in EuroFORTH, 2008

[14] M. Anton Ertl, �Ways to Reduce the Stack Depth�, in EuroFORTH, 2011

[15] M.L.Gassanenko, �Open Interpreter: Portability of Return Stack Manipulations�, in Euro-

FORTH, 1998

[16] Michael Milendorf, �CATCH and THROW�, in EuroFORTH, 1998

[17] N.J. Nelson, �Crash Never�, in EuroFORTH, 2011

[18] M. Anton. Ertl, �Region-based Memory Allocation�, in EuroFORTH, 2013

[19] P. J. Koopman, Jr., �Stack computers: the new wave�, Halsted Press, 1989

[20] Stephen Pelc, �VFX FORTH for Windows�, MPE, 2011

[21] Jaanus Pöial, �The algebraic speci�cations of stack e�ects for Forth programs�, FORML, 1990

[22] Jaanus Pöial, �Multiple stack e�ects of Forth programs�, EuroFORML, 1991

[23] Bill Stoddart and Peter Knaggs, �The Cell Type�, Proc. 1991 Rochester Forth Conf.

[24] Bill Stoddart and Peter Knaggs, �Formal Forth�, Proc. 1991 Rochester Forth Conf.

[25] Bill Stoddart and Peter Knaggs, �The Event Calculus: Formal Speci�cation of Real Time
Systems by means of Diagrams and Z Schemas�, 5th International Conference on putting
into practice method and tools for information system design, 1992, Institute Universitaire de
Technologies, Nantes, France

[26] Bill Stoddart and Peter Knaggs, �Type inference in Stack Based Languages�, Formal Aspects
of Computing 5(4):289-98, Springer International

[27] Klaus Schleisiek, "ERROR TRAPPING: a Mechanism for Resuming Execution at a Higher
Level.", 1983 FORML Conference Proceedings, pp. 151-154, San Jose, CA: FORTH Interest
Group, 1984

[28] Klaus Schleisiek, "Error Trapping and Local Variables", 1984 FORML Conference Proceed-
ings, CA: FORTH Interest Group, 1985

[29] Brad Rodriguez, "A Forth Exception Handler", SIGForth Newsletter Vol. 1 No. 2 (Summer
1989)

[30] Brad Rodriguez, "Stack Frames in Forth", SIGForth Newsletter Vol. 1 No. 4 (Winter 1989)

18

22

23

24

25

26

27

28

29

30

31

32

33

34

HiTex

LATEX gets a helping hand from Forth

Bill Stoddart

September 17, 2014

Abstract

HiTeX is a simple LaTeX pre-processor that works through token

replacement. It provides improved readability of mathematical text

in a source document by allowing free use of Unicode characters and

eliminating any need for speci�c spacing and new line commands. Hi-

TeX gains considerable power from the ability to incorporate sections

of Forth text within a document. Output generated by Forth can be

directed to the output �le, or can be used to de�ne place-holders which,

when used within maths mode in a HiTeX document, will be replaced

by the result of the corresponding computation.

Keywords: LaTeX, Unicode, Computable Document, RVM-Forth

1 Introduction

LaTeX is a versatile type setting system that gives excellent results on both
mathematical and normal text. However, the mathematical markup is not
always easy to read as mathematics. The advent of Unicode should have
improved this, allowing us to write, for example,

√
α instead of the standard

latex markup \sqrt\alpha. However, Unicode and its utf8 encoding have
only partially been adopted by the LaTeX community, with the promising
ucs package left unmaintained and un�nished. The projects XeLaTex and
LauTeX are complete reworkings of TeX and Latex which are based from the
outset on Unicode utf8 input. Our research group produced some papers in
XeLaTex, but it was not a happy experience. One problem is that journal

1

35

editors and submission portals may not accept documents written with these
tools. We also had a problem with Greek characters, due to the fact that a
font suitable for publishing an article written in Demotic Greek will not be
suitable for providing the Greek letters used in mathematics. Also, we felt
that the availability of Unicode should make the markup language su�ciently
compact that it would be possible to revise the LaTeX practice of ignoring
white space and requiring speci�c markups for additional space and new
lines. We wanted a markup language where spaces and newlines would, by
default, be taken into account in the �nal markup.

It also seemed to us to us that, rather than completely rewrite TeX and
LaTeX, which are absolutely brilliant as they are, it would be better to write
a simple pre-processor to translate a Unicode mathematical language into
classical LaTeX. The result is HiTex. The last page of this document gives
an example of HiteX markup and the resulting output.

HiTex is a hybrid of Forth and Latex which has its own variant of the LaTeX
mathematical markup language. A HiTeX document contains 3 types of text.
Initially, it is in pass-through mode, in which text is just streamed from the
input �le to the output �le. All the HiTeX interpreter is doing at this time
is checking for tokens that will take it either into a mathematical mode or
into Forth.

Within a mathematical mode, HiTeX performs token replacements, recognis-
ing tokens in the HiTeX source, and replacing them by a corresponding token
in the LaTeX output �le. A token can be any sequence of characters. Some of
the tokens are Unicode characters, such as ∀, ∃, dot etc, which are replaced
by their corresponding LaTeX markups, \forall, \exists, \bullet. How-
ever, a token can also be something like a new line character, a space, or a
sequence of spaces. Where one token is the pre�x of another (for example
a token consisting of two spaces would be a pre�x of a token consisting of
three spaces) the longer token is matched �rst. This ensures a correct match
for all tokens.

HiTeX is implemented in RVM-Forth and uses Frank Zeyda'a set package,
(see EuroForth 2002 proceedings), which supports arbitrary �nite homoge-
neous sets. We use ascii zero format strings.

The corresponding pairs of tokens used by HiTeX are held in the set LaTeX-MARKUP.
Here is the beginning of its de�nition:

STRING STRING PAIR { " ∀" \forall" 7→ ,

" ∃" " \exist " 7→ , ...

2

36

Text before the opening brace gives the type information required to con-
struct the set. The set consists of pairs of strings. The maplet operator
7→ combines two strings on the stack into an ordered pair of strings. The
following comma compiles this element into the set. The set construction is
terminated by a closing brace, at which point the set (i.e. a pointer to the
data structure which represents the set) is left on the stack

Within a Forth section a user can add new markups using set union ∪ or
remove markups using domain subtraction <<|.

2 Including computation results in a document,

an integer maths example

A interesting case is where the token to be inserted in a document is produced
by a Forth computation. To de�ne a token that captures an integer result,
we can use the de�ning word n†. Here is an example of its use.

1234 n† s

This de�nes a new dictionary entry s which, when executed, gives the address
of an asciiz string containing the text �1234�. We adopt a naming convention
that strings generated in this way that will subsequently be used as tokens
will be given a name that begins with †. Words that create such tokens have
names that end in †.
We look at a simple example where we add the values of two constants and
display the original values and their sum in a document.

2.1 Source code of the supporting Forth section

In the following Forth section the de�nitions †α, †β and †α+β will return
asciiz strings containing the text �10�, �20� and �30� respectively. Let us
suppose that these are the numeric strings that are to be placed in the La-
TeX output in response to seeing †α, †β or †α+β respectively in the HiTeX
source document. The tokens are paired up in a set, which is combined
with LaTeX-MARKUP using set union. The updates are disseminated to the
requisite HiTeX data structures with the CONFIG command.

3

37

Here is how these tokens can be used in a HiTeX math environment, along
with the result.

HiTex markup Final output

α = 10, β = 20, α + β = 30

3 A �oating point example

Floating point results are captured in a similar way, but using the de�ning
word f† to de�ne the output tokens. After the �rst line of Forth code the
de�nition †√2 returns the address of an asciiz string representing

√
2 to 6

decimal places (our default output precision).

3.1 The supporting Forth section

And here is an example of HiTeX markup and the resulting �nal output.

HiTex markup Final output
√

2 = 1.41421
√

3/2 = 1.22474x

4

38

4 Con�guraton tasks

A Forth section can be used for general con�guration tasks, both of the
HiTeX application and of the underlying Forth system.

In the example above, French �guillemets �were used as HiTex scope delim-
iters. These are preferred to the standard tex/latex delimiters { and }, as we
use the latter as set brackets, and consider them to be essential mathematical
symbols.

HiTeX holds its scope delimiters in the VALUEs {SCOPE and SCOPE} .

The following Forth section shows how we change these delimiters to Unicode
bold brackets.

We also change the precision of the �oating point output, recalculate the
string produced by printing

√

3/2, update our markups, and recon�gure.

4.1 The supporting Forth section

Now our markup for
√

3/2 and the corresponding output are as follows

HiTex markup Final output

√

3/2 = 1.2247449

5

39

5 Implementation note 1

The de�ning words n† and f† have a lot in common, and both are de�ned in
terms of a more primitive word P2† as follows:

P2† takes an execution token fromthe stack, plus whatever extra parameters
are required for the token's execution. It CREATEs a new dictionary entry and
vectors EMIT to compile its output into the dictionary. It executes xt, and
restores EMIT

6 A more general example

.

We provide for an arbitrary section of Forth source code to produce output,
which we assume will be in the HiTeX markup format, rather than in Latex.
This output must therefore be processed by the HiTeX maths pre-processor
before being inserted in the LaTeX document. This is done with the pair of
words [: ... :]. For example, suppose A .SET gives the output {1,2,3}
This is not suitable to be immediately passed into the output document,
since LaTeX will not see the braces as set delimiters, but as scope delimiters,
and they will not appear on the �nal output. The phrase [: A .SET :] †A
creates the Forth word †A which returns the address of the string obtained by
passing the text output by the Forth between [: and :] through the HiTeX
math pre-processor. Thus this de�nes †A as the string " \{1,2,3\}", which
is the correct LaTeX markup for the value of set A.

6

40

6.1 The supporting Forth section

HiTeX markup Final output

A = {1, 2, 3}
B = {2, 3, 4}
A ∪ B = {1, 2, 3, 4}
A ∩ B = {2, 3}
A \ B = {1}

7 Implementation note 2

HiTeX reads a source �le into an input bu�er, and places its LaTeX output
in an output bu�er. An asciiz string computed within a Forth section, and
whose address is on the top of the stack, can be sent directly to the output
bu�er with the phrase:

DUP AZLENGTH TO-OUTBUFF

The outermost HiTeX interpreter passes text from the input bu�er to the
output bu�er until it encounters a token that causes it to enter either Math
mode, or Forth. The mathmode interpreter checks at each point in the
input bu�er whether the following characters match one its tokens. These
tokens are those from the domain of LaTeX-MARKUP plus other tokens that
require special action. If the token is from the domain of LaTeX-MARKUP the

7

41

corresponding token from the range of LaTeX-MARKUP is added to the output
bu�er. Other tokens are special cases which require additional action. For
example, a new line character in the input bu�ere requires a line count to be
incremented, and the new line itself plus the LaTeX markup for a newline
must be passed to the output bu�er.

The input and output bu�ers are managed by a collection of VALUEs holding
bu�er start addresses, pointers to the current position in each bu�er, etc.
When text generated within a Forth section is to be processed by the HiTeX
maths pre-processor, e.g. when using a [: . :]. structure, these bu�er
management values are saved, and the pointers etc are set to work from
temporary bu�ers. After the text is processed, the resulting LaTeX markup
is compiled into the dictionary and the temporary bu�ers are free for future
use.

We return to the point of distinguishing between tokens such as †A and †A+B.
The �rst of these tokens matches the start of the second, i.e. the �rst token
is a pre�x of the second. How do we ensure that †A+B won't be mistaken for
†A?
We do this by searching for tokens in the same order as they occur in a
sequence. We place our tokens in a sequence in such a way that any token
that has pre�xes that are also tokens will occur before its pre�xes in the
sequence. Reverse lexical order will achieve this.

The properties of our set implementation and the reversible features of RVM-
Forth make this simple to implement. Every set is held as an ordered set, and
the CHOICE operator selects the maximal element of each set, or if invoked
after backtracking will select the maximal element not yet chosen.

For strings the ordering is lexical. Thus �†A� comes before �†A+B�
We can create a sequence in which tokens in the domain of LaTeX-MARKUP
occur in reverse lexical order using the following code:

LaTeX-MARKUP DOM SET2SEQ

Where the de�nition of SET2SEQ is:

: SET2SEQ (x:P(X) -- y:seq(X), ran(y)=x) (: set :)

set [<RUN set CHOICE RUN>] ;

In this code the square brackets enclose a sequence construction. (They are
not the Forth Standard square brackets). The set before the open square

8

42

bracket provides type information. The code bracketed by <RUN ... RUN>

chooses an element of set and compiles it as the next element sequence.
Execution then reverses back to CHOICE, which makes a di�erent choice if
one is available, and this is then added to the sequence. This is repeated
until no further choices are available, at which point execution continues
beyond] The result is a sequence of strings held in reverse lexical order.
This code is based on the premise that our sets are ordered; we know how
but we can't control how. But the order of elements in a sequence is entirely
under programmer control.

8 Conclusions and Future Work

HiTeX has been very valuable to us for writing dense mathematical docu-
ments. Its main limitation is that it does not support a verbatim mode which
accepts Unicode - that's why we have used screen shots for the most of the
Forth source code and HiTeX markup examples in this document.

9

43

Appendices

A HiTeX markup example

{ ρ | ρ ∈ E ∧
∀ x

′.(x ′ ∈ choice(JsKν(ρ)) ⇒
{ ρ′ | ρ′ ∈ {ρ ⊕ L x ; {x ′} M}∧
JxKν(ρ ⊕ L x ; {x ′} M) ⊆ choice(JtKν(ρ))

} 6= {}
)

}
∩

{ ρ | ρ ∈ E ∧
∀ x

′.(x ′ ∈ choice(JtKν(ρ)) ⇒
{ ρ′ | ρ′ ∈ {ρ ⊕ L x ; {x ′} M}∧
JxKν(ρ ⊕ L x ; {x ′} M) ⊆ choice(JsKν(ρ))
} 6= {}

)
}

10

44

Region-based Memory Allocation in Forth

M. Anton Ertl∗

TU Wien

Abstract

Memory management has a pervasive effect on the
way we program. In region-based memory alloca-
tion, objects with roughly the same life expectancy
are allocated in one region, and in the end the whole
region is freed at once. This avoids the need to keep
track of the individual objects for free. Regions are
simple to implement and compatible with real-time
requirements and multi-threading, and seem to be
ideal for Forth, except for one thing: The region id
has to be passed to the allocation word, increasing
the stack load. We propose using context wrappers
to avoid that problem. This even allows to use ex-
isting allocate-based libraries with regions, but we
then have to decide what free and resize inside
these libraries do.

1 Introduction

The way that memory is allocated and deallocated
has far-ranging consequences on program design.

For example, consider a string concatenation
word. If you can allocate memory at will, and don’t
have to worry about deallocation (e.g., because you
work on a garbage-collected system), you might use
an interface like

astr+ (c-addr1 u1 c-addr2 u2

-- c-addr3 u3)

By contrast, if memory is allocated once and for
all (“static allocation”), you might go for an inter-
face like

bstr+ (c-addr1 u1 c-addr2 u2 c-addr3 u3

-- c-addr3 u4 n)

(inspired by the Forth-2012 word substitute).
Bstr+ writes the resulting string in the buffer
c-addr3 u3, with the length of the resulting string
in u4, and n indicating whether the operation was
successful (had enough buffer space).

If you need to free explicitly, you can use either
interface, but if you use astr+, you have to keep
track of c-addr3 and free it when you are done.

∗Correspondence Address: Institut für Computer-
sprachen, Technische Universität Wien, Argentinierstraße 8,
A-1040 Wien, Austria; anton@mips.complang.tuwien.ac.at

The usage of these words varies depending
on how memory is allocated. E.g., consider
wanting to build a file path from a direc-
tory name dir (-- c-addr u) and a file name
file (-- c-addr u) and then using that file
path for opening a file:

\ astr+ with garbage collection

dir s" /" astr+ file astr+ r/o open-file throw

\ astr+ with allocate/free

dir s" /" file astr+ over >r astr+ r> free throw

over >r r/o open-file throw r> free throw

\ bstr+ with preallocated buffers:

create buf1 200 chars allot

create buf2 200 chars allot

dir s" /" buf1 200 bstr+ 0< abort" buf1 short"

file buf2 200 bstr+ 0< abort" buf2 short"

r/o open-file throw

Garbage collection makes such things easy, and
may be the decisive feature for distinguishing high-
level languages from lower-level languages, but it
seems like it does not quite fit Forth: Its imple-
mentation is complex, in particular in combination
with lack of type information (a fundamental prop-
erty of Forth), real-time requirements (relevant in
significant numbers of Forth applications), and mul-
tiprocessing (becoming more and more important
with the spread of multi-core CPUs). Nevertheless,
there has been a garbage collection library for Forth
available since 19991; however, this library does not
satisfy real-time requirements and is not designed
for multiprocessing.

The Forth standard supports allocate and free

(and resize) in the memory allocation wordset
since Forth-94 (heap allocation). Unfortunately,
this interface is cumbersome and error-prone:

• If you free too early, the system may allocate
the memory for some other use and if you then
try to access the (already-freed) object, you get
the wrong data or change data in the new, un-
related object (dangling reference).

• If you fail to keep track of all allocations, you
fail to free some, and you get a memory leak.2

1http://www.complang.tuwien.ac.at/forth/

garbage-collection.zip
2Note that freeing everything just before leaving the sys-

45

Ertl Regions

There are various techniques to avoid these prob-
lems, but they tend to restrict the way you pro-
gram, and they may cost performance; e.g., in the
extreme you can make a new copy of the object ev-
ery time you copy the address, and then you can be
sure that you can free the object when you consume
that address (because every object has only one live
address) [Bak94], but all that allocating, copying,
and freeing costs performance; also, this technique
does not work for mutable objects.

This paper discusses region-based memory allo-
cation, a technique in between free and garbage
collection that might be a good fit for Forth. It
describes what region-based memory allocation is
(Section 2), presents Forth words for regions (Sec-
tion 3), discusses how allocate/free/resize code
can be used with regions (Section 4), outlines and
implementation (Section 5) and discusses related
work (Section 6).

2 Region-Based Memory Allo-

cation

With region-based memory allocation, you can have
several regions active at the same time. You allo-
cate memory from one of these regions. When you
no longer need any of the memory in a region, you
free the region.

The way regions are typically used is: As ap-
plication programmer you know that a bunch of
things are guaranteed not to be needed beyond a
certain point, so you introduce a region for these
things, and allocate memory for these things from
this region. In between, you can allocate things
from longer-lived or shorter-lived regions. Typical
examples for this kind of pattern are:

• A web server typically has a lot of things that
don’t survive the HTTP request. These things
could be allocated in a region that is freed when
servicing the request is completed.

• A compiler could have regions for the basic
block (straight-line code sequences), and the
definition. As soon as it is done with one ba-
sic block, it frees the basic block region and
starts a new basic block region for the next ba-
sic block. Likewise for definitions.

• A text formatting program could have regions
for a line, a paragraph, a page, a section, and
the whole document.

Regions give programmers a wide range of control
over memory management. E.g., you could start

tem is counterproductive; it may page in stuff that would
just be freed (without paging) by the operating system as
part of terminating the process.

out with few regions (e.g., in the compiler only have
regions for definitions); when you notice that this
consumes more memory than you want, you can
introduce additional regions for more fine-grained
control (but with the potential for more bugs).

Regions are relatively easy to implement (about
the same difficulty as allocate/free), even in the
presence of real-time requirements and multipro-
cessing. So they appear to be a good fit for Forth.
Why have they not caught on?

3 Forth interface for regions

A straightforward region interface works with re-
gion IDs passed on the stack:

new-region (-- region-id)

region-alloc (usize region-id -- addr)

free-region (region-id --)

The disadvantage of this kind of interface is that
it requires passing the region-id around. E.g., for
our string concatenation example, we would have a
word

cstr+ (c-addr1 u1 c-addr2 u2 region-id

-- c-addr3 u3)

The region-id would have to be passed around on
the stack inside cstr+, and we would have to pass
the region-id to cstr+. For our file path example
this could look as follows:

new-region >r

dir s" /" r@ cstr+ file r@ cstr+

r/o open-file throw

r> free-region

This works passably in this case, but we con-
sumed the top-of-return-stack for the region-id, and
cannot use it for something else anymore. In any
case, this kind of region interface increases the stack
load by one item.

This has deterred me from using regions for a
long time, but recently I have thought about how to
use stack load reduction techniques [Ert11] to avoid
this problem. I settled for using context wrappers,
because this allows writing general-purpose words.
Region-alloc is split into:

ralloc (usize -- addr)

with-region (... region-id xt -- ...)

\ xt: (... -- ...)

So you pass the region-id to with-region, which
executes the xt, and while executing the xt, every
ralloc allocates from region-id (unless it is exe-
cuted in a nested with-region context).

Let’s look at our string concatenation example
again. We can now use the astr+ interface instead
fo cstr+:

46

Ertl Regions

new-region dup

[: dir s" /" astr+ file astr+

r/o open-file throw ;] with-region

free-region

This example uses the syntax [: ... ;] for
nestable unnamed definitions (quotations). The ex-
ample is not shorter than the cstr+ one, but the
return stack is now free for other uses (within the
quotation).

But there is still a stack item passed from
new-region to free-region. We can also have a
wrapper that replaces these two words:

do-region (... xt -- ...)

\ xt stack effect: (... region-id -- ...)

With that, our example looks as follows:

[: [: dir s" /" astr+ file astr+

r/o open-file throw

;] with-region

;] do-region

For cases like this example where do-region and
with-region work together, we can also have

do-with-region (... -- ...)

\ xt stack effect: (... -- ...)

which combines the effects, resulting in:

[: dir s" /" astr+ file astr+

r/o open-file throw ;] do-with-region

4 Allocate/free/resize

With the region passed implicitly, we can use an
interface that is compatible to the standard word

allocate (usize -- addr ior)

instead of ralloc. Indeed, we can even redefine
allocate to allocate from the current region when
called inside a with-region context. This allows
to use words or libraries written for the standard
memory-allocation wordset with regions.

To make this idea work, we also need to determine
what free and resize should do when called inside
a with-region context.

For free this is relatively straightforward: if
the memory has been allocted from a region, free
should not free anything (the memory will be freed
when the region is freed); if the memory has been
allocated from the heap, then free should perform
the standard free.
Resize is more complicated. One can see it as al-

locating memory from the current region, and free-
ing the original memory as described above. How-
ever, that would not always reflect the intent of the

programmer who wrote the resize, and may lead
to too-early freeing.

So how is resize used in practice? In my expe-
rience resize is used in two ways:

• To simulate statically allocated buffers of un-
limited size. The program first allocates a
small buffer (or stores 0 as buffer address), and
grows the buffer with resize when necessary.
These buffers are never freed.

• For temporary growing structures. These
structures are freed when the program no
longer needs them.

Given that, one approach for dealing with resize

is to always treat it as working on the heap. If
the memory was first allocated from a region, the
resize should be treated as allocating from the
heap. People who want to write code for regions
should not use resize.

One problem with these ideas is that it some-
times requires determining whether a piece of mem-
ory was allocated from the heap or from a region.
Determining this can require quite a bit of code
and can be slow (depending on the implementation
of regions and the heap).

The following assumptions would get rid of this
need:

• Resize only gets 0 or previously resized
memory as a-addr1 parameter. With this
assumption resize does not need to see if
the memory was allocated from a region (it
wasn’t). Unfortunately, the standard does
not specify that resize works for a-addr1=0
(Gforth does), so this assumption will not hold
for standard programs that use resize.

An alternative, less restrictive assumption is
that the resized memory was allocated from
the heap, but that would restrict the usage of
with-region in combination with code that
uses resize for temporary growing structures.
To avoid programs that don’t get this right,
it would be useful to check this assumption,
but that again requires determining whether
memory was allocated from the heap or from a
region.

If this assumption is made, but does not hold
(i.e., region-allocated memory is resized), the
result is unpredictable and depends on the
heap implementation.

The other alternative is to assume that the
memory is either from a region or previously re-
sized. Then, if it is not previously resized, we
just heap-allocate new memory, copy the old
memory there, and do not free the old memory.
If the old memory was actually heap-allocated,
this will lead to a memory leak.

47

Ertl Regions

region1

region2

Figure 1: Implementation based on allocate

region1

region2

Figure 2: Implementation based on one big memory block

• Free within a region only refers to region-
allocated memory, except possibly resized
memory. With this assumption, free needs
to check only if memory is resized, which is
cheaper to check. Ideally resized memory is
always freed with a separate word, then we can
do with a placebo free inside a region. If this
assumption is made, but does not hold (i.e.,
heap-allocated memory should be freed in re-
gion context), there will be a memory leak.

It is unclear which of the various options in this
design space is best. So it is probably best to use
the simplest option at first, build in checking to
make users aware of the restrictions, and ask users
for feedback.

5 Implementation

This section sketches two implememtation ap-
proaches.

5.1 Based on allocate

Each region is represented by a linked list of blocks.
Each block has a standard size (e.g., 16KB) and is
allocated. Within each block, there is a pointer to
the first free byte, and a new allocation in the region
is made there. If the rest of the block is too small for
the allocation, a new block is started (see Fig. 1).
If an allocation is bigger than the standard block,
it gets its own private block of the appropriate size.

When a region is freed, the linked list is traversed
and all the blocks in the linked list are freed. For
real-time requirements, one could arrange to delay

the freeing, such that only one block is freed per
region allocation.

For checking whether an address is allocated with
resize, one could have a simple array of resize ad-
dresses. If there are only few resize addresses at
the same time, this is sufficient. A more scalable
data structure (inspired by a sparse set represen-
tation [BT93]) would have an extra cell before the
resized memory that points to the array; if this ad-
dress points within the bounds of the array, and the
place where it points to points back to the address
we are looking at, the address has actually been
allocated with resize.

For checking whether an address is allocated in
a region or on the heap, we would have to walk all
the blocks of all the heaps, and check whether the
address is contained there.

The benefits of this kind of implementation over
one that uses one allocate per region-alloc and
links all the allocations together is less memory
overhead for links, and less time overhead in allo-
cation and deallocation.

5.2 Based on one big memory block

In an embeded system with full control over mem-
ory we may prefer to reserve one big block of mem-
ory for regions. Similarly, if we are working on a
decent virtual memory system, we could mmap a
big chunk of address space for regions (say, as big
as the physical memory of the machine).

This implementation is based on buddy memory
allocation. The first region starts out at the bottom
of the big block. When starting another region,
the block is divided into two parts (see Fig. 2). If

48

Ertl Regions

the part of one region runs out of space, one can
split the part of a region with more free space, and
continue there.

When freeing a region, all the parts it has are
freed, possibly regrowing parts of other regions.

Checking for resize addresses is the same as for
the other implementation.

Checking whether an address is allocated in a re-
gion or on the heap is very easy: If the address is
within the big block, it is in a region.

Overall this implementation approach is similar
to the other one, but you implement the base mem-
ory allocator yourself (as buddy allocator) instead
of using the system’s allocate. The benefits are
that you can use your knowledge of the base alloca-
tor’s implementation to simplify some of the opera-
tions of the region allocator (e.g., checking whether
something is in a region).

6 Related work

Region-based memory allocation is an old idea,
that has appeared under different names: regions
[GA98], arenas [Han90], pools (Apache), memory
contexts (PostgreSQL), obstacks (glibc). “Region”
is the name used in most recent papers and in
Wikipedia3.

Glibc’s obstacks extend the usual capabilities of
regions by allowing to grow allocations, and deal-
locate from an obstack in a stack-based way, i.e., a
very dictionary-like behaviour, except that you can
have several obstacks, and a growable object is not
addressable while it is still growable.

The regions implementation based on allocate

is the same as that described by Hanson [Han90],
and as described in the obstacks documentation of
glibc.

Gay and Aiken [GA98] evaluate regions empiri-
cally, and find that regions are either best or close
to the best alternative in both run-time and mem-
ory consumption. They also propose and evaluate
a safe version of this technique, based on reference
counting (references into a whole region).

Because regions and their implementation are so
simple, there is little academic literature on them
themselves, but rather on more complex ideas like
region inference, where the compiler tries to deter-
mine regions for allocations automatically.

Context wrappers are one of the techniques for
reducing the stack load [Ert11]. They were in-
spired by Jenny Brien, who proposed a wrapper for
dealing with the input stream on comp.lang.forth
<8s7mkl$4ql$1@news6.svr.pol.co.uk>.

3http://en.wikipedia.org/wiki/Region-based_

memory_management

7 Conclusion

Region-based memory allocation offers a more
convenient memory allocation model than
allocate/free, while avoiding the problems
of garbage collection: regions are much simpler
to implement, especially in combination with
multi-threading and real-time requirements.

So regions seem to be a good fit for Forth. How-
ever, they have not caught on yet, because they re-
quire passing the region id around, thus increasing
the load on the stack. By using context-wrappers
we can reduce this stack burden.

This opens up the possibility to use existing,
allocate-using code with regions, often avoiding
the need to keep track of each piece of allocated
memory for free. But one then has to do some-
thing about the frees and resizes in this code.
We have discussed this issue here, but are not sure
what the best approach is.

References

[Bak94] Henry Baker. Linear logic and permuta-
tion stacks — the Forth shall be first. ACM

Computer Architecture News, 22(1):34–43,
March 1994.

[BT93] Preston Briggs and Linda Torczon. An ef-
ficient representation for sparse sets. ACM

Letters on Programming Languages and

Systems, 2(1–4):59–69, 1993.

[Ert11] M. Anton Ertl. Ways to reduce the stack
depth. In 27th EuroForth Conference,
pages 36–41, 2011.

[GA98] David Gay and Alex Aiken. Memory
management with explicit regions. In
SIGPLAN ’98 Conference on Program-

ming Language Design and Implementa-

tion, pages 313–323, 1998.

[Han90] David R. Hanson. Fast allocation and deal-
location of memory based on object life-
times. Software—Practice and Experience,
20(1):5–12, January 1990.

49

Doing C-style structs on cell addressed uCore

Klaus Schleisiek - kschleisiek@wauland.de

Last year, the technical high-school of Windisch (FHNW - Fachhochschule Nordwest-Schweiz)

realized a uCore back end for LCC (Little C-Compiler). LCC was enhanced by Markus Knecht to

become FCC (Forth C-Compiler) integrating advanced stack allocation techniques into the front

end. This substantially reduced the number of local variables on the return stack and turns uCores

dual stack architecture into a performant C engine.

Another problem with C is its fundamental byte orientation. I took this problem lightly for a long

time proposing to declare a byte to be any number of bits as long as it is more than eight.

Unfortunately, this way of looking at things does not help in the case of C at all: Unions may be

defined to access a quadruple of bytes as one 32-bit integer.

Therefore, bytes need to be accessible within larger memory cells - of which only even multiples of

eight make sense at all. So lets discuss a 32-bit word width architecture. Integer (32-bit i@, i!),

word (16-bit w@, w!), and byte (8-bit c@, c!) accesses within a 32-bit cell are needed.

For fetches this is easy. i@, w@ and c@ can be realized in a single cycle, perhaps followed by the

word signed that takes care of appropriate sign extension. Without signed, the most significant bits

will be zero filled. Stores are more complicated requiring an un-interruptible dual cycle read-

modify-write cycle. We fetch the appropriate 32-bit cell, modify the byte or word to be written and

write the result back to the cell.

This leaves us with two more problems: 1) how to do byte/word addressing and 2) what to do when

access happens to a "misaligned" address. The answer to 2) is classical: We raise an exception and

execute a call to the "misaligned address trap" address. More on this later.

1) is more tricky and there have been two approaches to addressing bytes on cell based machines. In

a 32-bit machine, we need two additional bits to locate a byte. We observe that this reduces the

address space of the word addressed machine by a factor of four, which is not a real limitation on a

32-bit machine, and if it is, upgrade to 64-bits.

This leaves the question: Where do we put the additional address bits? The most intuitive solution is

to shift the word address two times to the left and use the two new least significant bits for selecting

a byte within a 32-bit cell. Byte address arithmetic is trivial - normal 2scomplement arithmetic will

do. But unfortunately, under this approach a 32-bit integer address is a completely different number

than a 32-bit cell address accessing the same memory cell.

Therefore, another solution turns out to be more efficient over all: The two additional bits are placed

in the two most significant bits of a byte address. This way, i@ as well as @ operating on the same

numerical value will access the same memory cell as long as the two most significant bits are zero.

But how do we do byte address computation? All we need is just one operator byte+ (caddr n --

caddr') that adds n, a signed number of bytes, to the byte or cell address on the stack. All the pains

of doing weird arithmetic on a number whose least significant bits are kept in the two most

significant bit positions are encapsulated in the byte+ operator. On uCore, this is a single cycle

instruction.

Now the last problem to be solved is the behaviour of the "misaligned address trap". A call to this

trap temds to be the result of a software bug. Most of the time, we could just replaced the

misaligned address by the nearest properly aligned address and the software will work as expected.

Therefore, a basic misaligned trap handler should correct the address and re-execute the trapped

memory access instruction. On the side, it can do statistics so the programmer is able to learn about

his software bugs after the program executed.

50

These are the new words introduced:

i@ (caddr -- 32b)

fetches a 32-bit number from memory address caddr. If the two most significant bits of caddr are

non-zero, the misaligned address trap will be called.

w@ (caddr -- 16b)

fetches a 16-bit number from memory address caddr. The 16 most significant bits of 16b will be

zero. The most significant bit of caddr determines, which 16-bit section of the cell located at the

equivalent cell address of caddr will be selected. If the second but most significant bit of is non-

zero, the misaligned address trap will be called. As a side effect, the "word" status flag will be reset

to zero.

c@ (caddr -- 8b)

fetches an 8-bit number from memory address caddr. The 24 most significant bits of 8b will be zero.

The two most significant bits of caddr determine, which 8-bit section of the cell located at the

equivalent cell address of caddr will be selected. As a side effect, the "word" status flag will be set

to one.

signed (u -- n)

Depending on the state of the "word" status flag, u will be sign extended. If the "word" status flag is

set, bit 7 of u will be copied into bits 8 to 31 of n. Otherwise, bit 15 of u will be copied into bits 16

to 31 of n.

i! (n caddr --)

stores n into the memory cell at caddr. If the two most significant bits of caddr are not zero, the

misaligned address trap will be called.

w! (16b caddr --)

stores 16b into the memory cell at caddr. This is an uninterruptible read-modify-write cycle,

because 16b has to be merged with the 32-bit content of the memory cell at caddr. If the most

significant bit of caddr is set, 16b will be stored into bits 16 to 31 of the memory cell at caddr. Bits

0 to 15 will not be affected. If the second but most significant bit of caddr bit is non-zero, the

misaligned address trap will be called.

c! (8b caddr --)

stores 8b into the memory cell at caddr. This is an uninterruptible read-modify-write cycle, because

8b has to be merged with the 32-bit content of the memory cell at caddr. The two most significant

bits of caddr determine, which 8 bit section of the memory cell at caddr will be modified; the

remaining bits will not be affected.

MSB setting destination for 8b

00 bits 0 to 7

01 bits 8 to 15

10 bits 16 to 23

11 bits 24 to 31.

byte+ (caddr n -- caddr')

performs byte address arithmetic on caddr. This is different from standard +, because the two least

significant bits of the byte address are located in the two most significant bits of caddr.

51

Forth - The Next GenerationGerald WodniSeptember 16, 2014AbstratTo attrat the next generation of Forth program-mers, new tools are needed. The Forth Net shouldserve as a single point of entry to get them started.1 IntrodutionThe Forth Net[1℄ is in the proess of being hangedto a meta-repository whih an host an optionalgit repository for eah projet, but an also link toother repository websites like GitHub[2℄. The mainfeatures remain to provide a single point of entryfor Forth-related projets, delaring dependeniesbetween projets, and the ability to speify addi-tional tags for eah projet to �nd similar ones orspeify groups.To make the Forth Net attrative for new pro-grammers I investigated the Node.js ommunity.2 Related WorkNode.js[3℄, a platform for running JavaSript out-side the browser environment is one of the fastestgrowing ommunities on the web. To �nd out whatthe next generation of Forth programmers want andneed, I investigated the ommunity to identify itsmain pillars.NPM, Node Pakaged Modules[4℄ is the mainrepository for sharing JavaSript soure. It has asmall and easy to learn interfae based on a simple�le in eah projet and the NPM program itself. Touse NPM for a new projet one adds a pakage.json�le, whih spei�es the dependenies. This �le alsoontains projet meta data like name and author,making the projet itself a valid NPM pakage.GitHub has no fany website for eah projet,but just displays a README �le di�erent formats,most prominent ones are MarkDown or plain text.This makes the user interfae required to setup aprojet desription website even smaller.3 FlinkCopying these features is not doing justie to Forth,I wanted to emphasize Forth's unique features like

the interative ompiler interfae. An emulatedForth System inside the browser is not of muh usefor serious projets, so the system is laid-out as fol-lows:Server A web server apable of handlingWebSokets[5℄ used as a broker betweenthe other parties.Flink An interative browser IDE, build as respon-sive website running on every major browserwhih supports HTML5 and WebSokets.Uplink A tiny implementation of the WebSoketinterfae, whih is only neessary until thetarget Forth system understands the Flink-WebSoket protool. As the protool is a workin progress, please onsult the repository forthe latest ommand set[6℄.Flink onsists of an interative onsole[7℄ and aneditor[8℄ whih an load and save soure ode tothe projet's repository. One the programmer islogged in, and has a target system attahed via up-link, the onsole behaves like a line-bu�ered Forth.To ompile the ode from the editor window, it istransfered a line at a time waiting for the Forth's�ok� or an error messages. If the Uplink is on-neted diretly to a system with no Internet aess(i.e. over a serial line), Flink enables this devie toa rih IDE and allows inlusion of other �les andeven projets.4 Further StepsPakage Format A simple format for the ForthNet whih provides similar funtionality likeNPM's pakage.json . An alternative would beto parse the forth soure ode for "�nlude ...".User Interfae A HTML5 user interfae whihsimpli�es API to the Forth System drastiallyby having a full-blown GUI on the front end,and a simple text interfae to Forth.M2M Communiation As Flink is based on theWebsoket Protool, it also works behind most�rewalls and allows for remote mahine main-tenane as well as indiret mahine to mahineommuniation1
52

Referenes[1℄ The Forth Net. URL http://theforth.net.[2℄ GitHub. URL https://github.om.[3℄ node.js. URL http://nodejs.org.[4℄ NPM. URL https://www.npmjs.org.[5℄ I. Fette and A. Melnikov. RFC6455 The Web-Soket Protool.[6℄ Uplink. URL https://github.om/GeraldWodni/uplink.[7℄ jq-onsole. URL https://github.om/replit/jq-onsole.[8℄ Ae loud 9 editor. URL http://ae.9.io/.

2
53

Saturation Arithmetic
Ulrich Hoffmann <uho@xlerb.de>

EuroForth 2014 Palma de Mallorca

Overview

• What is saturation arithmetic?

• How to implement it in Forth?

• Demo

• Discussion

Problems with
Circular Arithmetic

• Overflows and Underflows

• undetected

• detected and now what (closed loop control)

16bit: 30000 30000 + . ! -5536

16bit: -10000 30000 - . ! 25536

Saturation Arithmetic

• Idea:

• Let there be a maximum/minumum values

• if the calculation overflows use the max

• if the calcualtion unterflows use the min

16bit: 30000 30000 +s . ! 32767

16bit: -10000 30000 -s . ! -32768

Arithmetic properties
monotonicity

• Does not hold for circular arithmetic

• Holds for saturation arithmetic (A)

for all x ∈ Z, a ∈ Z, a ≥ 0 :

x+ a ≥ x

x− a ≤ x

Arithmetic properties
associativity

• Holds for circular arithmetic

• Does not hold for saturation arithmetic (A)

for all a, b, c ∈ Z :

(a+ b) + c = a+ (b+ c)

(a− b) + c = a− (b− c)

Strategies

• A priori

• Detect over/underflow before calculating

• return min/max if detected else calculate

• A posteriori

• calculate

• return min/max if calculation had over/underflow

Saturation Arithmetic for
Forth

• A set of saturation operators

+s -s *s negate_s abs_s ...

54

What about unsigned numbers?

What about unsigned numbers?

• Another set of unsigned saturating operators?

16bit: 30000 30000 +us u. ! 60000

16bit: 10000 30000 -us u. ! 0

16bit: 40000 40000 +us u. ! 65535

Too many operators!

• Just two new words:

sat (x -- x | max) signed saturation

usat (x -- x | umax) unsigned saturation

• Let + - * set (internally) enough
information so that sat and usat can work.

16bit: 30000 30000 + sat . ! 32767

16bit: -10000 30000 - sat . ! -32768

16bit: 30000 30000 + usat u. ! 60000

16bit: 10000 30000 - usat u. ! 0

16bit: 40000 40000 + usat u. ! 65535

Has saturation happened?

• usat and sat set a flag usatq when
saturation took place.

• Applications can check it to see if the results
are exact.

• Applications must explicitly reset usatq.

Demo

Implementation
• 4e-Forth

;C + n1/u1 n2/u2 -- n3/u3 add n1+n2
 HEADER PLUS,1,'+',DOCODE
 ADD @PSP+,TOS
 MOV SR, &SRSAVE
 BIS #1000h, &SRSAVE
 NEXT

• Implementation of - similar.

55

Implementation
• 4e-Forth

; SAT x -- x
 HEADER SAT,3,'SAT',DOCODE
 BIT #100h,&SRSAVE ; was overflow bit set?
 JZ nosat
 BIT #1h,&SRSAVE ; check carry for over or underflow
 JZ satovl
 MOV #8000h, TOS
 jmp satsetq
satovl: MOV #7FFFh, TOS
satsetq: MOV #-1, SATQ
nosat: NEXT

• Implementation of usat similar.

Discussion

• Fewer error handling code as you can just continue
to run.

• What to do with division by zero?

• Adding more tasks to + and - slows them down,
even if you don't need saturation but

• Overall system-impact low

• As a kernel option or code generator configuration
when saturation arithmetic is required

¿Questions?

56

57

58

59

60

61

62

How to get rid of C

M. Anton Ertl

TU Wien

Problem: C has become unreliable

• 186 undefined behaviours in C standard

• every real-world program has them

• C compiler maintainers focus exclusively on

programs without undefined behaviours

benchmarks (SPEC)

• bug reports are not taken seriously

• ⇒ We want to get rid of C

Gforth components

Primitives
signals
loader
setup

support
 functions

C library

OS

high-level code
(gforth.fi)

c-call
wrappers

63

Primitives

• replace with native-code compiler on popular platforms

• keep existing primitives on other platforms

⇒ we cannot get rid of C

remove non-standard usage when gcc acts up

no longer work around performance problems

⇒ slowdown

• Or maybe some primitives in assembly language

high-level replacement for others

Native-code compiler

• Still want to use image files

• Compiler from image files to native code

• For interactive use:

Compiler from threaded-like code to native code

threaded-like code allows storing image files

• For bootstrapping:

Compiler from image files to assembly language

Support functions

• Called by primitives

e.g. mixed division

• replaced by native-code compiler

• or high-level code

64

Calling C

• For system calls

Alternative: direct system calls

additional system-specific stuff to implement

CPU-specific optimizations

• For library calls

• use wrappers like now?

• teach calling convention to native-code compiler

Use extern: for specifying C functions

Setup, loader, signals

• Could be replaced with Forth code

on systems with native-code compiler

• But: two versions to maintain

• not performance-sensitive

Slowdown from C standards compliance should not be noticable

Conclusion

• Getting away from C is a long-term effort

• Is it worthwhile to get rid of C completely?

65

