
Standardize Strings Now!

M. Anton Ertl∗

TU Wien

Abstract

This paper looks at the issues in string words: what
operations may be required, various design options,
and why this has lead to the current state of stan-
dardization of string operations that is insufficient
in the eyes of many.

1 Introduction

Despite the presence of a string wordset in Forth-94,
there are frequent complaints about lack of string
support in Forth, and many Forth programmers de-
sign their own string library to counter this lack.

2 String operations

This section looks at the string operations present
in the language AWK, which is designed for string
handling, which gives us an idea of what things
string words should be capable of.

AWK is a language that is designed for process-
ing text files, extracting data from them, and out-
putting the data in some different format. Below
we describe GNU AWK (gawk), which offers some
features that other AWK variants do not have.

AWK has some language-level capabilities: It
splits a file into lines/records (based on a record
separator regexp), splitting a line/record into fields
(based on a field separator regexp, or a field regexp);
it matches lines/records with regexps and uses that
to select an action to perform; the action can access
the fields through the $n syntax. AWK also allows
easy string concatenation by juxtaposing the two
strings, and it supports strings as array indexes.

AWK also provides a number of string functions,
which can be divided into several categories:

sorting asort, asorti

substitution within strings gensub, gsub, sub

replace patterns in arbitrary strings, sprintf
constructs a string from a template.

conversion strtonum, sprintf

∗Correspondence Address: Institut für Computer-

sprachen, Technische Universität Wien, Argentinierstraße 8,

A-1040 Wien, Austria; anton@mips.complang.tuwien.ac.at

searching index, match

information length

splitting patsplit, split

substrings substr

case conversion tolower, toupper

3 Design issues

This section discusses the design issues of string
words in Forth.

3.1 Desirable Properties

Ease of use One property we would like strings to
have is that programming with them is as easy
as programming with single or double numbers,
without such encumbrances as explicitly man-
aging buffers (including avoiding buffer over-
flows).

Integration Another nice property is that exist-
ing words are useful for dealing with strings.
E.g., we can use 2dup 2swap 2over to handle
c-addr u type string descriptors on the stack,
2@ 2! for storing them, and arithmetic words
for computing substrings.

As we will see, these two properties are somewhat
at odds with each other.

3.2 Allocation

Manual buffer management

Who allocates string buffers, and who frees them?
This issue comes up when generating new strings,

such as string concatenation, and is probably the
primary issue why we have not found a consensus on
a string wordset that includes words for generating
new strings (not even concatenation).

One approach is that the word that produces the
new string allocates it, e.g.

\ s+ (c-a1 u1 c-a2 u2 -- c-a3 u3)

dir s" /" file s+ s+ r/o open-file throw

Ertl Standardize Strings Now!

The usage looks cute, but it does not free the
strings, and therefore is a memory leak. With
proper freeing it is no longer so cute:

dir s" /" file s+ over >r s+ r> free throw

over >r r/o open-file throw r> free throw

This is one reason for disliking this approach, but
a stronger one for a significant subset of the Forth
community is the use of allocate-style allocation
itself.

Embedded systems Forths do not necessarily sup-
port allocate, and even if they have it, one may
not want to use it, because of fragmentation or per-
formance concerns. On the other hand, just like
embedded users can avoid allocate even though it
is standardized, they can just as well avoid string
creation words that allocate, and create strings
in the way they do now. One probably won’t use
Forth as a scripting language on these embedded
systems anyway.

Instead of allocating the string buffer in the cre-
ating word, one can pass a buffer to the word. This
approach is used in read-line and substitute,
and a variant of s+ with this kind of interface looks
as follows:

\ s+ (c-a1 u1 c-a2 u2 c-a3 u3 -- c-a3 u4 n)

create buf1 200 chars allot

create buf2 200 chars allot

dir s" /" buf1 200 s+ 0< abort" buf short"

file buf2 200 s+ 0< abort" buf short"

r/o open-file throw

This does not appear attractive, either. A major
problem with this approach is that it is possible to
provide a too-small buffer, and in general (not for
s+, but, e.g., for substitute), it is hard to know in
advance how large the target buffer should be.

Automatic reclamation

So we want to avoid the problems of passing a pre-
allocated buffer as well as the problems of having
to free the buffers. Many other languages do this
by using garbage collection. We can do that, too,
and there is a garbage collector for Forth (written in
standard Forth). With garbage collection, we can
use the original s+ usage example.

Requiring garbage collection as part of a string
wordset is probably not going to find consensus,
however. Garbage collection has a number of dis-
advantages: It is more complex to implement than
explicit deallocation; it is most easily implemented
in a stop-the-world fashion, and that does not com-
bine well with real-time systems or multi-threading.

There has been a lot of work on making garbage
collection compatible with real-time requirements
and multi-threading, but the implementation cost is

significant. Also, most (all?) of this work assumes
that the compiler and run-time system knows what
is an address and what is not; this is generally not
possible in Forth.

A practical problem with garbage collection is
that, in general, garbage collection has to scan all
the data memory, the stacks, and the locals to see
which strings are still referenced.

This need can be reduced by always using special
words to deal with strings, to keep track of string
references. E.g., one might declare all memory stor-
age for string descriptors explicitly, thus avoiding
the need to scan all data memory (for dynamically
allocated memory, one needs to untrack the mem-
ory in some way).

Furthermore, we could have a separate string
stack with separate string stack operations, and
str@ and str! instructions for accessing string de-
scriptors in memory. This approach has a low inte-
gration, though.

If the Forth system knows all the string descrip-
tors, there are additional ways for automatic recla-
mation: In particular, we can use reference counting
(since strings don’t contain pointers, the cycle prob-
lem of general reference counting cannot occur).

Or, as a variant of that, we can use the follow-
ing simple string buffer management strategy that
ensures that every string only has one reference:
copy the string when we copy the descriptor and
free the string when we drop or overwrite the de-
scriptor (this is inspired by Henry Baker’s article on
linear logic [Bak94]).

Region-based memory management

A manual reclamation method that is more conve-
nient than allocate/free is region-based memory
management. The program can create several re-
gions, allocate memory in these regions, and finally
free all the memory allocated in a region at once.

You typically collect data into a region if it all
becomes garbage and should be freed at (mostly)
the same time. E.g., in a compiler you might have
a region for stuff that is relevant for a basic block
and can be freed after you are done with the block, a
region for stuff that is relevant for a colon definition,
etc.

One nice feature of regions is that it allows the
programmer to decide whether he wants to live
with more not-yet-freed garbage or whether he
wants to invest more programming effort and have
finer-grained regions for less not-yet-freed garbage
(up to having the same programming effort as
allocate/free).

The following example shows a fine-grained use
(each of the two memory allocations has a separate
region), with the region passed explicitly as a pa-
rameter on the stack:

Ertl Standardize Strings Now!

\ s+ (c-a1 u1 c-a2 u2 region-id -- c-a3 u3)

: make-path

{: dir-a dir-u file-a file-u outer --

path-a path-u :}

new-region {: tmp :}

dir-a dir-u s" /" tmp s+

file-a file-u outer s+

tmp free-region ;

Here we have two regions: outer, and tmp. We
pass the id of the target region to s+, and once we
are done with the strings in tmp, we free the region.

One problem with this approach is that we have
to pass a region-id to any word that returns allo-
cated memory, which causes stack juggling (avoided
above by the use of locals); and that additional pa-
rameter is needed for every word that generates a
string. Instead of passing the region-id explicitly,
it can be passed through an implicit current region

through a context wrapper [Ert11].
Another problem with the example above is that

it is not any simpler than explicit deallocation.
That’s because it does exactly the same thing, and
deallocates the intermediate result as soon as pos-
sible.

Here is an example where the programmer
chooses to let the intermediate result hang around
longer, in exchange for easier programming. E.g., if
we let the the intermediate result live as long as the
final result, and pass the current region implicitly,
we can program make-path in the ease-of-use way:

\ s+ (c-a1 u1 c-a2 u2 -- c-a3 u3)

: make-path

{: dir-a dir-u file-a file-u --

path-a path-u :}

dir-a dir-u s" /" file-a file-u s+ s+ ;

: open-path (dir-a dir-u file-a file-u --)

new-region dup >r

[’] make-path with-region

r/o open-file throw

r> free-region ;

The region management happen at an outer level.
Regions are an interesting idea, but have not

made a big impact outside Forth; I guess most go for
garbage collection if they want anything more auto-
matic than explicit deallocation. However, given all
the problems of general garbage collection, regions
may be the way to go for Forth.

One widely available implementation of regions
are glibc’s obstacks (which offer the additional con-
venience that every region can be treated as a
stack).

3.3 String representation

The favoured string representation in standard
Forth is c-addr u. It allows representing strings

of any length with any content, and you can pro-
duce arbitrary substrings without needing to copy
the string to a new buffer. The disadvantage of
this representation is that it takes two cells on the
stack, and dealing with several strings at once can
therefore be cumbersome.

The other common string representation in stan-
dard Forth is the counted string: The on-stack rep-
resentation is the address of the count byte; the
count byte is followed by the characters of the
string. The advantage of this representation is that
it needs only one cell on the stack. But it can only
represent strings with up to 255 chars, and any
substring operation needs to create a new string
buffer. Converting from counted to c-addr u is
easy (count), but the other direction is cumber-
some. Some people have suggested using cell counts
instead of byte counts to get rid of the length limi-
tation.

Some people have proposed using zero-
terminated strings (as in C). The on-stack
representation is the address of the first character.
It can represent strings of arbitrary length that
don’t contain a NUL char. Substring operations
usually need to create a new string buffer (unless
the substring is just the tail of the input string).
The main advantage is that this string repre-
sentation makes interfacing to some C functions
easier; note that C offers c-addr u-compatible
versions of many functions in order to be able to
deal with arbitrary text; e.g., there is fputs() for
zero-terminated strings and fwrite() for c-addr

u strings.

If we go with a separate string stack and an in-
memory string representation that is only accessed
through string words, strings become an abstract
data type, and the implementer has a choice of in-
ternal string representations. Such a representation
may include such things as a reference count.

3.4 Regular expressions

Many scripting languages support searching within
strings for a pattern; this is used for selecting among
strings, for splitting strings into parts (with the
pattern used either as separator or to specify the
parts), or for replacing the patterns with replace-
ment strings. The common practice for specifying
patterns is regular expressions (regexps); there are
some variations of regular expressions, and the Perl
5 variant is probably the most popular one.

All of the uses mentioned above can be imple-
mented with the following regular expression prim-
itive:

Ertl Standardize Strings Now!

search-regexp (c-a1 u1 c-a2 u2 --

c-a1 u3 c-a4 u4 c-a5 u5 true | false)

Search for regexp c-a2 u2 in string c-a1

u1; if the regexp is found, c-a1 u3 is the
substring before the first match, c-a4 u4

is the first match, and c-a5 u5 is the rest
of the string, and the TOS is true; other-
wise return false.

If you use the same regexp several times, it can be
more efficient to compile the regular expression into
a more readily executed form once, and then use
that form repeatedly. An interface for that would
be:

:regexp (c-a2 u2 "name" --)

Compile regular expression c-a2 u2, de-
fine name to perform the action below:

name execution: (c-a1 u1 --

c-a1 u3 c-a4 u4 c-a5 u5 true | false)

Search for regexp c-a2 u2 in string c-a1

u1; if the regexp is found, c-a1 u3 is the
substring before the first match, c-a4 u4

is the first match, and c-a5 u5 is the rest
of the string, and the TOS is true; other-
wise return false.

3.5 Implicit parameters

The c-addr u representation leads to words with a
lot of stack parameters, e.g., compare, search and
search-regexp. This is often cumbersome to work
with, and one may want to use some of the tech-
niques for reducing stack depth [Ert11]. In particu-
lar, we can use implicit parameters and context-
wrappers to get rid of one input and/or output
string.

The obvious implicit input parameter is the parse
area (source), and we can use the context-wrapper
execute-parsing (addr u xt --) to put an
input string in the parse area; then we need pars-
ing variants of the words that have too many input
strings. E.g., we could have a parsing variant of
search-regexp:

parse-regexp (c-a2 u2 --

c-a1 u3 c-a4 u4 true | false)

Search for the regexp c-a2 u2 in the parse
area. If a match is found, c-a4 u4 is the
address of the match, and c-a1 u3 is the
string that was skipped before the match
was found. The next parse starts right be-
hind the matching string.

For string results, the implicit output parameter
is the user output device; i.e., type is the implicit-
output variant of move. The context-wrapper is
>string-execute (xt -- c-a u).

As an example, here we have a program that re-
places all the occurences of natural numbers with
<num>, passing both input and output parameters
through a context wrapper.

: repl-num1 (--)

begin

s" [0-9]+" parse-regexp while

2swap type 2drop ." <num>"

repeat

0 parse type ;

: repl-num2 (c-a u --)

[’] repl-num1 execute-parsing ;

: repl-num (c-a1 u1 -- c-a2 u2)

[’] repl-num2 >string-execute ;

This code would be a bit tighter with quotations.

4 Conclusion

There are a number of partly conflicting require-
ments for string packages, in particular

• Ease of use

• Integration with the rest of Forth

• No garbage collection

The various approaches to these problems have
led to a large variety of string packages, that can-
not be reconciled. Yet, extending the string capabil-
ities of Forth is a much-requested (and, in my case,
often-used) feature, so we should standardize ad-
ditional string capabilities at some point, although
the new words will be in parallel to what various
string packages offer and ideally make them redun-
dant.

When I started working on this paper, it was un-
clear to me what the right approach is. Now, it
seems to me that the solution is to continue in the
direction that the standard string wordset has gone,
and add to that:

• Use c-addr u as on-stack string representa-
tion.

• Add words that create new strings by allocat-
ing space for them (e.g., >string-execute).

• To make memory reclamation easier, add a
region-based memory allocation mechanism
(useful not just for strings).

Ertl Standardize Strings Now!

• To reduce the stack depth, use implicit
parameters with context-wrappers such as
execute-parsing and >string-execute.

• Add a word or several for matching regular ex-
pressions.

References

[Bak94] Henry Baker. Linear logic and permutation
stacks — the Forth shall be first. ACM

Computer Architecture News, 22(1):34–43,
March 1994.

[Ert11] M. Anton Ertl. Ways to reduce the stack
depth. In 27th EuroForth Conference,
pages 36–41, 2011.

