
Saturation Arithmetic
Ulrich Hoffmann <uho@xlerb.de>

EuroForth 2014 Palma de Mallorca

Overview

• What is saturation arithmetic?

• How to implement it in Forth?

• Demo

• Discussion

Problems with
Circular Arithmetic

• Overflows and Underflows

• undetected

• detected and now what (closed loop control)

16bit: 30000 30000 + . → -5536

16bit: -10000 30000 - . → 25536

Saturation Arithmetic
• Idea:

• Let there be a maximum/minumum values

• if the calculation overflows use the max

• if the calcualtion unterflows use the min

16bit: 30000 30000 +s . → 32767

16bit: -10000 30000 -s . → -32768

Arithmetic properties
monotonicity

• Does not hold for circular arithmetic

• Holds for saturation arithmetic (A)

for all x ∈ Z, a ∈ Z, a ≥ 0 :

x+ a ≥ x

x− a ≤ x

Arithmetic properties
associativity

• Holds for circular arithmetic

• Does not hold for saturation arithmetic (A)

for all a, b, c ∈ Z :

(a+ b) + c = a+ (b+ c)

(a− b) + c = a− (b− c)

Strategies

• A priori

• Detect over/underflow before calculating

• return min/max if detected else calculate

• A posteriori

• calculate

• return min/max if calculation had over/underflow

Saturation Arithmetic for
Forth

• A set of saturation operators

+s -s *s negate_s abs_s ...

What about unsigned numbers?

What about unsigned numbers?

• Another set of unsigned saturating operators?

16bit: 30000 30000 +us u. → 60000

16bit: 10000 30000 -us u. → 0

16bit: 40000 40000 +us u. → 65535

Too many operators!

• Just two new words:

sat (x -- x | max) signed saturation

usat (x -- x | umax) unsigned saturation

• Let + - * set (internally) enough
information so that sat and usat can work.

16bit: 30000 30000 + sat . → 32767

16bit: -10000 30000 - sat . → -32768

16bit: 30000 30000 + usat u. → 60000

16bit: 10000 30000 - usat u. → 0

16bit: 40000 40000 + usat u. → 65535

Has saturation happened?

• usat and sat set a flag usatq when
saturation took place.

• Applications can check it to see if the results
are exact.

• Applications must explicitly reset usatq.

Demo

Implementation
• 4e-Forth

;C + n1/u1 n2/u2 -- n3/u3 add n1+n2
 HEADER PLUS,1,'+',DOCODE
 ADD @PSP+,TOS
 MOV SR, &SRSAVE
 BIS #1000h, &SRSAVE
 NEXT

• Implementation of - similar.

Implementation
• 4e-Forth

; SAT x -- x
 HEADER SAT,3,'SAT',DOCODE
 BIT #100h,&SRSAVE ; was overflow bit set?
 JZ nosat
 BIT #1h,&SRSAVE ; check carry for over or underflow
 JZ satovl
 MOV #8000h, TOS
 jmp satsetq
satovl: MOV #7FFFh, TOS
satsetq: MOV #-1, SATQ
nosat: NEXT

• Implementation of usat similar.

Discussion

• Fewer error handling code as you can just continue
to run.

• What to do with division by zero?

• Adding more tasks to + and - slows them down,
even if you don't need saturation but
• Overall system-impact low

• As a kernel option or code generator configuration
when saturation arithmetic is required

¿Questions?

