
Region-based Memory Allocation

M. Anton Ertl

TU Wien

Problem: Memory management

How to reclaim no longer needed memory?

allot

• can only reclaim in LIFO manner

allocate/free

• free after the last reference is consumed

• error prone:

dangling reference (free too early)

memory leaks (forgot to free)

• various workarounds

restrict programming

may cost performance (e.g. extra copies)

Garbage collection

• Convenient, but

• Complex, particularly with:

Real-time requirements

multicores

little type information (Forth)

• Forth garbage collection library since 1999

Reference counting

• Cyclic data structures

• slow

• Special dup, drop, ! etc. for addresses

Region-based memory allocation

new-region (-- region-id)

region-alloc (u region-id -- addr)

free-region (region-id --)

Uses

• Separate regions for things that die at the same time

• E.g., in compiler:

region for the block

region for the definition

• In web service: Region for the HTTP request

Using regions

• Programmer control:

• Fewer regions: more convenient

• More regions: less dead wood

• Start out with few, add more if necessary

Implementation

block-region

definition-region

Space-efficient and time-efficient for small objects

Alternative interface

new-region (-- region-id)

free-region (region-id --)

do-region (xt --) \ xt (region --)

with-region (region-id xt --) \ xt (--)

allocate (u -- addr ior)

free (addr -- ior) \ does nothing

[: [’] word-using-allocate with-region use-result ;] do-region

Library words using allocate are usable with regions

Conclusion

• More convenient than free

• Compatible with multicores and real-time

• Why have regions not taken over the world?

Forth: interface issues

other languages: garbage collection won

