Forth Floating Point Word-Set
without Floating Point Stack

Willi Stricker
Springe, Germany,
September, 20, 2012

Preface

Originally computers work with integer numbers only. That is as well true for the Forth programming
language with its basic words UM*, UM/MOD and further *, /, MOD, */ and */MOD.

For practical use this integer arithmetic is very restricted and there were lots of attempts to implement
floating point arithmetic in computers as well. But in contrast to integer numbers there are lots of choices how
to represent floating point numbers. Due to this problem the IEEE standards committee established the IEEE
standard for floatng point numbers.

The main properties are:

The floating point number is separated in 3 parts: sign, significant and (transformed) exponent.

The significant with suppressed 1 (first bit) (normalized with a special denormalized treatment for very small
numbers).

Especially they standardised two formats: single precision (32 bits wide) and double precision (64 bits wide)
and additionally a special format for internal representation (80 bits wide).

Software versus hardware

At first the floating point arithmetic was programmed by software, using different formats. Later, hardware
components were offered to avoid extensive programming and execution time, especially since the IEEE-
format was established. The special floating point hardware is either an 1/O-port or a so called
~coprocessor. Now the coprocessors are mostly incorporated in standard microprocessors.
The main features of floating point coprocessors are:

* Use of a special coprocessor interface with special instructions

» The internal representation of floating point numbers is 80 bits (IEEE special format)

* It has its own internal stack for floating point numbers

* The access of the operands needs special programming steps from ,outside“ via the floating point

stack.

Nowadays most ,better microprocessors have an integratet floating point coprocessor. On the other hand
especially for smaller systems without coprocessor it is sometimes necessary to use floating point numbers
and arithmetic and that must be programmed by software.

Consegence:
There are two choices:

» Using the floating point coprocessor directly, that means access of the operands by the floating point
stack with special use of control instructions and control registers,

* Using floaing point arithmetic without floating point stack with either floating point created by
software (no coprocessor) or using the coprocessor indirectly by hiding the hardware by software
adaption.

In the Forth 2012 standard both choices are offered, implementation dependant.

Floating point arithmetic without floating point stack in Forth

That means the standard Forth parameter stack is used for all numbers in the same manner. For a 32 bit
system: Integer and single precision floating point numbers have 32 bits, double integer and double precision
floating point numbers have 64 bits

For example adding two numbers
with

VARIABLE INT1 VARIABLE INT2 VARIABLE INT3
VARIABLE FLOl VARIABLE FLO2 VARIABLE FLO3
integer addition:

INT1 @ INT2 @ + INT3 !

floating:

FLO1l @ FLO2 Q@ F+ FLO3 !

Remark
There is no need for special treatment of fetching, storing or alignment of floating point numbers.
Obviously the work with these numbers is much more easy to handle.

Problem: Double precision floating point numbers

The floating point numbers used in a floating point stack are always in 80 bit special format. Consequently
there is no special difference necessary for single or double precision because all operations are done on the
floating point stack. Only for input, output and storage it is necessary to convert the numbers into the used
format.

In contrast the numbers on the parameter stack have to be in the working format. So all operations must be
executed in that format.

Conclusion:

Like for integer numbers all operators must be present in single and double format (F+ and DF+ etc.).

For example adding two double precision numbers

with

2VARIABLE INT4 2VARIABLE INT5 2VARIABLE INT6
2VARIABLE FLO4 2VARIABLE FLO5 2VARIABLE FLO6
integer addition:

INT4 2Q INT5 2Q D+ INT6 2!

floating addition:

FLO4 2@ FLO5 2@ DF+ FLO6 2!

Double precision input

In Forth2012 floating point numbers have no distinguishing mark to indicate the input as single or double
precision. For integers in Forth there is the mark dot ,..“ to indicate the double precision input anywhere inside
the digits.

Floating point numbers in Forth have a dot already as a position for the fractional (decimal) point. So other
than Forth2012 standard it is suggested to add another dot at the end of the input streem to indicate
double precision floating point inputs.

Examples:

single floating: 123.4E7 45E-6 -332E

double floating: 123.4E7. 45E-6. -332E.

Double precision output:

As stated above outputs need a special word, suggested ,,D.“ The output is just printed with the
maximum count of possible digits.

Examples:

input streem: 123.4E7

Result: FS. 1.234000E9

input streem: 123.4E7.

Result: DF. 1.234000000000000E9

Conclusion

Appendix A schows the whole Forth20012 floating-point word set in a table with remarks about the use with
and without floating point stack and recommended words for double precision.

Appendix B shows the main Forth words for a floating point word set written in high level Forth to indicate
that it is just a pretty simple and short program. It needs only about 2 kByte for a 32 bit system!

Appendix A

Comparison of floating point words with and without floating point stack with single and
double precision:

Remarks:

*) Instructions necessary for double precision floating point arithmetic without floating point stack but not
defined in Forth 2012

**) one of them maybe defined as standard, presumably FROUND

FORTH 2012 FORTH 2012 FORTH 2012

with Floating stack without floating stack without floating stack
single and double precision single precision double precision
Format alignments

FALIGN Not used

FALIGNED Not used

DFALIGN Not used

DFALIGNED Not used

SFALIGN Not used

SFALIGNED Not used

FLOAT+ Not used

FLOATS Not used

FFIELD Not used

SFLOAT+ Not used

SFLOATS Not used

SFFIELD Not used

DFLOAT+ Not used

DFLOATS Not used

DFFIELD Not used
Declarations

FCONSTANT Use CONSTANT instead Use 2CONSTANT instead
FVARIABLE Use VARIABLE instead Use 2VARIABLE instead
FLITERAL Use LITERAL instead Use 2LITERAL instead
REPRESENT Not used

FVALUE Not used

Memory access

F@ Use @ instead

F! Use ! instead

DF@ Use 2@ instead
DF! Use 2! instead

Special control

FLOOR

Not implemented

FROUND

e.g. standard **)

FTRUNC e.g. standard **)
F~ Not used
PRECISION Not used
SET-PRECISION Not used

Stack opertations

FDEPTH Use DEPTH instead

FDROP Use DRORP instead Use 2DROP instead
FDUP Use DUP instead Use 2DUP instead
FOVER Use OVER instead Use 20VER instead
FROT Use ROT instead Use 2ROT instead
FSWAP Use SWAP instead Use 2SWAP instead

Numerical output

F. F.
FE. FE.
FS. FS. DF. *)
Format conversion
>FLOAT >FLOAT
F>D F>D DF>D*)
F>S F>S
D>F D>F D>DF *)
S>F S>F

F>DF *) DE>F *)

Standard arithmetic functions

FNEGATE FNEGATE DFNEGATE *)
F+ F+ DF+ *)
F- F- DF- *)
F* F* DF* *)
F/ F/ DF/ *)
FABS FABS DFABS *)
Comparison

FMIN FMIN DFMIN *)
FMAX FMAX DFMAX *)
FO< FO< DFO< *)
FO= FO= DF0= *)
F< F< DF< *)
Extended functions

FSIN FSIN DFSIN *)

FEXP FEXP DFEXP *)

Appendix B

Forth programs for a short floating point word set without floating point stack with single
precision

Forth programs for the words FNEGATE, F+, F-, F*, F/, S>F, F>S written in high level forth

Explanations:

An intermediate format is defined for the three components, called ,FX* (s e m), that separates the
components:

s = sign: msb. 0 = positive, 1 = negative,

e = exponent: signed exponent that is a retransformed transformed exponent (e = et — 7F),

m = mantissa: significant with open bit and normalized,

f =floating point number according to IEEE (single precision, 32 bits wide),

d = single integer number (32 bits wide)

EIRE R R I o I I i i EIE R S I b b R S I I
floating kernel for 32 bit processor
EE R I I I R I R R R I I R R R R R R I I I R R R I I I R R R I I S R R R R I I R R I I I R

\ ---- conversion auxiliari@es --=--------ccccmmm oo
: FX>F (mes -- f)
[HEX | N mmmmmm o m o e e o
80000000 AND >R \ sign
7F + >R \ exponent
DUP O= IF R> DROP 0 >R THEN \ test O mantissa
R@1 <
I F \ denormalized ?

R> 1- >R BEG N U2/ R> 1+ DUP >R 0= UNTIL \ adjust exponent
THEN \
R@FE > IF R> DROP FF >R DROP 0 THEN \ adjust infinity

007FFFFF AND \ clear hidden bit

R> 17 SH FTL OR \ add exponent

R> OR \ add sign

;. DECI MAL

: F>FX (f ->mes)

[= G I T e
DUP 80000000 AND >R \ sign

DUP 7F800000 AND 17 SHI FTR 7F - >R \ exponent

7FFFFF AND \ mantissa

R@-7F > \ not denormmlized ?

I F 800000 OR \ add hi dden bit

ELSE DUP 0= NOT \ el se check for zero and nornal .

I F 2* BEG N DUP 800000 AND 0= WHI LE 2* R> 1- >R REPEAT THEN
THEN \

R> R> \ add exponent and sign
; DECI MAL
\ ---- fixpoint <-> floating point conversion --------------------
: S>F (d--1)
L
DUP 0= \ zero ?
I F

-127 0 \ e =-127, s =0
ELSE

DUP [HEX] 80000000 [DECIMAL] AND >R\ sign
DUP O< | F NEGATE THEN
31 >R BEG N DUP 0< NOT WM LE 2* R> 1- >R REPEAT \ norm eft

8 SH FTR R> \ mantissa, exponent
R> \ sign
THEN \ mes =fx
FX>F \ convert to f
: F>S (f --d)
| s m o e mmemao -
F>FX \ me s
>R \ sign
23 - DUP 7 > \ exponent, 8-1 because of sign bit
I F \ infinit)
DROP DROP R> [HEX] | F 80000000 ELSE 7FFFFFFF THEN
[DECI MAL]
ELSE
DUP 0>

I F SH FTL ELSE NEGATE SHI FTR THEN
R> | F NEGATE THEN

THEN ;

\ ---- floating point arithmetic ---------------“--“-----------
: FNEGATE (f -- fneg)

[= = G I T e
80000000 XOR \ toggle sign bit

; DECI MAL

: F+ (f1f2 -- fsum)

[= G I T e
>R F>FX R> F>FX \ convert operands to fx

>R 2 ROLL >R \ save signs,

2 ROLL OVER OVER MAX >R SWAP - DUP >R 0< \ exponent, exp-diff

I F

SWAP R> NEGATE SHI FTR SWAP \ normalize ml if necess

ELSE R> SH FTR\ normalize nR if necess

THEN

R> R> SWAP >R | F SWAP NEGATE SWAP THEN \ negate ml if necess
R> R> SWAP >R | F NEGATE THEN \ negate nR if necess

DUP 80000000 AND DUP R> SWAP >R >R\ add nl and n2, sign
| F NEGATE THEN \ negate mantissa if necess
DUP 0= NOT
| F \ mantissa not zero ?
DUP OOFFFFFF. U>
| F
U2/ R> 1+ >R
ELSE \ normalize
BEG N DUP 800000 AND 0= WHI LE 2* R> 1- >R REPEAT
THEN
THEN
R> R> \ add exponent and sign
FX>F \ convert to f
;. DECI MAL
: F- (f1Lf2 -- fdiff)
| m ot oot o e e e e e e o e e e e e maoa---
FNEGATE F+
: F* (f1f2 -- fprod)
[HEX | N mmmmmm o m e e e e e e e e
>R F>FX R> F>FX \ convert operands to fx
3 ROLL XOR >R \ sign
2 ROLL + >R \ exponent
UMF \ mantissa 64 bits
FFFF AND WBWAP SWAP FFFFO000 AND WABWAP OR \ reduce to 32 bhits

DUP DUP 80 AND IF 100 + THEN \ round
DUP 0<

| F SWAP DROP R> 1+ >R \ normali ze
ELSE DROP 2* DUP 80 AND | F 100 + THEN
THEN \ normalize and round
8 SH FTR \ normalize to 24 bits
R> R> \ add exponent and sign
FX>F \ convert to f
; DECI MAL
: F/ (f1f2 -- fquot)
I = G I T e
>R F>FX R> F>FX \ convert operands to fx
3 ROLL XOR >R \ sign
OVER 0= | F DROP DROP 800000 -96 THEN \ check for zero
ROT SWAP - >R \ exponent
>R 0 SWAP R> UM MOD2 \ mantissa division
0> | F U2/ 80000000 OR ELSE R> 1- >R THEN \ normali ze
8 SH FTR \ normalize to 24 bits
SWAP DROP \ drop remainder
R> R> \ add exponent and sign
FX- >F \ convert to f
; DECI MAL

Auxiliary instructions used in the above programs

: UM/MOD2 (d1 dh d — mod ql gh) \ unsigned devide with double quotient result
>R 0 R@ UM/MOD R> SWAP >R UM/MOD R> ;

: WSWAP (wO:wl — wl:w0) \ swap operand halphs
DUP 16 LSHIFT SWAP 16 RSHIFT OR ;

	Appendix A
	Appendix B

