
High Integrity Systems

CODE
by Paul E. Bennett IEng MIET, HIDECS Consultancy

Abstract:-

In Phil Koopman`s paper “The Grand Challenge of Embedded System Dependability” he sets out
four challenges.

“Four significant challenges in embedded system dependability are:
• embedded-specific security approaches,
• unifying security with safety,
• dealing with composable emergent properties,
• and enabling domain experts to use advanced dependability techniques.”

[Koopman1]

This paper will describe the benefits of developing software as components of a system, following
on from their interface specification, review/examination, functional testing and limitations testing.
It will continue to explain why Forth is one such suitable Component Oriented Development
Environment. We will cover the development process (including organisational requirements) and
the production of well specified and correctly behaving (according to its specification) software.

Mechanics
Early Engineering was entirely mechanical in nature. The invention of the wheel and axle, the ramp,
the Archimedes Screw, Nut and bolt etc. The early days saw some failures but the engineers of the
time learnt how to make the components better and stronger within the constraints they were forced
to deal with. They also gained the wisdom to know when to state that the constraints were too
restrictive and not workable. For installations where safety was a major concern, the notion of using
certified components became widespread. Such components had to be certified as meeting
specifications and being compliant with standards in materials inspection and testing. Our
mechanical engineering counterarts have had a very extensive head-start. An example of an early
standard was the one for screw threads.

Electrical & Electronics
Slightly newer than the mechanical engineering industry sector, the electrical and electronics
industry has managed to assist in the simplification of many machines and systems. Integrating with
the mechanics, the electrical and electronic systems also became the subject of closer examination
and thus eventual Certification of Conformity (CofC) also became compulsory for Safety Related
and High Reliability Systems. Then machines and electronics began to become programmable,
leading to the creation of seemingly quite clever machines. Thus was born software. However, some
early programmable machines led to the occurrence of disasters.

Software
When software came along, the early implementers were highly skilled mathematicians. However,
the number of people creating software grew rapidly and some of the new software writers were
neither mathematicians nor engineers. This led to some sloppy code and systems that would fail
regularly. Only recently have some software engineers become interested in creating software that
truly is delivered by robust engineering methods. Component Oriented Software is one such
engineering methodology.

However, systems are not just software. Everything that makes up that system, including the
statement of requirements, the design documents, the operating manuals as well as all the nuts, bolts
and logic components are a part of the overall system. Rather than different methods for developing
the hardware and software a unified development approach that all involved in the process
understand fully becomes the basis for managing a “Component Oriented System Devlopment”.

Development Process
If you want your systems to have real integrity it is necessary to be very adept in the early
development of accurate requirements, that are testable for compliance with the clients real needs,
before you launch into writing the design specification. Also, remember that prototyping is only
meant to be a tool for exploring the detailed requirements space in order to hone the thinking at that
level. The two best models of development still tend to be either the "V" model or Barry Boehm's
Spiral Model (applied properly and with the early spins being directed solely at the elicitation of the
full and correct requirements). The V model has to be applied as a two-prong approach to initially
developing requirements and the System Acceptance Test Cases that prove the requirements have
been fully met. Thus you will be developing the final acceptance test clauses in parallel with
determining what your system needs to do. It is therefore imperative to finding the right descriptive
language in which to express the requirements and allow the test cases to be written (even to the
extent of handling the un-expected conditions). Tests have to not only cover the acceptance of the
component unit but build to the acceptance of the overall system.

Naturally, to have a robust development process, properly followed such that it meets at least the
SEI CMM level 3 [SEI], is paramount to providing systems with certification that will be believed.
The organisation needs to properly support the development process through assignment of
appropriate roles and responsibilities to suitably qualified and experienced personnel. This means
that all the management chain has bought in to such development processes and its proper
operation. There needs to be enough discipline in the process to succeed and the application of the
process needs to provide sufficient data of its correct application. Thus robust configuration
management will be required to form the basis of this development process [Kelly].

Finally, for this section, the documentation you produce has to be fit for the purpose of describing
the components and the system to which they will belong. There is a world of difference between
good and bad documentation [Montforton]. You don't want too much or too little documentation,
but sufficient [Koopman2].

Wernher von Braun once said "Research is what I am doing when I do not know what I am doing".
So, to say you are involved in R&D must mean that you are on a voyage to discover what your

client truly needs in a way that he can sign his full agreement with your proposals. You might spend
more than 60% of project time getting to the stage that the requirements become complete and
testable, but, in the long run it is often much faster and yields better quality of product than to leave
testing as an afterthought. However, once you have discovered all the aspects of the system and can
complete the full requirements specification, including the safety, security, environmental and
aesthetic aspects, then the easier it becomes to establish the best components to utilise within the
system.

C.O.D.E
As stated above, the hardware world has managed to accomplish designs with some of the highest
integrity, engendering a high level of trust in such systems. We need such in the software world and
some attempts were made at the network level with schemes like .NET and CORBA. These are
quite large and complex components in general that have to be built to be host system agnostic.
However, in control systems, such a networking level is too high a consideration in resource
constrained small controllers prevalent in industrial controls (eg. field sensors and devices).

A Component Oriented Development Environment allows developers to independently create and
test individual components. In software the author proposes Forth is such an ideal software
Component Oriented Development Environment (C.O.D.E) that it becomes easy to develop a
library of software components that can be created, tested and fully certified to similar standards as
individual components in the hardware world. A Certificate of Conformity for each and every Forth
word that has almost mathematical certainty about its behaviour.

Why Forth?

This question has been asked very often and a number of very varied responses have been offered in
answer. Why certification works with Forth, though, is down to the underlying Virtual Machine
Model (VMM) that is the central embodiment of Forth. Despite, over the years, many Forth
language standards being created, the basic underlying VMM is the same as that created by Charles
Moore. With this VMM, the foundation on which we build Forth software components has been
stable since its creation and provides a very good platform on which to build, no matter the
underlying processor architecture, register provision or memory space available. The Forth Virtual
Machine is compact and easily implemented in incredibly small spaces (~512 bytes to 8kbytes),
either fully on the target processor or as an interactive umbilical connection (not an option available
with many other environments). With this VM as the basis it becomes almost trivial, on a word by
word basis, to conduct compliance testing on each and every Forth word you use and create to
support your application.

Most Functional Safety Standards require Certified Compilers and, in other languages, these
become very expensive, hard to wield and the outcome is not fully certain despite the claims.
However, the key is that it is a results based confirmation with a tough inspection and testing
regime applied is just as valid and allowed by IEC61508 for Assembler Code. With Forth being,
probably, the best macro assembler in the world, it becomes easy to see the way in which to
progress. Using Forth alone does not guarantee that a product will be safe. Its use has to be coupled
with a relevent and highly capable Design and Development Process that features full version
control and configuration management capabilities.

The Basis of Certification

Once you have determined your approach to constructing your system to meet the requirements,
you need to look at the practice of construction for a robust and certified system. You need a few
standards in place to accomplish the task. I have mentioned IEC61508 but that is the over-arching
Functional Safety Standard for Electrical, Electronic and Programmable Electronic Systems. It is
fairly agnostic about software implementation language. In addition to this you should have a
couple of other documents within your development organisation (probably better styled as guides).
Some years ago I published the Forth Coding Standard as a public domain document. From this
start I know that a few companies have adopted and adapted it to great benefit in making the Forth
Source Code more readable. It promotes a more literate style of presenting the source code.

Adopting and following such style guidelines should also help in automating some of the more
tedious tasks associated with providing a good quality documentation of the installed system. Tools
such as DocGen can help here. Additionally, we have the language standards, such as Forth200X,
that we can conform to in order to aid portability of code and/or programmers between Forth using
organisations. Standards also aid in wider collaborations.

In Forth Certification the elements of interest are:-

 The words name which is a reasonably good identifier

 The Glossary Text which becomes the words functional specification of performance.

 The Stack Comments which details the input and output parameters

 The Word Make-up which is the words that this word uses in order to perform its intended

function.

To certify that the word performs its allotted functionality and has no side effects we take the above
four items and perform the following:

 Static Inspection is a Fagan Style examination to ensure that the apparent intent of the

requirements as stated in the glossary text are implemented correctly. Such inspection will
also require that the words used in the make-up of this word have been applied correctly.
Earlier words should also have been certified in a similar manner.

 Functional Test to ensure the word actually compiles and performs as specified. Such

testing should explore all pathways of logic within the word.

 Limits Test to explore the unwanted side effects a word may have and to ensure that such

limitations have been properly documented (in the glossary text). This will ensure that only
the right amount of data is pulled from the stack, the stack does not underflow and all logic
paths have been exhaustively tested to ensure no adverse behaviours exist.

As most Forth systems are built bottom-up, the above becomes just an extension of the normal test
as created philosophy. However, for certification the coder should pass code, he is satisfied with, to
others to perform the above three processes. That, though, is just to maintain some independence
between the coding stage and the certification steps. Many of the safety standards demand such
independence.

Benefits of a Component Oriented Approach in Forth

Once the component has been coded and certified it may be submitted to a library repository so that
it is available for re-use in other projects. If the code is stored as a package along with its
certification documentation then the whole library could be considered as tried and tested code that
could be used anywhere else so long as its provisions matched the requirements of the new use.
Why should Certified Forth code not be as moveable and re-usable as say, an M25 nut fitting onto
any other M25 bolt. Such mobility and re-use of precoded components will ease the creation of
much larger certifiable systems in the future. The level of documentation for a certified component
is higher than for a non-certified component due to fully accounting for each components
limitations. This is, though, much like documenting the Maximum Permitted Voltages on an
electronic component.

“We have witnessed hosts of microprocessors and microcomputers marching from cradle to grave,
right before our eyes. Languages and operating systems come and go. Even in Forth, which I use to
code for a living and write about to entertain, we've seen good work done and disappear, come and
go. Have we seen the best yet?” [C.H.Ting]

1. I think we might be about to, and you could and should make that happen.

References & Notes:-

[Koopman1] “The Grand Challenge of Embedded System Dependability” by Koopman P. given in
a panel session at Dependable Systems and Networks 29th June 2011.
<http://users.ece.cmu.edu/~koopman/pubs/koopman11_embedded_dependability_challenges.pdf>

[Koopman2] “Better Embedded Software Systems” by Philip Koopman, ISBN 978-0-9844490-2

[Monforton] “Good vs. poor documentation: Don’t be ‘that guy’” by Jeff Monforton 17th December 2013.

[SEI] “CMMI Distilled” by Dennis M. Ahern, Aaron Clouse & Richard Turner ISBN 0-321-18613-3

[Kelly] “Configuration Management: The changing Image” by Marion Kelly ISBN 0-07-70977-9

[C.H.Ting] “Footsteps in an Empty Valley” by C. H. Ting publishd by Offette Enterprises 1985.

	Mechanics
	Electrical & Electronics
	Software
	Development Process
	C.O.D.E

