
PAF: A portable assembly language∗

M. Anton Ertl†

TU Wien

Abstract

A portable assembly language provides access to
machine-level features like memory addresses, ma-
chine words, code addresses, and modulo arith-
metics, like assembly language, but abstracts away
differences between architectures like the assembly
language syntax, instruction encoding, register set
size, and addressing modes. Forth already satisfies
a number of the characteristics of a portable assem-
bly language, and is therefore a good basis. This
paper presents PAF, a portable assembly language
based on Forth, and specifically discusses language
features that other portable assembly languages do
not have, and their benefits; it also discusses the
differences from Forth. The main innovations of
PAF are: tags indicate the control flow for indirect
branches and calls; and PAF has two kinds of calls
and definitions: the ABI ones follow the platform’s
calling convention and are useful for interfacing to
the outside world, while the PAF ones allow tail-call
elimination and are useful for implementing general
control structures.

1 Introduction

Traditionally compilers have produced the assem-
bly language for the various target architectures,
and interpreters were written in assembly language.
The disadvantage of this approach is that it requires
retargetting for every new architecture. As a result,
many such compilers and interpreters target only
one or few architectures, and ports to new architec-
tures often take quite a while.1

∗An slightly shorter version of this paper appears at KPS
2013; I recommend the present version.

†Correspondence Address: Institut für Computer-
sprachen, Technische Universität Wien, Argentinierstraße 8,
A-1040 Wien, Austria; anton@mips.complang.tuwien.ac.at

1E.g., AMD64 CPUs became available in 2003; The lina

interpreter for AMD64 became available in 2008, the iForth

compiler became available for AMD64 in 2009 (and 32-bit
releases were stopped at the same time), and other signifi-
cant Forth compilers like SwiftForth, VFX, and bigForth still
do not offer 64-bit support in 2013. By contrast, the Gforth

interpreter which uses a portable assembly language, was
available there right from the start (thanks to our portable
assembly language being there from the start), and we veri-
fied that by building and testing Gforth on an AMD64 system
in August 2003.

Portable assembly languages promise to solve this
problem: The source language compiler (the front
end) compiles to (or the interpreter is written in)
the portable assembly language, and the compiler
or interpreter will work on a variety of architectures
without extra effort. Of course the portable assem-
bly language implementation has to be targeted for
these architectures, but that effort can be reused
(and possibly the cost shared) by several compil-
ers/interpreters.

In this paper we present a new portable assembly
language, PAF (for “Portable Assembly Forth”).
There have been a number of languages that been
designed and/or used as portable assembly lan-
guages (Section 2), so why introduce a new one?

1.1 Contributions

An issue that a number of portable assembly lan-
guages have had is that they require the code to be
organized in functions that follow the standard call-
ing convention (ABI) of the platform, which usually
prevents tail-call optimization. PAF provides ABI
calls and definitions for interfacing with the rest
of the world, but also PAF calls and definitions,
which (unlike ABI calls) can be tail-call-optimized
and can therefore be used as universal control flow
primitives [Ste77] (see Section 3.10 and 3.11).

Another problem is that indirect branches and
calls have a high cost, because the compiler has to
assume that every branch/call can reach any en-
try point. PAF introduces tags to specify which
branches/calls can reach which entry points (see
Section 3.9 and 3.10).

The most significant difference between PAF and
Forth is that PAF contains restrictions that en-
sure that the stack depth is always statically deter-
minable, so stack items can be mapped to registers
(Section 3.3 and 3.9). It is interesting that these re-
strictions are relatively minor and don’t affect much
Forth code; it’s also interesting to see an example
of Forth code that is affected (see Section 5).

2 Previous Work

This section discusses existing portable assembly
languages, their features and deficiencies and why
we feel the need for a new one.

Ertl PAF: A portable assembly language

2.1 C

C and its dialects, like GNU C, have been used as a
portable assembly language in many systems: It is
the prevalent language for writing interpreters (e.g.,
Python, Ruby, Gforth) and run-time systems; C
has also been used as target language for compilers:
(e.g., the original C++ compiler cfront, and one of
the code generation options of GHC).

However, the C standard specifies a large number
of “undefined behaviours”, including things that
one expects to behave predictably in a portable as-
sembly language, e.g., signed integer overflow. In
earlier times this was not a problem, because the C
compilers still did what the programmer intended.
Unfortunately, a trend in recent years among C
compiler writers has been to “optimize” programs
in such a way that it miscompiles (as in “not what
the programmer intended”) code that earlier com-
piler versions used to compile as intended. While
it is usually possible to find workarounds for such a
problem, the next compiler version often produces
new problems, and with all these workarounds the
direct relation from language feature to machine
feature is lost.

Another problem of C (and probably a reason
why it is not used as often as compiler target lan-
guage as for interpreters) is that its control flow is
quite inflexible: Code is divided into C functions,
that can be called and from which control flow can
return; the only other way to change control flow
across functions is longjmp().

Varargs in combination with other language fea-
tures have led to calling conventions where the
caller is responsible for removing the arguments
from the stack. This makes it impossible to im-
plement guaranteed tail-call optimization, which
would be necessary to use C calls as a general con-
trol flow primitive [Ste77].

As a result, any control flow that does not fit the
C model, such as unlimited tail calls, backtracking,
coroutining, and even exceptions is hard to map to
C efficiently.

2.2 LLVM

LLVM is an intermediate representation for compil-
ers with several front ends, optimization passes and
back ends [LA04].

Unfortunately, it shares many of the problems of
C: In particular, you have to divide the code into
functions that follow some calling convention, re-
stricting the kind of control flow that is possible.
To work around this problem, it is possible to add
your own calling convention, but that is not easy.2

2Usenet message <KYGdnTH8PMyMpM7MnZ2dnUVZ_j-dnZ2d@

supernews.com>

LLVM was also promised to be a useful interme-
diate representation for JIT compilers, but report-
edly its code generation is too slow for most JIT
compiler uses.

LLVM supports fewer targets than C. Given that
it also seems to share many of the disadvantages of
C, it does not appear to be an attractive portable
assembly language to me, despite the buzz it has
generated.

2.3 C--

C-- [JRR99] has been designed as portable assembly
language. Many considerations went into its design,
and it appears to be well-designed, if a little too
complex for my taste, but the project appears to be
stagnant as a general portable assembly language,
and it seems to have become an internal component
of GHC (called Cmm there).

While C-- does not appear to be an option as
portable assembly language for use in practical
projects at the moment, looking at its design for
inspiration is a good idea.

2.4 Vcode and GNU Lightning

Vcode [Eng96] is a library that provides a low-level
interface for generating native code quickly (10 ex-
ecuted instructions for generating one instruction)
and portably. It was part of a research project and
has not been released widely, but it inspired GNU
Lightning, a production system.

The demands of extremely fast code generation
mean that GNU Lightning cannot perform any reg-
ister allocation on its own. Therefore the front end
has to perform the register allocation. It also does
not perform instruction selection; each Lightning
instruction is translated to at least one native in-
struction.

GNU Lightning also divides the code into func-
tions that follow the standard calling convention,
and one can call functions according to the calling
convention. However, it is also possible to imple-
ment your own calling conventions and other con-
trol flow, because the front end is in control of reg-
ister allocation, but (from reading the manual) it
is not clear if this can be integrated with the stack
handling by GNU Lightning und if one can use the
processor’s call instruction for your own calling con-
vention.

It is possible to use better code generation tech-
nology with the GNU Lightning interface, and also
to provide ways to use the processor’s call and re-
turn instructions for your own calling convention.

With these changes, wouldn’t the GNU Light-
ning interface be the perfect portable assembly lan-
guage? It would certainly satisfy the basic require-
ments of a portable assembly language, but as a

Ertl PAF: A portable assembly language

replacement for a language like C, it misses conve-
niences like register allocation.

3 Portable Assembly Forth
(PAF)

3.1 Goals

• Portability: Works on several different archi-
tectures

• Direct relation between language feature and
machine feature, i.e., if you look at a piece of
PAF code, you can predict what the machine
code will look like.

However, the relation between PAF and the
machine is not as direct as for GNU Lightning:
There is register allocation and instruction se-
lection, there may be instruction scheduling,
and code replication. Instruction selection and
instruction scheduling make better code possi-
ble (at the cost of slower compilation); regis-
ter allocation interacts with these phases, and
leaving it to the clients would require dupli-
cated work in the clients, as register allocation
is not really language-specific.

• Capabilities of the (user-mode part of the) ma-
chine can be expressed in PAF. However, this
goal is moderated by the needs of clients and
by the portability goal. I.e., PAF will at first
only have language features that compilers and
interpreters are likely to need (features can be
added when clients need them); and machine
features of particular architectures that cannot
be abstracted into a language feature that can
be implemented reasonably on all the intended
target machines will not be supported, either.

3.2 Target machines

While a portable assembly language can abstract
away some of the differences between architectures,
there are differences that are too difficult to bridge,
and would lead PAF too far away from the idea of
a direct correspondence between language feature
and architectural feature, so here we define the class
of machines that we target with PAF:

PAF targets general-purpose computer architec-
tures, i.e., the architectures that have been designed
as compiler targets, such as AMD64, ARM, IA-32,
IA-64, MIPS, PowerPC, SPARC.

Memory on the target machines is byte-addressed
with a flat address space; e.g., DSPs with sepa-
rate X and Y address spaces are not target ma-
chines. The target machines use modulo (wrap-
around) arithmetics and and signed numbers are
represented in 2s-complement representation.

The target machines have a uniform register set
for integers and addresses (not, e.g., accumulators
with different size than address registers), and pos-
sibly separate (but internally also uniform) floating
point registers.

3.3 Forth and PAF

Forth’s low-level features are quite close to assem-
bly language; e.g., like in assembly language, nei-
ther the compiler nor the run-time system main-
tains a type system, and the language differentiates
between different operations based on name, not
based on type; e.g., Forth has < for signed compar-
ison and U< for unsigned comparison of cells (ma-
chine words), just like MIPS has slt and sltu, and
Alpha has cmplt and cmpult.

Therefore Forth is a good basis for a portable as-
sembly language. However, there are features that
are problematic in this context: In particular, in
Forth the stack depth is not necessarily statically
determined (unlike in the JVM), even though in
nearly all Forth code the stack depth is actually
statically determined (known to the programmer,
but not always the Forth system). So we change
these language features for PAF.

A number of higher-level features of Forth are
beyond the goal of a portable assembly language,
so PAF does not support them.

On the other hand, there are a few things that are
missing in standard Forth that have to be added to
PAF, such as words for accessing 16-bit quantities
in memory.

3.4 Example

The following example shows two definitions writ-
ten in PAF:

\ cmpl %edx,%eax

: max \ jle L28

2dup >? if \ ret

drop exit endif \ L28:

nip exit ; \ movl %edx,%eax

\ ret

abi:xx- printmax {: n1 n2 -- :}

"max(%ld,%ld)=%ld\n\0" drop

n1 n2 2dup max abi.printf.xxxx-

exit ;

\ Call from C:

\ main() { printmax(3,5); return 0; }

The first, max, looks almost like conventional
Forth code, and corresponding assembly language
code for IA-32 is shown in comments to the right.
max does not have a fixed calling convention; the
PAF compiler can set a calling convention that is
appropriate for max and its callers (e.g., it can be

Ertl PAF: A portable assembly language

tail-called). Since max does not follow the plat-
form’s calling convention, it cannot be called from,
e.g., C code.

The second definition, printmax, follows the
standard ABI of the platform (as indicated by using
an abi: defining word. The xx- in abi:xx-3 shows
that printmax expects and consumes two cells from
the data stack and 0 floats from the FP stack and
produces 0 cells and 0 floats; a C prototype for this
definition could be void printmax(long, long).
Printmax calls max, and the compiler can choose the
calling interface between the call and max; it calls
printf using the standard calling convention with
the call abi.printf.xxxx-, where the xxxx- indi-
cates that four cells are passed as integer/address
parameters and the return value of printf is ignored.

Locals are used in printmax but can be used in
every definition. Exiting from the definitions is ex-
plicit.

3.5 Registers

Several language features correspond to real ma-
chine registers: Stack items, locals, and values.

Stack items (elements) are useful for relatively
short-lived data and (unlike locals) can be used
for passing arguments and return values. There
is no stack pointer and memory area specific to
the stack, it’s just an abstraction used by the
compiler. Stack manipulation words like DUP

or SWAP just modify the data flow and there is
no machine code that directly corresponds to
them (indirect consequences may be, e.g., move
instructions at control flow joins).

Locals live within a definition and are a conve-
nience: Local variables of the source language
can be mapped directly to PAF’s locals with-
out needing register allocation or stack man-
agement in the front end. If a source local
needs to be distributed across several PAF def-
initions (e.g., because a control structure of
the source language is mapped to a PAF (tail)
call), the local can be defined in each of these
definitions, and the constants are passed on the
stack across calls; this is not as convenient as
one might like, but seems to be a good com-
promise.

Values are global (thread-local) variables whose
address cannot be taken, so they can be stored
in registers.

If stack items and locals don’t fit in the registers,
they are stored in a stack that is not visible to PAF

3This paper assumes the use of a recognizer feature in
the Forth system to process parameterized names; the con-
ventional Forth way would be to use a parsing word, in this
case, e.g., abi: xx- printmax.

code; this stack stores items from the data and FP
stack, locals, and return addresses, so this does not
correspond to the memory representation of, e.g.,
the data stack.4

If values don’t fit in the registers, they are stored
in global/thread-local memory.

3.6 Memory

The words c@ uw@ ul@ (addr -- u) load un-
signed 8/16/32-bit values from memory, while sc@

w@ l@ (addr -- n) load signed 8/16/32-bit val-
ues from memory; @ (addr -- w) loads a cell (32-
bit or 64-bit, depending on the machine) from
memory; sf@ df@ (addr -- r) load 32/64-bit
floating-point values from memory. c! w! l!

! (x addr --) and sf! df! (r addr --

) store stack items to memory.

3.7 Arithmetics

The usual Forth words + - * negate and or

invert lshift rshift correspond to the arith-
metic and logic instructions present in every ma-
chine. There are also additional words like / m*

um* um/mod sm/rem that correspond to instruc-
tions on some machines, and have to be synthesized
from other instructions on other machines.

3.8 Comparison

The words =? <? u<? f=? f<? etc. compare
two stack items and return 0 for false and 1 for true.
They correspond to the Forth words = < u< f= f<

etc., with the difference that the Forth words return
−1 (all-bits-set) for true. A number of machines
have instructions that produce 0 or 1 (MIPS, Alpha,
IA-32, AMD64), while for others it is as easy to
produce 0 or 1 as to produce 0 or −1, so ”0 or 1”
is more in line with the goal of the direct relation
to the machine feature. An implementation of a 0-
or-−1 language like Forth would use a sequence like
<? negate for which good code can be generated
easily.5

3.9 Control flow inside definitions

The standard Forth words begin again until

ahead if then cs-roll are available in PAF

4Some languages have local variables whose address can
be taken; it may be a good idea to provide a way to store
them in this stack eventually, but for now such variables have
to be stored elsewhere. The interaction of such a feature
with, e.g., tail calls has to be considered first.

5Conversely, one might also decide to have < etc. instead
of <? in PAF, and let the compiler handle the mismatch
to some machines, but that would be somewhat against the
spirit of a portable assembly language.

Ertl PAF: A portable assembly language

and are useful for building structured con-
trol flow, such as if ... then ... elsif ...

then ... else ... end.
While one can construct any control flow with

these words [Bad90], if you want to implement la-
bels and gotos, it’s easier to use labels and gotos.
Therefore, PAF (unlike Forth) provides that, too:
L:name defines a label and goto:name jumps to it.

PAF also supports indirect gotos: ’name/tag

produces the address of label name, and goto/tag

jumps to a label passed on the stack. The tag indi-
cates which gotos can jump to which labels; a PAF
program must not jump to a label address gener-
ated with a different tag. E.g., a C compiler target-
ing PAF could use a separate tag for each switch

statement and the labels occuring there.
These tags are useful for register allocation. One

can use different tags when taking the address of
the same label several times, and this may result in
different label addresses, with the code at each tar-
get address matched to the gotos that use that tag
(i.e., several entry points for the same PAF label).

Whichever method of control flow you use, on
a control flow join the statically determined stack
depth has to be the same on all joining control flows.
This ensures that the PAF compiler can always de-
termine the stack depth and can map stack items
to registers even across control flow. This is a re-
striction compared to Forth, but most Forth code
conforms with this restriction. Breaking this rule
is detected and reported as error by the PAF com-
piler.

So the tags have another benefit in connection
with the stack-depth rule: The static stack depth
for a given tag must be the same (for all labels and
all gotos), but they can be different for different
tags. If there were no tags, all labels and gotos in a
definition would have to have the same stack depth.

3.10 PAF Definitions and PAF calls

A definition where the compiler is free to determine
the calling interface is defined in the classical Forth
way:

: name ... exit ;

The end of the definition does not produce an
implicit return (unlike Forth), so you have to return
explicitly with exit.

You call such a definition by writing its name, i.e.,
the traditional Forth way. You can explicitly tail-
call such a definition with jump:name ; this can be
written explicitly, in the spirit of having a portable
assembly language. Optimizing implicit tail calls is
not hard, so the PAF compiler may do it, too.

We can take the address of a definition with
’name:tag , call it with exec.tag and tail-call it

with jump.tag . The tags indicate which calls can
call which definitions.

The stack effects of all definitions whose address
is taken with the same tag have to be compatible.
I.e., there must be one stack effect that describes all
of them; e.g., (x x -- x) is a valid stack effect
of both + and drop (although the minimal stack
effect of drop is (x --)), so + and drop have
compatible stack effects.

The use of tags here has two purposes: It informs
the PAF compiler about the control flow; and it
also informs it about the stack effect of the indi-
rect call (while a Forth compiler usually has to as-
sume that execute can call anything, and have any
stack effect). Or conversely, in connection with the
stack-depth rule: Tags allow different stack effects
for indirectly called definitions with different tags;
without tags, all indirectly called definitions would
have to have the same stack effect.

3.11 ABI definitions and ABI calls

We need to specify the stack effect explicitly as sig-
nature of an ABI definition or call. The syntax
for such a signature is [xr]*-[xr]*, where x indi-
cates a cell (machine word/integer/address) argu-
ment, and r a floating-point argument; the letters
before the - indicate parameters, and the letters
afterwards the results. The division into x and r

reflects the division into general-purpose registers
and floating-point registers on real machines, and
the role these registers play in many calling con-
ventions.

A definition conforming to the calling convention
is defined with abi:sig name . Sig specifies the
stack effect, and indicates the correspondence be-
tween ABI parameters and PAF stack items. This
signature is not quite redundant, e.g., consider the
difference between the following definitions:

abi:x-x id exit ;

abi:- noop exit ;

These definitions differ only in the signature,
yet they behave differently: id returns its argu-
ment, noop doesn’t, and with ABI calling conven-
tions, there is usually a difference between these
behaviours.

You can call to an ABI-conforming function with
abi.name.sig , where name is the name of the func-
tion (which may be a PAF definition or a function
written in a different language and dynamically or
statically linked with the PAF program). The sig-
nature specifies how many and which types of stack
items to pass to the called functions, and what type
of return value (if any) to push on the stack.

Putting the signature on every call may be a
bit repetetive for human programmers, but PAF is
mainly intended as an intermediate language, and

Ertl PAF: A portable assembly language

an advantage of this scheme is that different calls to
the same function (e.g., printf) can have different
stack effects.

You can take the address of an ABI funtion with
abi’name and call it with abi-exec.sig . There
are no tail calls to ABI functions, because we can-
not guarantee that tail calls can be optimized in all
calling conventions.

Unlike PAF definitions, for ABI functions there
is no point in tagging these function addresses, be-
cause the call always uses the ABI calling conven-
tion (whereas the compiler is free to determine the
calling interface for PAF calls). The signature in
indirect ABI calls has the same significance as in
direct ABI calls.

3.12 Definitions and Calls Discussion

Why have two kinds of definitions and two kinds of
calls?

The PAF definitions and calls allow to imple-
ment various control structures such as backtrack-
ing through tail calls [Ste77]. They also allow the
compiler to use flexible and possibly more efficient
calling interfaces than the ABI calling convention.

On the other hand, the ABI counterparts allow
interfacing with other languages and using dynam-
ically or statically linked binary libraries, includ-
ing callbacks, and using PAF to build such libraries
(e.g., as plug-ins).

3.13 Exceptions

It is possible to build non-local control-flow such as
exceptions with tail-calls, but it is often more conve-
nient to let a PAF definition correspond to a source
language function/method/procedure (no need to
spread locals across several definitions). Exceptions
are a common non-local control-flow construct, so
PAF includes them.

4 Non-Features

This section discusses various features that PAF
does not have and why.

4.1 Garbage collection

A number of virtual machines, e.g., the Java VM,
support garbage collection. However, this feature
significantly restricts what can be done. In particu-
lar, the data representations are restricted, and one
cannot implement “unmanaged” languages or use a
different data representation for a garbage collected
language (e.g., the Java VM representation is quite
different from how most Prolog or Lisp systems rep-
resent their data).

Even C--, which is intended as a portable assem-
bly language for garbage collected languages does
not implement garbage collection itself, but leaves it
to the higher-level language, because that leaves the
full freedom on how to implement data and garbage
collection to the higher-level language [JRR99].

4.2 Types

PAF does not perform type checking during compi-
lation, nor at run-time; also, there is no overloading
of several operations on the same operator based
on types. This is consistent with the descent from
Forth, and non-portable assembly languages have
the same approach.

In contrast, in C-- the compiler knows about data
types and uses that knowledge for overloading reso-
lution. The disadvantage of such approaches is that
it complicates the C-- compiler without making life
easier for the front end compiler, which has to know
exactly anyway whether it wants to perform, say,
signed or unsigned comparison.

One may wonder about the “absence” of some op-
erations in PAF; e.g., there is <? U<?, but only =?

+ - *. The reason is that, on the two’s-complement
machines that PAF targets, these operations are the
same for signed and unsigned numbers.

4.3 Debugger

Quite a bit of effort in C-- is devoted to supporting
the standard debugger. For now there are no plans
to make such an effort for PAF. C became a suc-
cessful portable assembly language even though it
has very little debugger support for languages that
use it as intermediate language.

4.4 SIMD

Supporting SIMD instruction set extensions such as
SSE, AVX, AltiVec etc. is not planned, mainly be-
cause few higher-level languages need such features.
They can be added later if there is demand.

5 PAF vs. Forth

The restrictions on stack handling in PAF provide
new insights into Forth, and we take a closer look
at that in this section.

5.1 Effect on implementation

PAF has restrictions and features that allow the
compiler to statically determine the stack depth.
As a consequence, in PAF there is no need to im-
plement the stacks in memory, with a stack pointer
for each stack (data stack and return stack for cells,
floating-point stack for floating-point values).

Ertl PAF: A portable assembly language

\ Forth

: selector (offset --)

create ,

does> (... o -- ...)

@ over @ + @ execute ;

1 cells selector foo

2 cells selector bar

\ PAF

: foo (... o -- ...)

dup @ 1 cells + @ jump.foo ;

: bar (... o -- ...)

dup @ 2 cells + @ jump.bar ;

Figure 1: Defining method selectors in Forth and in
PAF (simplified)

In contrast, Forth needs to have a separate mem-
ory area and stack pointer for each stack, and while
stack items can be kept in registers for most of the
code, there are some words (in particular, execute)
and code patterns (unbalanced stack effects on con-
trol flow joins), that force stack items into memory
and usually also force stack pointer updates.

This property of Forth is avoided in PAF by
requiring balanced stack effects on control flow
joins (see Section 3.9), and by replacing execute

with exec.tag (see Section 3.10); all definition ad-
dresses returned for a particular tag are required to
have compatible stack effects, so exec.tag has a
statically determined stack effect.

5.2 Effect on Programs

The effect on real programs is relatively small: most
Forth code has balanced stack effects for control
flow anyway, and most occurences of ’ and execute

can be converted to their tagged variants, because
programmers keep the stack depth statically deter-
minable in order to keep the code understandable.

However, there are cases where the restrictions
are not so easy to comply with. E.g., object-
oriented packages in Forth use execute for words
with arbitrary stack effects. Programs using these
words have a statically determined stack effect, too,
but it is only there at a higher level; e.g., if you
use a separate tag (and a separate exec.tag) for
each method selector, typical uses comply with the
restriction, but in most object-oriented packages
there is only one execute.

Figure 1 shows code for this example: the Forth
variant defines a defining word selector, and the
selectors are then defined with this defining word;
in contrast, the PAF variant defines the selectors
directly (and pretty repetetively), each with its own
tag.

If you want to define a defining word for method
selectors like you usually do in Forth, the tag would
have to be passed around as a define-time parameter
between the involved defining words. This support
for higher-level programming is not required inside
PAF (there we leave such meta-programming to the
higher-level language), but if we want to transfer
the tag idea back to Forth, we would have to add
such things.

5.3 Compiling Forth to PAF

Translating Forth code that is not PAF code into
PAF code can be instructive.

As an example, we use another variant of the se-
lector code above6:

: do-selector (.. obj m-off -- ..)

over @ + @ execute ;

: foo (.. obj -- ..)

1 cells do-method ;

: bar (--)

1 2 my-obj foo . ;

This is not PAF because of the execute, which
can have an arbitrary stack effect. We translate this
execute into a PAF jump with tag forth; we decide
that the PAF calling convention for xts with that
tag is (--). I.e., any Forth stack effects have to
be translated into accesses to an explicitly imple-
mented memory stack in PAF. The stack pointer of
the data stack is implemented as a value sp.

Do-selector itself only needs to store the stack
item obj into this explicit stack, but the direct and
indirect callers of do-selector usually have to ac-
cess this explicit stack as well. In our example, bar
has to push two items on the explicit stack and pop
one item from the explicit stack:

0 value sp

: do-method

over sp cell- tuck ! to sp

swap @ + @ jump.forth ;

: foo

1 cells jump:do-method ;

: bar

sp cell- 1 over !

cell- 2 over !

to sp

my-obj foo

sp dup @ swap cell+ to sp

jump:. ;

Ertl PAF: A portable assembly language

One would have to implement the floating-point
stack in the same way.

Some people would like to extend standard Forth
with return-address manipulation. One can also do
a translation from such an extended Forth to PAF,
and it shows how expensive that feature can be.
Looking just at the do-method part of the example
above:

0 value sp

0 value rp

: thunk1

exit ;

: do-method

over sp cell- tuck ! to sp

swap @ + @

rp cell- to rp ’thunk1:forth rp !

exec.forth rp cell+ to rp

jump:thunk1 ;

The return stack pointer has to be made explicit
(as rp). Instead of translating the execute into
an indirect tail call (jump.forth), we have to first
store the return address ’thunk1:forth on the ex-
plicit return stack, then use an indirect non-tail call
exec.forth, then drop the return address from the
explicit return stack, and then continue with the
rest of the definition (thunk1), which just returns
in this case.

6 Related work

We have discussed C, LLVM, C--, and Vcode/GNU
Lightning in Section 2.

There are projects that are similar to PAF in us-
ing a restricted or modified form of a higher-level
language as portable assembler:

• The Python system PyPy uses a restricted
form of Python called RPython as low-level in-
termediate language [AACM07].

• Asm.js7 is a subset of JavaScript that is so re-
stricted that it can serve as portable assembly
language.

• PreScheme is a low-level subset of Scheme
used as intermediate language for implement-
ing Scheme48 [KR94].

In all these cases the base language is much
higher-level than Forth, and it is much more of a
stretch to create a low-level subset than for Forth..

6This variant defines a selector as a colon definition in-
stead of with does>; for presentation purposes we leave the
defining word selector away and define the selector foo di-
rectly instead of with selector foo.

7http://asmjs.org/

Machine Forth (which evolved into colorForth) is
a simple variant of Forth created by Chuck Moore,
the inventor of Forth. It closely corresponds to the
instructions on his Forth CPUs, but he also wrote
an implementation for IA-32 that creates native
code. The IA-32 compiler is very simple, basically
just expanding the words into short machine code
sequences.8 It does not map stack items beyond
the top-of-stack to registers, yet the generated code
is relatively compact; this reflects the fact that ma-
chine Forth is close to the machine, including IA-32.

7 Conclusion

PAF is a subset/dialect of Forth that is intended as
a portable assembly language. The main contribu-
tions of PAF are:

• Tags indicate which indirect branches can
reach which labels and which indirect calls can
call which definitions. Compared to general in-
direct branches and calls, this gives more free-
dom to the front end’s stack usage and to the
PAF compiler’s register allocator. Tags need
less implementation effort and produce better
results than trying to achieve the same result
through program analysis.

• Definitions and calls are split into those con-
forming to the ABI/calling convention of the
platform, and others for which the compiler can
use any calling interface (and different ones for
different sets of callers and callees). This al-
lows tail-call optimization (unlike ABI calling
conventions), which in turn means that we can
use the calls as a primitive for arbitrary control
structures (e.g., coroutining).

• Restrictions (compared to Forth) on the use of
stack items make it possible to have a static
relation between stack items and registers for
all programs, and avoid the need for a sepa-
rate stack pointer and memory area for each
stack. This highlights which Forth features are
expensive and where they are used.

References

[AACM07] Davide Ancona, Massimo Ancona, An-
tonio Cuni, and Nicholas D. Matsakis.
RPython: a step towards reconciling
dynamically and statically typed OO
languages. In Pascal Costanza and
Robert Hirschfeld, editors, DLS, pages
53–64. ACM, 2007.

8http://www.colorforth.com/forth.html

Ertl PAF: A portable assembly language

[Bad90] Wil Baden. Virtual rheology. In
FORML’90 Proceedings, 1990.

[Eng96] Dawson R. Engler. vcode: A re-
targetable, extensible, very fast dy-
namic code generation system. In SIG-
PLAN ’96 Conference on Programming
Language Design and Implementation,
pages 160–170, 1996.

[JRR99] Simon L. Peyton Jones, Norman Ram-
sey, and Fermin Reig. C--: a
portable assembly language that sup-
ports garbage collection. In Inter-
national Conference on Principles and
Practice of Declarative Programming,
September 1999.

[KR94] Richard A. Kelsey and Jonathan A.
Rees. A tractable Scheme implementa-
tion. Lisp and Symbolic Computation,
7(4):315–335, 1994.

[LA04] Chris Lattner and Vikram S. Adve.
LLVM: A compilation framework for
lifelong program analysis & transforma-
tion. In Code Generation and Optimiza-
tion (CGO), pages 75–88. IEEE Com-
puter Society, 2004.

[Ste77] Guy Lewis Steele Jr. Debunking the
“expensive procedure call” myth or pro-
cedure call implementations considered
harmful or lambda: The ultimate goto.
AI Memo 443, MIT AI Lab, October
1977.

