(: Command Language

A universal structured data language

Bernd Paysan

Overview R

Motivation

Object Oriented Forth Code as Data

Forth—Style Communication @

Requirements for secure communication (secure as in "“no exploitation through
misinterpretation”)

Extremely simple interpreter

Extensible, but extensions must be allowed by the receiver

Universal, i.e. only one interpreter to audit and verify

Forth—Style Communication

Requirements for secure communication (secure as in "“no exploitation through
misinterpretation”)

= Extremely simple interpreter

Extensible, but extensions must be allowed by the receiver

Universal, i.e. only one interpreter to audit and verify

Forth—Style Communication @

Requirements for secure communication (secure as in "“no exploitation through
misinterpretation”)

= Extremely simple interpreter
= Extensible, but extensions must be allowed by the receiver

Universal, i.e. only one interpreter to audit and verify

oS

Forth—-Style Communication

Requirements for secure communication (secure as in “no exploitation through
misinterpretation”)

= Extremely simple interpreter

= Extensible, but extensions must be allowed by the receiver

= Universal, i.e. only one interpreter to audit and verify

oS

Forth—-Style Communication

Requirements for secure communication (secure as in “no exploitation through
misinterpretation”)

= Extremely simple interpreter

= Extensible, but extensions must be allowed by the receiver

= Universal, i.e. only one interpreter to audit and verify

= Triviality makes it difficult to explain

Basics &

= Five data types: Integer (64 bits signed+unsigned), flag, string (generic byte
array), |IEEE double float, objects
Instructions and data encoding derived from Protobuf (7 bits per byte,
MSB=1 means “data continues”, most significant part first)

Four stacks: integer, float, objects, strings
endwith and endcmd for ending object message blocks and commands

Five data types: Integer (64 bits signed+unsigned), flag, string (generic byte
array), IEEE double float, objects

Instructions and data encoding derived from Protobuf (7 bits per byte,
MSB=1 means “data continues”, most significant part first)

Five data types: Integer (64 bits signed+unsigned), flag, string (generic byte
array), IEEE double float, objects

Instructions and data encoding derived from Protobuf (7 bits per byte,
MSB=1 means “data continues”, most significant part first)

Four stacks: integer, float, objects, strings

Five data types: Integer (64 bits signed+unsigned), flag, string (generic byte
array), IEEE double float, objects

Instructions and data encoding derived from Protobuf (7 bits per byte,
MSB=1 means “data continues”, most significant part first)

Four stacks: integer, float, objects, strings
endwith and endcmd for ending object message blocks and commands

Five data types: Integer (64 bits signed+unsigned), flag, string (generic byte
array), IEEE double float, objects

Instructions and data encoding derived from Protobuf (7 bits per byte,
MSB=1 means “data continues”, most significant part first)

Four stacks: integer, float, objects, strings
endwith and endcmd for ending object message blocks and commands

oswap to transfer the current object to the object stack, to be inserted in
the outer object

Five data types: Integer (64 bits signed+unsigned), flag, string (generic byte
array), IEEE double float, objects

Instructions and data encoding derived from Protobuf (7 bits per byte,
MSB=1 means “data continues”, most significant part first)

Four stacks: integer, float, objects, strings

endwith and endcmd for ending object message blocks and commands
oswap to transfer the current object to the object stack, to be inserted in
the outer object

words for reflection (words are listed with token number, identifier and stack
effect to make automatic bindigs possible)

Why binary encoding? B

= Faster and simpler to parse (simpler means smaller attack vector)

Ability to enter commands on the fly in text form through a frontend
interpreter still exists

Debugging with a de—tokenizer is also very easy

lication—specific logic extremel

Object—oriented approach makes writing a

Why binary encoding?

= Faster and simpler to parse (simpler means smaller attack vector)

= Ability to enter commands on the fly in text form through a frontend
interpreter still exists

Debugging with a de—tokenizer is also very easy
Object—oriented approach makes writing application—specific logic extremely

Why binary encoding?

= Faster and simpler to parse (simpler means smaller attack vector)

= Ability to enter commands on the fly in text form through a frontend
interpreter still exists

= Debugging with a de—tokenizer is also very easy

oS

oS

Why binary encoding?

= Faster and simpler to parse (simpler means smaller attack vector)

= Ability to enter commands on the fly in text form through a frontend
interpreter still exists

= Debugging with a de—tokenizer is also very easy

= Object—oriented approach makes writing application—specific logic extremely
simple

Why a programming language as data?

Lemma: every glue logic will become Turing complete

= Implement only the things you need — but you shouldn’t have to implement
more than one generic interpreter

Typical idea of sending remote procedure calls: serialize the entire object
(with subobjects), and call a function on that object

Net2o idea (derived from ONF) Keep the entire obJect synchronized by

Why a programming language as data?

Lemma: every glue logic will become Turing complete

= Implement only the things you need — but you shouldn’t have to implement
more than one generic interpreter

= Typical idea of sending remote procedure calls: serialize the entire object
(with subobjects), and call a function on that object

[00)
o

Why a programming language as data?

Lemma: every glue logic will become Turing complete

= Implement only the things you need — but you shouldn’t have to implement
more than one generic interpreter

= Typical idea of sending remote procedure calls: serialize the entire object
(with subobjects), and call a function on that object

= Net2o0 idea (derived from ONF): Keep the entire object synchronized by
sending only the changes to it — these changes are simple messages
(setters)

[00)
o

Why a programming language as data? &

Lemma: every glue logic will become Turing complete

= Implement only the things you need — but you shouldn’t have to implement
more than one generic interpreter

= Typical idea of sending remote procedure calls: serialize the entire object
(with subobjects), and call a function on that object

= Net2o0 idea (derived from ONF): Keep the entire object synchronized by
sending only the changes to it — these changes are simple messages
(setters)

= This allows multi-message passing, and reduces latency

Security B

Lemma: every sufficiently complex format can be exploited)
Therefore stick to a very simple format, i.e.: simplify and factor the code

Interpreter

cmd@ (-- u)

buf-state 2@ over + >r p@+ r> over - buf-state 2! 64>n ;
: n>cmd (n -- addr) cells >r

o IF token-table ELSE setup-table THEN

$0 r@ u<= IF net2o-crash THEN 1> + ;
cmd-dispatch (addr u -- addr' u') buf-state 2!
cmd@ n>cmd @ ?dup IF execute ELSE net2o-crash THEN
buf-state 20 ;
cmd-loop (addr u --)

BEGIN cmd-dispatch dup 0<= UNTIL 2drop ;

Security X

Lemma: every sufficiently complex format can be exploited)
Therefore stick to a very simple format, i.e.: simplify and factor the code

: cmd@ (-— u)
buf-state 2@ over + >r p@+ r> over - buf-state 2! 64>n ;
: n>cmd (n -- addr) cells >r
o IF token-table ELSE setup-table THEN
$0@ r@ u<= IF net20-crash THEN 1> + ;
: cmd-dispatch (addr u -- addr' u') buf-state 2!
cmd@ n>cmd @ ?dup IF execute ELSE net2o-crash THEN
buf-state 20 ;
: cmd-loop (addr u --)
BEGIN cmd-dispatch dup 0<= UNTIL 2drop ;

oS

Reading Files

0 1lit, file-id "net2o0.fs" $, 0 1lit,

open-file <req-file get-size get-stat req> endwith

1 1it, file-id "data/2011-05-13_11-26-57-small.jpg" $, O lit,
open-file <req-file get-size get-stat req> endwith

2 1lit, file-id "data/2011-05-20_17-01-12-small.jpg" $, O 1lit,
open-file <req-file get-size get-stat req> endwith

oS

Reading Files: Reply

0 1it, file-id 12B9A 1lit, set-size

138D607CB83DOF06 1it, 1A4 1it, set-stat endwith
1 1it, file-id 9C65C 1lit, set-size

13849CAE1F3B6EAS 1it, 1A4 1it, set-stat endwith
2 1lit, file-id 9D240 1lit, set-size

13849CAE2643FDCC 1it, 1A4 1it, set-stat endwith

msg 13977C927BF7F1AA 1lit, msg-at "Hi Bob!" $, msg-text
85" Z(&3*>qx1*bWM*DUCA-MfIN~u;<ddcWOC<XR)ezh?=jmn7zq4RFdule=al
$, msg-sig endwith
85" e}&3&Kep3Im T37tIU=8fs>4=(C Uic<rhs{(J k&c5k8{H270*} rV0(F3e"
$, push-$ push' nest O lit, ok?

Structured Text a la HTML B

HTML-like structured text

body
p "Some text with " text
bold "bold" text oswap add
" markup" text
oswap add
1li

ul "a bullet point" text oswap add

Literature&Links &

B BERND PaysaN
net2o fossil repository
http://fossil.net20.de/net20/

http://fossil.net2o.de/net2o/

	Motivation
	Object Oriented Forth Code as Data
	A Few Examples
	Appendix

